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Abstract 

Generative models are frequently used for de novo design in drug discovery projects to propose new molecules. 
However, the question of whether or not the generated molecules can be synthesized is not systematically taken 
into account during generation, even though being able to synthesize the generated molecules is a fundamen‑
tal requirement for such methods to be useful in practice. Methods have been developed to estimate molecule 
“synthesizability”, but, so far, there is no consensus on whether or not a molecule is synthesizable. In this paper we 
introduce the Retro‑Score (RScore), which computes a synthetic accessibility score of molecules by performing a full 
retrosynthetic analysis through our data‑driven synthetic planning software Spaya, and its dedicated API: Spaya‑API 
(https://spaya.ai). We start by comparing several synthetic accessibility scores to a binary “chemist score” as estimated 
by chemists on a bench of generated molecules, as a first experimental validation that the RScore is a reliable syn‑
thetic accessibility score. We then describe a pipeline to generate molecules that validate a list of targets while still 
being easy to synthesize. We further this idea by performing experiments comparing molecular generator outputs 
across a range of constraints and conditions. We show that the RScore can be learned by a Neural Network, which 
leads to a new score: RSPred. We demonstrate that using the RScore or RSPred as a constraint during molecular gen‑
eration enables our molecular generators to produce more synthesizable solutions, with higher diversity. The open‑
source Python code containing all the scores and the experiments can be found on (https:// github. com/ iktos/ gener 
ation‑ under‑ synth etic‑ const raint).

Keywords In‑silico synthesizability, Retrosynthesis artificial intelligence, machine learning, In silico molecular 
generation

*Correspondence:
Quentin Perron
quentin.perron@iktos.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00742-8&domain=pdf
https://github.com/iktos/generation-under-synthetic-constraint
https://github.com/iktos/generation-under-synthetic-constraint


Page 2 of 17Parrot et al. Journal of Cheminformatics           (2023) 15:83 

Graphic Abstract

Introduction
In small molecule drug discovery projects, generative 
models can be used to design massive libraries of mol-
ecules with specific properties [1, 2].

The optimization of an artificial intelligence (AI)-
molecular generator to explore a given chemical space 
and propose new well scored molecules in a Multipa-
rameter Optimization (MPO) project is mostly based on 
molecular properties and fingerprints [1, 3–7]. However, 
one of the major challenges in any computer-aided drug 
design (CADD) project is that the molecules need to be 
synthesized. Generative models are known to sample 
many non-accessible molecules [8, 9], and few synthesiz-
ability scores are known in the literature to be used in the 
pipeline of molecular generation [10–13]. Post-process-
ing filters may be applied after the generation to narrow 
the selection of molecules to those more likely to be syn-
thesizable, for instance AstraZeneca filters [14] include 
both physiochemical properties and structural filters. No 
chemical rule is able to completely answer the question 
of whether a molecule with a valid SMILES can be syn-
thesized or not. Moreover, the evaluation of such scores 
is challenging, particularly due to the difficulty in inter-
preting the values. A simple way to define synthesizabil-
ity is with a binary score denoting “synthesizable” or “not 
synthesizable”. Although a binary score is useful, it has 
limits, as it does not allow the prioritization of molecules 
of the same score. A continuous score provides a way to 
prioritize similar molecules and produces more signal 
when used as a reward for a de novo drug design algo-
rithm. With the recent efforts of the community, some 
continuous scores were recently developed to describe 

synthetic accessibility [15–18]. Those can be based on 
chemical substructures, domain expertise, or output of 
models fitting expert scores. However, as two very simi-
lar molecules may have different synthetic routes due 
to a difference in a single functional group or a single 
bond change, it may be difficult to find a proxy to a true 
restrosynthetic analysis. The RA score, for retrosynthetic 
accessibility score [17], is a predictor of the binary score 
given by the AiZynthFinder retrosynthesis tool [18]. Its 
values range from 0 to 1, and, according to the score, 
the higher the value the more optimistic the algorithm 
is regarding the synthesis of the molecule. The SC score, 
for synthetic complexity score [15], ranks the molecules 
and scores them from 1 to 5. The SC score is based on 
a neural network trained on a corpus of reactions and 
relies on the assumption that products are more complex 
than reactants. Molecules with lower SC scores have a 
better predicted synthesizability profile. Finally, the SA 
score, for synthetic accessibility score [16], is a heuristic 
based score where molecular complexity and fragment 
contributions are used to evaluate synthetic tractability. 
Low SA scores indicate less complex molecules and con-
sequently more feasible compounds, the SA score goes 
from 1 to 10.

