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Abstract 

Mass-Suite (MSS) is a Python-based, open-source software package designed to analyze high-resolution mass 
spectrometry (HRMS)-based non-targeted analysis (NTA) data, particularly for water quality assessment and other 
environmental applications. MSS provides flexible, user-defined workflows for HRMS data processing and analysis, 
including both basic functions (e.g., feature extraction, data reduction, feature annotation, data visualization, and sta-
tistical analyses) and advanced exploratory data mining and predictive modeling capabilities that are not provided 
by currently available open-source software (e.g., unsupervised clustering analyses, a machine learning-based source 
tracking and apportionment tool). As a key advance, most core MSS functions are supported by machine learn-
ing algorithms (e.g., clustering algorithms and predictive modeling algorithms) to facilitate function accuracy and/
or efficiency. MSS reliability was validated with mixed chemical standards of known composition, with 99.5% feature 
extraction accuracy and ~ 52% overlap of extracted features relative to other open-source software tools. Example 
user cases of laboratory data evaluation are provided to illustrate MSS functionalities and demonstrate reliability. MSS 
expands available HRMS data analysis workflows for water quality evaluation and environmental forensics, and is read-
ily integrated with existing capabilities. As an open-source package, we anticipate further development of improved 
data analysis capabilities in collaboration with interested users.
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Introduction
High-resolution mass spectrometry (HRMS) analy-
ses provide especially comprehensive and open-ended 
screening capabilities to characterize complex sam-
ples containing mixtures of many unknown or unan-
ticipated compounds. With increasing recognition 
that humans produce and discharge many thousands 
of potential new “emerging contaminants” to the 
environment [1–3], these broad spectrum analytical 
methods are opening new frontiers in environmental 
chemistry, health, and engineering research. Specifi-
cally, non-targeted analysis (NTA) methods leverage 
the non-selective data collection capability of HRMS, 
with the resulting data supporting comprehensive char-
acterization of chemical composition, identification of 
previously unknown contaminants, evaluation of com-
positional change across samples, and tracking of con-
taminant sources [4–9]. Such data uses are not unique 
to environmental analysis, with many applications 

relevant to multi-omics [10–12], toxicology, and drug 
screening studies [13–16].

Notably, pairing complex environmental samples with 
expansive HRMS data collection capacities results in 
generation of massive datasets; most such data remain 
under- or unused, in part due to limitations of existing 
data analysis workflows. HRMS data analysis workflows 
and software platforms incorporate data reduction, anal-
ysis, and interpretation elements, but significant oppor-
tunity remains for optimization and development of 
advanced data analysis capabilities, particularly for NTA 
data sets and for data interpretation endpoints beyond 
compound identification. Existing commercial software 
supports both basic data analysis (e.g., feature extrac-
tion, data alignment) and several advanced workflows 
(e.g., feature annotation, statistical analyses), but often 
are costly, limited to instrument-specific datafile formats, 
or provide outputs that struggle to interface with other 
platforms, databases, and tools. It is especially difficult 

Graphical abstract

Table 1  Overview of commonly used open-source software tools and their data analysis features for HRMS workflows

* XCMS is supported by various R packages and primarily acts as a starting point for subsequent analyses on other platforms

Features Tools

MSS TidyMS MZmine2 XCMS* MSDIAL PatRoon

Language Python Python Java R C# R

Raw data preprocessing √ √ √ √ √ √

QC-based batch correction  ×  √  ×   ×   ×   × 

Quality reports √ √ √  ×  √ √

Normalization, imputation, scaling √ √ √  ×  √ √

Feature annotation √  ×  √  ×  √ √

Isotope grouping  ×   ×  √ √ √ √

Interactive visualization plots √  ×  √  ×  √  × 

Clustering statistical analysis √  ×   ×   ×   ×   × 

Modeling tools √  ×   ×   ×   ×   × 
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for users to adapt existing workflows to integrate more 
complex approaches to feature prioritization, source 
tracking, or “-omics” analyses that require external func-
tions or algorithms (e.g., machine learning, external data-
base searching, or cloud computation). To address such 
needs, various open-source tools for handling HRMS 
data and implementing NTA workflows have been devel-
oped, including MSDIAL [17], openMS [18], XCMS [19], 
MZmine [20], PatRoon [21], and enviMass [22], among 
others. Those tools provide flexible workflows with desig-
nated functionalities within specific intended fields (e.g., 
proteomics or metabolomics), but often implement a 
limited range of data analysis capabilities (Table 1) or are 
not useful for some types of environmental data analysis 
(e.g., source apportionment).

Raw HRMS data often consists of many thousands of 
features, requiring substantial computational resources 
and potentially driving inaccuracy in subsequent analyses 
if used directly. Therefore, feature filtering and prioritiza-
tion are critical to effectively reduce the size of the data-
set and facilitate downstream analyses [5, 6, 23, 24]. To 
avoid inefficient or impractical manual operations (e.g., 
to remove poorly integrated chromatogram peaks, to 
prioritize certain HRMS features) and facilitate data min-
ing analysis, existing software platforms (e.g., Compound 
Discoverer, patRoon) commonly rely on descriptive sta-
tistics, data reduction, and data visualization (e.g., Prin-
ciple Component Analysis (PCA), fold-change volcano 
plots) [21]. As a complementary automated approach, 
machine learning algorithms (e.g., supervised, unsuper-
vised, or reinforcement learnings, etc.) can support more 
effective feature prioritization and predictive modeling 
workflows across several fields. For example, Nikolopou-
lou et al. developed a deep learning-based NTA workflow 
for environmental trend analysis to prioritize new emerg-
ing contraminants [25]. In metabolomics applications, 
machine learning algorithms can support clinical deci-
sions, guide metabolic engineering, and facilitate biologi-
cal studies [26–29]. However, existing workflows usually 
employ only one or a few algorithms concurrently, forc-
ing users to jump back and forth between different plat-
forms to achieve some analysis capabilities.

Currently, only a few software packages (e.g., PatRoon, 
enviMass) are specifically designed to address environ-
mental NTA data analysis challenges. For example, iden-
tification and quantitative apportionment of complex 
chemical pollution sources remains a persistent chal-
lenge [4, 7]. Traditionally, contaminant source apportion-
ment (i.e., estimating the presence and relative amount 
of a source in a mixed sample) has relied on the occur-
rence and quantification of a few pre-selected, targeted 
chemicals as unique source markers [30, 31]. However, 
source marker chemicals are not always known or unique 

to individual sources. HRMS datasets provide a unique 
opportunity to establish source “fingerprints” com-
prised of hundreds to thousands of both identified and 
unknown chemical features [4], which are more likely to 
be source-specific and to contain marker chemicals that 
persist through dilution and transformation processes. 
Conceptually, this approach enables complex mixture 
quantitation and represents an important, cutting-edge 
analytical capability [32–35]. However, few existing 
efforts have paired this concept with machine learning, 
indicating a clear opportunity for NTA workflows [7].

Finally, most open-source HRMS data tools were devel-
oped using R, C +  + , and Visual Basic programming lan-
guages, while relatively few software packages use Python 
[36–40]. As one of the most popular and accessible pro-
gramming languages, Python especially benefits from 
community contributions, including the well-known sta-
tistical analysis packages SciPy [41] and scikit-learn [42]. 
Additionally, Python is an interpreted programming lan-
guage that is relatively easy to read, learn, and write for 
non-programmer researchers, providing much flexibility 
and convenience for users to optimize and adapt existing 
tools to their needs [43].

Given these many data analysis needs and the limi-
tations of existing software packages, we developed a 
Python package Mass-Suite (MSS) as an open-source 
data analysis toolbox with multiple HRMS data pro-
cessing capabilities. The MSS package described here is 
compatible with exported data from other commercial 
or open-source tools and includes basic functions like 
feature extraction, prioritization, and data visualization. 
Driven by machine learning algorithms and capabilities 
that are not currently available within other NTA work-
flows or tools (Table  1), MSS also provides advanced 
data analysis (e.g., unsupervised clustering analysis, 
source tracking modeling), heuristic data exploration, 
data mining, and predictive modeling capabilities within 
a user-friendly, automated, and full-stack platform. We 
anticipate MSS will enable researchers, especially those 
with limited programming expertise, to more efficiently 
and reliably extract meaningful information from NTA 
datasets.

Implementation
Development of MSS primarily depended on Pandas 
[44] and scikit-learn [42] packages for data processing 
and analysis, and plotly [45] and matplotlib [46] pack-
ages for data visualization. To demonstrate major MSS 
functionalities, this Implementation section describes 
a representative NTA workflow using MSS for data 
import, feature extraction and alignment, data reduc-
tion, advanced data mining (statistical analyses, feature 
clustering, and a novel source tracking function), data 
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visualization, feature annotation, and reporting. In the 
Results and Discussion section, we describe workflow 
performance validation to assess peak picking accuracy 
and feature detection consistency relative to other open-
source data processing platforms. Three example case 
studies are then provided to illustrate application of MSS 
to analyze existing experimental HRMS datasets. All 
related resources and an example workflow (in.ipynb for-
mat) are included in the demo file in the project GitHub 
repository: https://​github.​com/​Ximin​Hu/​mass-​suite. A 
README file accompanies MSS and most functions have 
individual documentation to ensure that MSS is readable 
and maintainable.