To address some of the challenges of synthesizability 
estimation and to help synthetic, medicinal, and com-
putational chemists in CADD projects and related fields, 
Iktos has developed Spaya [19], a template-based ret-
rosynthesis AI software that computes synthetic routes 
and ranks them based on a synthesizability score. In this 
paper, we describe the Retro-Score (RScore), a synthetic 
accessibility score derived from the output of a full Spaya 
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retrosynthetic analysis for a given molecule, and we com-
pare it with three other synthesizability scores known 
in the literature (RA score, SC score and SA score). We 
highlight the importance of conducting a full retrosyn-
thetic analysis to determine synthesizability. The RScore 
can be used: 

1) To evaluate the synthesizability of molecules given by 
generative models,

2) Inside the generation itself, to guide the generator to 
an area of the chemical space where molecules are 
synthesizable.

Because of the computational costs associated with the 
computing of a full retrosynthetic analysis needed to 
obtain the RScore, we also describe a new, easier to com-
pute score called RSPred. RSPred is obtained by training 
a Neural Network on the output of the Spaya RScore and 
performs similarly well to the RScore in a variety of tasks, 
but can be computed orders of magnitude faster.

Methods
Datasets
The ChEMBL 24 [20] dataset was used, with the same 
post-processing as described in the Guacamol Bench-
mark experiments [9]. The post-processed ChEMBL 
dataset can be downloaded from the following link [21].

Another dataset, that we have named ’Pi3K/mTOR’ 
[22–24], was also used. It is a library of 463 structurally 
homogeneous molecules containing values of IC50 for 
the two targets Pi3K (pKi measured on the Phospho-
inositide 3-Kinase) and mTOR (pKi measured on the 
mechanistic Target Of Rapamycin), from the Chembl 
database. After the definition of a threshold of activ-
ity, pIC50 Pi3K ≥ 7 and pIC50 mTOR ≥ 8.5 , the mol-
ecules active for both targets were removed. The dataset 
is accessible in the GitHub project associated with this 
paper [25].

The RScore from Spaya API
The score of a retrosynthesis route in Spaya is a propri-
etary score composed of four separate scores as follows,

where:

d = number of reaction steps in the route
p = likelihood of the disconnections of the retrosyn-
thesis route predicted by a single step retrosynthesis 
model
c = convergence of the route

(1)score (route) = f (d, p, c, a)

a = applicability domain estimation of the reaction 
templates used to make the disconnections

To simplify the use of the algorithm on large batches of 
molecules, Iktos has recently launched Spaya-API [19], 
an API running on Spaya’s algorithmic engine for library 
scoring purposes, which has been used herein to evalu-
ate the synthetic accessibility of newly generated mol-
ecules. For a given molecule (m), the RScore is derived 
from routes proposed by Spaya, but handled in a high 
throughput manner by Spaya-API. The lowest RScore 
value is 0, indicating no route was found by Spaya within 
a given period of time; and the highest score is 1, where 
the route is a one-step retrosynthesis exactly matching a 
reaction described in the literature. To score a molecule 
and obtain its RScore value, Spaya-API performs a ret-
rosynthetic analysis with an early stopping process. The 
early stopping mode stops the Spaya run when a route 
with a score above the predefined threshold (set to 0.6 
by default) is found, or after the defined timeout (set to 1 
min by default) has elapsed. The RScore of a molecule is 
defined as:

The score is rounded to one decimal, and hence can 
take 11 different values (from 0.0 to 1.0). Spaya-API also 
returns the number of steps for the best synthetic route 
found for each input molecule. The list of commer-
cial compounds used for the retrosynthesis is a catalog 
of  60 M commercially available starting materials com-
ing from 17 different providers, the exhaustive list of 
providers can be found in Additional file  2: Fig. S1. To 
speed up computation, a default timeout of one minute 
was set when the RScore was used as a synthetic con-
straint in generative design experiments (RScore1min). 
In order to better approximate the output that would be 
obtained from a comprehensive retrosynthetic search, 
this timeout was increased to three minutes when the 
RScore was used for scoring molecules in post-process-
ing (RScore3min). We studied the impact of the time-
out on the RScore of 1000 molecules sampled from 
ChEMBL24 (see Additional files 1, 2). In average, the dif-
ference between the RScore1min and the RScore3min is 
of 0.3, and increasing the timeout beyond 3 min doesn’t 
increase significantly the RScore value. The complete 
study can be found in the Additional file  2 (Fig. S2),  as 
well more details about the retrosynthesis technology 
implemented in Spaya (Fig. S1).