Workflow development
MSS uses a modularized layout to provide HRMS data 
analysis functions (Fig.  1) and all MSS modules can be 
loaded in full or separately as needed. Existing modules 
enable raw data import/pre-processing, feature extrac-
tion and alignment, data reduction, feature annota-
tion, advanced data mining and feature prioritization, 
data visualization, and reporting. These functions and 

capabilities are summarized below and in Additional 
file  1: Table  S1. All package modules are optional, cus-
tomizable, and compatible with various external data 
formats (e.g.,.csv,.xlsx,.txt), enabling users to select 
and combine functions from different modules, exter-
nal packages, and other platforms to create custom 
workflows.

For example, MSS capabilities can complement open-
source software packages such as OpenMS [18], XCMS 
[19], MetFrag [47], MSDIAL [17], and PatRoon [21] by 
processing exported compatible output files with MSS 
functions. Users can also import.mzML files with the 
support of external data conversion tools (e.g., Prote-
oWizard [48], FragPipe [49]) to convert raw instru-
ment-specific data formats (e.g.,.d,.raw). MSS is able to 
interface with external Python functions or packages, 
including several popular packages like SciPy [41] or 
advanced machine learning packages involving neural 
networks such as TensorFlow [50] and PyTorch [51]. 
New user-defined functions can easily be appended to 
existing modules to expand functionality and improve 
flexibility and data analysis capabilities. Statistical tools 

Fig. 1  Overview of a typical MSS workflow for high-resolution mass spectrometry (HRMS) data analysis. The solid lines represent a typical workflow 
for typical HRMS non-targeted analysis (NTA) data processing; dashed lines represent additional optional workflows. All modules are optional

https://github.com/XiminHu/mass-suite
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provided by MSS or MSS-interfaced external functions 
can process MSS data or external data in an Excel-com-
patible format.

Data import, feature extraction, and feature alignment
In a typical MSS workflow, raw data (.mzML format) is 
first imported and parsed with pymzml [52] as Python-
compatible metadata with the mssmain.get_scans func-
tion. Converted data are then available for optional 
baseline subtraction based on signal intensities prior 
to subsequent feature extraction (Additional file  1: 
Figure S1). HRMS feature extraction (i.e., “peak pick-
ing”), where a feature is a single presumptive detection 
of a chemical or its adducts/isotopologues and is rep-
resented as an exact mass (m/z value)—retention time 
(RT) pair, usually involves extensive parameter tun-
ing and quality assessment of any extracted peaks. The 
MSS feature extraction function (mssmain.peak_pick) 
concatenates scans and finds peak indices (using the 
PeakUtils package [53]), then performs post-processing 
(e.g., peak width filter, replicated peak filter, regression-
based peak boundary determination) to reduce poor 
quality features (e.g., peak splitting, insufficient scan 
numbers, high baseline noise). To further exclude noisy 
peaks, optimize parameters, and improve the feature 
extraction accuracy, MSS also calculates 15 descriptive 
parameters for the extracted peaks [54] to provide an 
optional peak assessment score based on a pre-trained 
random forest model. The complete feature extrac-
tion process for a single.mzML data file is described in 
Additional file 1: Text S1.

Because all parameters in this process are user-adjust-
able, the package provides options to trade off computa-
tional speed and feature extraction accuracy. For batch 
data processing of multiple.mzML files, the same work-
flow is performed on each datafile. After feature extrac-
tion, feature alignment across datafiles is performed 
based on Euclidean distance:

where Dij is the Euclidean distance between each feature 
observed in datafiles i and j, mz is the m/z ratio, and RT 
is retention time. Each feature (pair of m/z ratio and RT) 
that did not align with any existing detections would 
be used as a reference feature, and the aligned features’ 
m/z ratio and RT would be corrected to the same value 
as the reference features. Feature pairs with the lowest 
calculated distance across different datafiles are aligned. 
Aligned batch data can be exported as different user-
defined formats (.csv,.tsv,.txt,.hdf, etc.) for subsequent 
analysis with other tools.

Dij =

√

(mzi −mzj)
2
+ (RTi − RTj)

2

Initial data reduction
Feature extraction and alignment usually yields datasets 
containing hundreds to thousands of HRMS features per 
sample. However, in NTA, more features do not neces-
sarily indicate greater sample complexity and improved 
resolving power across samples, as internal (e.g., instru-
ment/software artifacts) or external (e.g., background 
noise, impurities from sample processing) interferences 
may bias comparisons. Therefore, careful data reduc-
tion, supported by proper study design (e.g., experimen-
tal blanks, controls, replicates) to identify and exclude 
such interferences is important to ensure data quality 
and accuracy. Various customizable data reduction fil-
ters are available in MSS for HRMS feature lists. A rep-
resentative data reduction process [21, 55] might include: 
(a) background feature subtraction based on a peak area 
fold-change criteria between experimental and blank 
samples; (b) replicate evaluation to remove features 
based on the calculated average and coefficient of varia-
tion for data from experimental or analytical replicates; 
and c) data trimming based on selected m/z or retention 
time ranges. These data reduction steps often effectively 
reduce feature numbers by up to tenfold, simplifying sub-
sequent data analysis (MSS function example shown in 
Additional file  1: Figure S2). Although some “real” data 
is inevitably lost upon data reduction, stringent criteria 
for noise reduction and interfering detections typically 
improve the accuracy of downstream analyses, conserve 
calculation resources, and prioritize smaller data subsets 
for subsequent analysis [56].

Advanced data mining
After initial workflow steps (e.g., feature extraction/align-
ment and data reduction), advanced analyses are often 
needed to extract meaningful information from NTA 
datasets [21]. When successful, these secondary data 
reduction processes also simplify the dataset and reduce 
the risk of incoherent classifications or predictions. Aug-
menting expected NTA workflow functionality, MSS 
provides basic statistical tools (e.g., hypothesis testing 
and trend comparison), as well as dimension reduc-
tion approaches (e.g., Principle Component Analysis 
(PCA) [57], t-distributed stochastic neighbor embedding 
(T-SNE) [58]) to reduce the “curse of dimensionality” 
[59] and provide simplified visualizations of complicated 
datasets. For example, PCA is easily performed using 
one-line commands in MSS (example provided in Addi-
tional file 1: Figure S3).

Beyond fundamental data mining tools, heuristic data 
exploration in MSS is supported by several machine 
learning-based approaches, including novel function-
alities that are not offered by existing NTA workflows. 
These include: (a) clustering tools to aggregate features 
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with similar behavior patterns (i.e., similar trends of nor-
malized abundances) across samples based on unsuper-
vised machine learning algorithms (such as density-based 
spatial clustering of applications with noise [DBSCAN] 
[60] and ordering points to identify the clustering struc-
ture [OPTICS] [61]); and b) a novel model-based source 
tracking tool. Detailed capabilities of these tools are 
described below.

Feature clustering
In MSS, feature prioritization is performed by the unsu-
pervised clustering algorithm DBSCAN by default, with 
OPTICS as an alternative algorithm. DBSCAN finds core 
features that possess high density, then expands clus-
ters from these cores with cluster boundaries delineated 
by user-defined tolerances [62]. Compared to cluster-
ing algorithms commonly used in pattern recognition 
or temporal/spatial data grouping, such as KNN [63] 
and MeanShift [64], DBSCAN can discover clusters with 
arbitrary shapes, is robust towards outlier detections, and 
has been successfully utilized in various areas including 
biochemical studies and text processing [65, 66]. Using 
this approach, features with similar behavior patterns are 
automatically clustered with user-selected parameters, 
while outliers that diverge from recognized trends are 
excluded. Consequently, DBSCAN effectively prioritizes 
features that, for example, belong to a specific contami-
nation source or are persistent or labile during a chemi-
cal reaction or treatment process. This can facilitate data 
processing and generate more accurate results, while 
avoiding the need for laborious manual data processing 
in conjunction with user-defined or custom workflows.

Clustering analysis is performed with the MSS function 
dm.ms_cluster, which uses Z-score data normalization 
prior to clustering by default to eliminate data skewness 
and kurtosis:

where z is z-score, x is feature peak area in the sample, 
μ is the average peak area of the feature across all sam-
ples, and σ is the standard deviation of the peak areas. 
Other normalization algorithms are available from user 
settings (e.g., 0–1 scale normalization, log transforma-
tion). Normalized datasets are then processed with the 
DBSCAN (or OPTICS) algorithm for feature clustering. 
Optional dimension reduction methods (PCA or T-SNE) 
are available in the function according to user needs. 
Two tunable parameters for the DBSCAN algorithm, 
min_samples and eps, are determined via feature num-
bers (min_samples) and knee plot (eps; MSS provides a 
function eps_assess for this process). Clustered results 
can be optionally visualized for output evaluation, cluster 

z = (x−µ) / σ

selection for modeling analysis (Additional file 1: Figure 
S4), and heuristic data exploration.

Source tracking and apportionment
Leveraging the unsupervised clustering analysis in con-
junction with predictive modeling approaches, MSS 
offers a novel source tracking functionality. In MSS, clus-
tering functions described above are first used to iso-
late source fingerprints. Resulting fingerprint features 
are then aggregated to train and test a predictive source 
tracking model using user-selected algorithms (see 
Example III). A complete workflow for source apportion-
ment prediction from a pre-processed dataset using the 
MSS function (dm.feature_model) includes:

1.	 Prioritization of source fingerprint features by clus-
tering analysis: Clustering analysis is performed on 
the dataset to designate features that cluster with 
source-associated patterns (e.g., decreasing abun-
dance with source dilution) as source fingerprint 
candidates. Proper experimental design and sample 
preparation methods (e.g., a dilution series of a pol-
lutant source sample, samples differentially impacted 
by the same pollutant source) are required to identify 
and prioritize source-representative features.