The RScore1min was compared with three synthetic 
scores previously published in the literature: the RA 

(2)

RScore(m) = max
routes given by Spaya
with early stopping

(

score (route(m))

)
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score [17], the SC score [15], and the SA score [16]. The 
three packages to compute those scores are available on 
GitHub [26–28]. These scores were computed on a sam-
ple of 5000 molecules from the pre-processed ChEMBL 
dataset, and were compared with the RScore1min in the 
section Comparison of synthetic scores.

Prediction of RScore
The RScore1min computation implies a full retrosynthe-
sis, which is time consuming, with an average of 42 s per 
molecule to trigger the early stopping. For that reason a 
regression model was built, with the goal of replacing the 
computation of the RScore1min with a simple neural net-
work inference.

The dataset used was composed of 70K molecules from 
the pre-processed ChEMBL dataset, and 300K molecules 
sampled from the generator Guacamol pre-trained on 
ChEMBL. The molecules were represented by real vec-
tors of the ECFP2 fingerprints with a radius of 2, modulo-
folded to size 8192 and then ln(x + 1)-pre-processed. The 
dataset was split into a training set (90%), a validation set 
(5%), and a test set (5%).

To build this continuous predictor of the RScore1min, 
a neural network was trained on features of the mol-
ecules. Different values were tested for the neural net-
work configuration and training parameters, the selected 
parameters were those leading to the best R2 score value 
between the RScore1min and RSPred on the validation 
set. The parameter ranges were: number of hidden layers 
(1, 2, 3, 4), hidden layer size (30, 50, 100, 200), batch nor-
malization (with, without), and dropout (0, 0.01, 0.05, 0.1, 
0.2). The model was a feed-forward neural network com-
posed of three hidden layers of size 100, with Relu acti-
vation function. After each layer, a batch normalization 
layer was added [29]. A sigmoid was added as the last 
activation function. For the training part, a dropout [30] 
with a probability of 0.05 was used, the loss was the mean 
squared error, the optimizer was the Adam optimizer 
[31] with an initiate learning rate of 5e−5 , the batch size 
was 2048. The model was trained until the validation 
score stops improving for three consecutive epochs, after 
epoch 6.

Generations of molecules
For all the generations, the package Guacamol [32] pro-
vided by BenevolentAI was used. The generator is a 
Recurrent Neural Network, containing three layers of 
Long Short-Term Memory (LSTM) of size 1024. The net-
work was initialized with the weights given by Guaca-
mol on their GitHub project [32], which was obtained by 
training on the large dataset ChEMBL 24 [20]. For each 
generation, the reward used was a geometric mean of the 
different scoring functions on which modifier functions 

(described in Score modifiers section) were applied. The 
generators were optimized in order to sample molecules 
that have a good reward. The optimization algorithm 
used was the Hill Climbing MLE (Maximum Likelihood 
Estimation) [33] [1], in which at each step 1024 molecules 
are being sampled from the generator, then scored, and 2 
epochs of teacher forcing [34] are performed on the top 
scored 152 molecules. Overall 49 generations were run: 
3 generations for in-silico validation of the RScore (pre-
sented in the next section), 40 Guacamol generations 
(one generation without synthetic constraint and three 
with synthetic constraint for each of the 10 tasks), and 
6 Pi3K/mTOR generations (one generation without syn-
thetic constraint and five with synthetic constraint). The 
implementations of those generations can be found on 
GitHub [25].

In‑silico validation of the RScore
In this section the selected synthetic scores of the liter-
ature are evaluated regarding their quality as proxies of 
synthetic accessibility. This experiment serves as a first 
justification for using RScore3min as ground truth of 
synthetic accessibility in the other experiments described 
in the paper.

The experiment consists in: 

1) Sampling molecules from 3 different similarity con-
strained generation runs

2) Selecting a bench of molecules from those samples 
for synthetic accessibility assessment

3) Asking chemists to label each molecule as either fea-
sible or not feasible

4) Assessing how well the different scores discriminate 
feasible and non feasible molecules as assessed by 
chemists

The generator used was exactly the one presented in the 
previous section, and the reward was Tanimoto Similar-
ity on ECFP4 fingerprints (computed with a radius of 2 
and 8192 bits) to a target molecule. The number of hill 
climbing steps was 300. The three reference molecules 
selected were imatinib, acetylsalicylic acid and a mol-
ecule from the Pi3K/mTOR dataset. Reference mol-
ecules and their associated synthetic accessibility scores 
are displayed in Table  1. At the end of each generation, 
100 molecules were randomly chosen among molecules 
with Tanimoto Similarity to the reference molecule 
higher than 0.8. Over those 100 molecules, 5 were ran-
domly selected with RScore3min ≥ 0.5 , and 5 others with 
RScore3min = 0 , when it was possible. This led to a data-
set of 30 molecules. Seven chemists were asked to blindly 
label molecules as either feasible (label 1) or not feasible 
(label 0). The final label of a molecule is the label given 
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by the majority of chemists. This label is considered as a 
ground truth of synthetic accessibility. To assess the abil-
ity of the various synthetic scores to discriminate feasi-
ble and non feasible molecules, ROC-AUC is used as it is 
insensitive to the scale of the scores.