2.	 Data treatment for model training: A subset of the 
pre-processed original data is selected based on the 
prioritized fingerprint candidates, converted into 
a function-compatible format (e.g., renaming, data 
transposition, etc.), and split into training and test 
sets.

3.	 Model training: Using pairs of detected abundance 
and known source concentration for feature(s) or fea-
ture cluster(s) of interest (e.g., single feature, grouped 
features from one or multiple clusters), the function 
trains the predictive model with user-selected algo-
rithms. After training, the function optionally gener-
ates a performance report (e.g., coefficient of deter-
mination of the model [42]; visualized predicted vs. 
actual values) to support evaluation of the perfor-
mance and importance of different feature clusters 
for accurate source apportionment.

4.	 Model validation and optimization: Trained models 
are validated using the testing data to assess model 
accuracy and avoid under- or overfitting. Based on 
the result of (3), users can tune model parameters 
or re-select feature cluster(s) to iteratively optimize 
results.

5.	 Source apportionment prediction: After model train-
ing and testing, users can deploy the model to evalu-
ate source presence/concentration in unknown sam-
ples.
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Currently, the dm.feature_model function incorporates 
several algorithms for multivariate regression, tree-based 
regression and support vector machine regression, pro-
viding flexibility for different datasets and user needs.

Feature annotation
Feature annotation (e.g., assigning a specific chemical 
identity to a detected feature) in MSS primarily exploits 
external databases with web Application Programming 
Interfaces (APIs). MSS functions interface to the Chem-
Calc online calculation tool [67] for chemical formulae 
prediction and to the MassBank of North America data-
base [68] for MS/MS fragment matching to facilitate 
identification (Additional file  1: Figure S5). For formula 
prediction in MSS, after candidate formulas are calcu-
lated from monoisotopic precursor mass by ChemCalc, 
prediction accuracy is evaluated with a dot-product 
based score via isotopic comparison between theoreti-
cal and observed spectra [17]. For compound identifica-
tion, MSS supports individual or averaged spectra upload 
options and results retrieval, following MassBank data-
base searching criteria and protocols. Processed data 
from MSS can be exported for further annotation using 
other platforms and databases, such as MetFrag [47], 
SIRIUS [69], GNPS [70], and NIST databases [71].

Visualization, reporting, and user interface
Several visualization functionalities are available in MSS 
for HRMS data inspection (within the visreader mod-
ule), including an overview m/z & RT scatter plot, total 
ion chromatogram (TIC), extracted ion chromatogram 
(EIC), and selected MS or MS/MS spectra. Raw HRMS 
data is inspected as the parsed list object (Additional 
file  1: Figure S6) or visualized using functions from the 
visreader module (Additional file  1: Figure S7). Output 
figures are available in static or interactive formats. Some 
visualization functions (EICs, MS and MS/MS spectra) 
provide optional online database search options and 
comparison with theoretical results (e.g., isotopologue 
pattern, MS/MS fragmentation) to help users under-
stand and communicate HRMS data. Beyond designated 
visualization functions within the visreader module, data 
output visualization options are also integrated into most 
MSS functions, including those for advanced data mining 
(e.g., PCA, feature clustering analysis), for users to imme-
diately evaluate package results.

MSS is designed to ensure easy interpretation and 
export of processed data. All processed data (as spread-
sheets) can be saved with the Pandas function [44]. Vis-
ualization plots can be saved directly from the output 
window in user-defined formats (e.g.,.png,.jpg). Trained 
models for feature extraction and quantitative source 
apportionment can be serialized using the pickle package 

[72]. Recommended interfaces for MSS are through note-
book-style integrated development environments either 
locally (e.g., jupyter notebook) or remotely (e.g., Google 
Colab), while feature extraction and data alignment func-
tions can be executed as a command line script to allow 
running the software on a high performance computing 
cluster or the cloud.

Software distribution and availability
MSS is distributed as a Python package with some exter-
nal supporting packages developed with C +  + . The 
package currently supports Microsoft Windows, Linux, 
and macOS platforms. Documentation (https://​github.​
com/​Ximin​Hu/​mass-​suite#​readme) includes the lat-
est patch notes, dependencies, tutorial examples, and 
example data for package testing. MSS was automatically 
tested during development with a continuous integration 
pipeline (GitHub Action). MSS distribution is generated 
with dist package and uploaded to PyPI server with twine 
package. Users can install the package via pip install 
command (https://​pypi.​org/​proje​ct/​mass-​suite/), within 
Anaconda, or through the external command-line.

Results and discussion
Feature extraction reliability
In HRMS data analysis, manual inspection of all 
extracted chromatographic peaks is typically impracti-
cal, so feature extraction accuracy impacts the quality of 
subsequent analyses. To assess reliability of MSS feature 
extraction, archived samples (mixed chemical stand-
ards) from the EPA ENTACT study [73] (Additional 
file  1: Text S2; sample numbers #505, #506 and #508; 
398 MS-amenable chemicals in total) were analyzed and 
processed through the MSS feature extraction work-
flow. The feature peak list was generated in MSS using 
default settings (Additional file 1: Text S3) and manually 
checked to validate correct extraction of chromatogram 
peaks for all chemical standards. MSS extracted 99.5% 
of peaks (2 peaks out of 398 didn’t match) known to be 
present in all three mixtures [73]. The extracted feature 
list from MSS for all archived ENTACT mixture sam-
ples (#505, #506 and #508) was then compared with two 
other open-source platforms (MSDIAL [17] and XCMS 
[19]) to evaluate feature extraction performance for total 
reported features (Additional file  1: Text S3). Most fea-
tures extracted by MSS overlapped with those reported 
by other software (Fig. 2; on average 52 ± 5% and 52 ± 6%, 
for MSDIAL and XCMS respectively), validating MSS 
performance in comparison to other well-accepted fea-
ture extraction tools. RT & m/z differences between the 
overlapped features also suggested similar data process-
ing outcomes across these three packages (Additional 
file 1: Figure S8).

https://github.com/XiminHu/mass-suite#readme
https://github.com/XiminHu/mass-suite#readme
https://pypi.org/project/mass-suite/
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Multiprocessing benchmarks
To minimize computational runtime, multiprocessing 
is optionally available for the most calculation-intensive 
functions (peak_pick and peak_list) that handle single 
or batch-file peak extraction. Multiprocessing occupies 
all available cores for calculation by default but is user-
customizable. The data files used for benchmarking 
were from the same samples (ENTACT #505, #506 and 
#508) as the feature extraction validation (Additional 
file  1: Text S3). Compared to single core processing, 
with all cores working, the processing time decreased 
from 201 ± 1.1  s to 58 ± 1.4  s (87 ± 3% of the theoreti-
cal maximum for 4 cores of computational power) for 
single file feature extraction and 897 ± 9.1 s to 350 ± 37 s 
(65 ± 7% of theoretical maximum) for multiple file 
(batch) feature extraction. Thus, parallel processing 
scripts did provide optional high-efficiency process-
ing allowing for some optimization of computational 
resources.

Demonstration of MSS applications
The sections above introduced MSS functionalities and 
described validation of the software package reliability. 
Here, three applications of MSS to analyze lab-generated 
datasets are provided, focusing on: I-II) automated fea-
ture prioritization and III) source tracking analysis. We 
note that MSS was not solely used for all HRMS data pro-
cessing in examples I (feature extraction/alignment) and 
II (feature extraction/alignment, blank subtraction) to 
maintain consistency with other analyses and studies. All 
the detailed data processing processes were documented 
in the demo notebook in https://​github.​com/​Ximin​Hu/​
mass-​suite/​tree/​master/​DEMO (parameter settings 
would typically be different for each example, which are 
described in the following sections).

Example I: Clustering analysis to prioritize 6PPD 
transformation products  This example demon-
strated use of the MSS feature prioritization workflow to 

Fig. 2  Comparisons of feature extraction outcomes for identical input samples. Samples numbered A #505, B #506 and C #508 from the ENTACT 
study [73] with MSS, XCMS and MSDIAL software processing. Venn diagrams report extracted features overlap between different platforms. The 
feature extractions were performed with parameters matched as closely as possible across the different platforms. Key parameters for peak 
extraction for different platforms are reported in Additional file 1: Table S2

https://github.com/XiminHu/mass-suite/tree/master/DEMO
https://github.com/XiminHu/mass-suite/tree/master/DEMO
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facilitate non-target screening of transformation prod-
ucts from a reaction process. An early (pre-release) ver-
sion of MSS was used to aid prioritization (by clustering 
analysis) and identification (by formula annotation) of 
potential transformation products of 6PPD (a tire rub-
ber antioxidant) during laboratory ozonation studies, 
fully described in Hu et al. [74]. Initial feature extraction 
and data alignment in Hu et  al. [74] was accomplished 
by MSDIAL (version 3.46) [17], with all subsequent data 
cleaning, formula annotation, and statistical analysis per-
formed in MSS (pre-release version). The detailed data 
treatment method and parameter settings are found in 
Hu et al. [74]. Key outcomes were that the MSS data pre-
processing workflow effectively reduced the total feature 
count across 61 unique samples (excluding blanks) from 
41,808 to 936 by blank subtraction, replicate filtering, and 
intensity filters within desired m/z and RT ranges (m/z 
100–900; RT 3–18 min). Clustering analysis in MSS with 
the DBSCAN algorithm (DBSCAN parameters: eps = 0.4, 
min_samples = 3) prioritized 297 features with trends of 
increasing peak area abundance during ozone exposure 
based on chemical clusters (processing time < 30  min). 
Ninety-eight features were retained after filtering based 
on detected abundance and predicted chemical formula; 
9 features were eventually prioritized as potential 6PPD-
derived and environmentally relevant TPs. Critically, 
the unique workflow provided by MSS allows users to 
discover clustered behavior patterns of HRMS features, 
select features with relevant patterns (e.g., increasing 
over time, as expected for stable transformation prod-
ucts), and reduce analysis time (compared to manual 
operation, typically ~ 15–20  h for a dataset of this size), 
thus facilitating feature prioritization.

Example II: Clustering analysis for biotransformation 
product discovery  To further demonstrate and validate 
MSS workflow capabilities for accurately prioritizing fea-
tures of interest by clustering analysis, archived HRMS 
data obtained from a previous biotransformation study 
[75] was re-analyzed with MSS (version 1.1.2). Briefly, the 
synthetic progestins dienogest and drospirenone were 
incubated in batch reactors, with samples collected over 
time (0, 4, 10, and 29  h) to measure biotransformation 
kinetics and identify transformation products [75]. Initial 
feature extraction, data alignment, and blank subtraction 
used Agilent software (MassHunter Profinder (B.08.00) 
and Mass Profiler Professional (B.13.00). Originally, fea-
tures were manually prioritized as potential transfor-
mation products based on molecular formula and diag-
nostic MS/MS fragments (~ 30  h manual time). Here, 
as an illustrative case, the data exported from the Agi-
lent software (.csv format) was processed in MSS using 
clustering analysis to prioritize potential transformation 

products. MSS efficiently clustered features with similar 
trends (Additional file  1: Figure S4; DBSCAN param-
eters: eps = 0.3, min_samples = 5; total processing 
time < 30  min), with 18 features identified as potential 
transformation products from the input list (after pre-
processing for blank and control subtraction) of 136 fea-
tures. Among those, nine MSS-prioritized candidates 
matched products reported originally (dienogest: TP311, 
TP 309, TP327b; drospirenone: TP 384, TP 380, TP 370a, 
TP 370b, TP382c and TP 368), representing 82% of the 
11 “major biotransformation products” reported in Zhao 
et al. [75]. The function was primarily tuned to prioritize 
potential TPs that were resistant to further reactions 
(i.e., monotonically increasing abundance). Thus, the 
manually-identified intermediate TPs (2 TPs, dienogest: 
TP 313; drospirenone: TP 364), which degraded after ini-
tial formation, were not reported in the MSS prioritiza-
tion results. Note that changes to the parameter setting 
or search for clusters with smaller size would potentially 
allow the MSS algorithm to detect non-monotonically 
increasing feature clusters as well. While valuable, such 
efforts would require further optimization efforts to 
improve accuracy and exclude or reduce potential false 
positive detections. Overall, the MSS data reduction 
and clustering analysis workflow yielded accurate results 
and significantly reduced data processing time, with 
improved performance anticipated with further param-
eter optimization, additional feature information (e.g., 
MS/MS spectra), or additional data processing to reduce 
false positive and false negative results.

Example III: Source apportionment modeling  The 
source tracking approach within MSS builds on our 
previous laboratory study on this topic [4]; preliminary 
testing of MSS was conducted by re-analyzing archived 
sample data from that same study. Detailed sample com-
position and data acquisition methods are provided else-
where [4]. Briefly, two complex roadway runoff samples 
were diluted and mixed with other water samples to 
mimic downstream mixing behaviors of multiple poten-
tial contaminant sources. In the original work, after 
HRMS analysis and data extraction using Agilent soft-
ware (MassHunter Profinder (B.08.00) and Mass Pro-
filer Professional (B.13.00)), fingerprint features were 
manually isolated and used to quantitatively apportion 
the amount of contaminant source in the mixed samples 
[4]. Using MSS (version 1.1.2; additional method details 
in Additional file 1: Text S4), we replicated this concep-
tual approach while incorporating machine learning 
approaches. HRMS source fingerprint features were iso-
lated using a clustering analysis (DBSCAN parameters: 
eps = 0.6, min_samples = 10) of the diluted series of road-
way runoff source samples. Subsequent model training, 
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output summary, and source apportionment predictions 
are shown in Additional file  1: Figure S9. MSS predic-
tions, using an ensemble random forest regression model 
(Additional file 1: Text S4), were compared with original 
prediction results (Fig.  3). Note that the MSS estimates 
were derived from an initial clustering analysis and model 
without further optimization, so accuracy could presum-
ably be improved with iterative optimization. Challenges 
remain for improving predictions when a) limited chemi-
cal features are available at lower pollutant source con-
centrations (e.g., MSS prediction error ranged from 40 
to 400% for Mixes 4A, 5A and 6A, which contained 4%, 
1% and 0.6% pollutant source by volume, respectively, 
compared to Mixes 1–3 containing > 10% source); and 
b) co-occurring sources and/or the background matrix 
introduce features that overlap with source fingerprint 
features and bias predictions (e.g., MSS prediction errors 
were higher in mixes 4B, 5B, and 6B, which contain 10%, 
2.5% and 0.4% by volume, respectively, of a second road-
way runoff source). Nevertheless, prediction accuracy 
for mixtures with higher source concentrations (Mixes 1, 
2 and 3; 30%, 18% and 10% pollutant source by volume, 
respectively) were similarly accurate (~ 5% differences in 
predicted source concentrations) as the original results, 
validating the utility of the source apportionment mod-
eling function in MSS.

Conclusions
We here communicated the structure and research 
capabilities of MSS as an open source and customiz-
able HRMS data analysis software package developed 
with Python. MSS provides numerous default and user-
defined modules (data import, feature extraction, data 
reduction, data visualization, feature annotation, and 
advanced data mining), that are accessible, flexible, and 
optimizable for custom study designs and data analysis 
scenarios, ensuring reproducible and accurate HRMS 
data analysis. Complementing traditional NTA data 
analysis approaches that focus on prioritization and 
identification of a small group of chemicals, core MSS 
functions provide a workflow for feature extraction, 
clustering analyses, and source tracking approaches 
that are supported by machine learning algorithms, 
allowing users to better leverage all relevant HRMS 
features for prioritization and modeling. These novel 
functions replace manual data reduction efforts and 
facilitate exploratory studies intended to utilize HRMS 
data as “big data”. While MSS provides functional docu-
mentation and examples for a quick and easy training 
guide for users with basic computational expertise, we 
do strongly encourage users to develop fundamental 
understanding about the algorithms, and their limita-
tions and assumptions, that are used to generate results 
to avoid misinterpretation and misuse of the models. 
With respect to integrated software performance, the 
reliability tests and benchmarks also demonstrate the 
accuracy, efficiency, and power of MSS data analysis for 
various NTA and HRMS studies.

Because the MSS package is actively maintained and 
updated, to improve the coverage of different HRMS data 
processing need, e.g., feature grouping to merge the MS 
features (e.g., isotopes, adducts and in-source fragments) 
as individual chemicals. Additionally, several innovative 
functions and tools are in development for further NTA 
applications, including optimization of the chemical fin-
gerprint-based source apportionment tool and a tool for 
matrix effect assessment and correction that leverages 
feature network analysis approaches. MSS is published 
on pypi.org, is fully open-source, and is available to any-
one interested in using the default settings, adapting the 
code to their specific needs, or making contributions. 
Feedback and real-world case studies from interested 
users within the NTA community are especially wel-
come. We anticipate that the comprehensive, integrated 
functionalities provided by the MSS software package, 
together with its strengths of open availability, easy use, 
and external calculation resource compatibility will be 
especially useful to the HRMS and data science commu-
nities to assist with fully exploiting the rich datasets gen-
erated with HRMS instruments.

Fig. 3  Estimates of fold change (estimated vs. actual concentration) 
of source (roadway runoff ) concentration from a previous 
study [4] and MSS model predictions. MSS predictions were 
built from an ensemble random forest model that was trained 
with roadway runoff source sample dilution. One cluster 
of compounds (Cluster label = 0, N = 587) was prioritized 
from DBSCAN clustering analysis and used to derive estimates. The 
dashed line (fold change = 1) indicates predicted concentration equal 
to actual concentration
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Availability and requirements
Project name: Mass-Suite (MSS).

Project home page: https://​github.​com/​Ximin​Hu/​
mass-​suite

Operating system(s): Platform independent (tested on 
Microsoft Windows and Linux).

Programming language(s): Python.
Other requirements: none.
License: MIT License.
Any restrictions to use by non-academics: none.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00741-9.

Additional file 1: Additional experimental details, data processing meth-
ods, example code and output of the package.

Additional file 2: List of spiked chemicals for feature extraction validation 
samples.
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