Generations without any synthetic accessibility constraint
Ten generations were performed using the standardized 
Guacamol Benchmark. Molecules were generated over 
20 epochs on each of the 10 MPO tasks of the Guacamol 
Benchmark, which are: Osimertinib MPO, Fexofenadine 
MPO, Ranolazine MPO, Perindopril MPO, Amlodi-
pine MPO, Sitagliptin MPO, Zaleplon MPO, valsartan 
SMARTS, Deco Hop and Scaffold Hop. Each task is asso-
ciated with an objective function, the description of each 
task can be found in the original paper [9].

The next generation aimed at solving a lead optimiza-
tion problem on the Pi3K/mTOR dataset. The constraints 
for this task were the Tanimoto similarity of ECFP4 fin-
gerprints to the initial dataset, the Quantitative Estimate 
of Drug-likeness (QED) [35], and predicted Pi3K and 
mTOR pKi values. For Pi3K and mTOR pKi predicted 
values, two QSAR models were used as scorers during 
the ensuing generative procedure. Those were built using 
ECFP molecular representation with 4096 bits and with 
radius 4 for mTOR and 6 for Pi3K, molecular descriptors, 
and a ridge regression model. K-fold (K =  4) cross vali-
dation along with tree-structured Parzen Estimator was 
used to select the model and the fingerprints parameters. 
On a 20% hold out set, the R2 score of the Pi3K model 
and the mTor model are respectively 0.64 and 0.71. In 
addition to these scores, a filter was added to enforce a 
specific substructure within the generated molecules, 
corresponding to the following SMARTS pattern drawn 
in Fig.  1. The thresholds for each of the targets can be 

found in Table 2. The objective function associated with 
this task was the geometric mean of the five scoring func-
tions as in Eq. 4.

where:

The prior model was the one trained on ChEMBL, then 
two steps of transfer learning were run on the Pi3K/
mTOR dataset in order to remain within the applicability 
domain of the QSAR regressors. For the training part, the 
batch size was 1024, the learning rate 1e-3 and the gen-
eration run over 250 epochs.

(3)smarts1 = c1cncc(c1)C#Cc1cncnc1

(4)
Score (mol) = GeoMean

(

score1(mol), ..., score5(mol)
)

(5)

GeoMean (x1, ..., xn) =

(

n
∏

i=1

xi

)
1
n

= n
√
x1x2 · · · xn

Table 1 Three molecules considered successively as reference molecule for the in‑silico validation of the RScore. The values of the 
different synthetic scores for those molecules are also indicated

Name Molecule RA score SC score SA score RScore3min RSPred

Imatinib 1 4.996 2.33 1 0.72

Acetylsalicylic acid 1 1.59 1.58 1 0.83

Pi 3K/mTOR 0.975 4.995 3.56 0.6 0.55

Fig. 1 Imposed structure for Pi3K/mTOR generation
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Generations under synthetic accessibility constraint
Generations under synthetic constraint used the same 
parameters as described above, while incorporating a 
synthetic accessibility score in the reward. Compared 
to the previous generations, only the scoring function 
was changed, with the different synthetic scores added 
in the objective function as follows:

Where ScoreSynth can be any function that estimates 
synthetic accessibility: RA, SC, SA, RScore1min, or 
RSPred, on which a modifier function is applied. The 
function GeoMean is described in Eq. 5.

For each of the 10 Guacamol tasks, three genera-
tions were run with the ScoreSynth being successively 
SA score, RScore1min and RSPred. For the Pi3K/
mTOR task, five generations were run with the Scor-
eSynth being successively RA score, SC score, SA score, 
RScore1min and RSPred. We conducted a post-pro-
cessing analysis of the results using RScore3min. This 
score was considered the ground truth of synthetic 
accessibility, and the other synthetic scores were evalu-
ated for their relevance as estimates of synthesizability 
as provided by RScore3min. In total, 35 generations 
under synthetic constraint were performed: 30 for the 
Guacamol Benchmark tasks, and five for the Pi3K/
mTOR task.

Score modifiers
On each scoring function a modifier function is applied 
in order to normalize the score into the range [0, 1]. The 
modifier and its parameters are chosen based on the 
expected threshold for each target, and are well described 
in the literature [9]. The two modifiers used are Max-
Gaussian and MinGaussian:

– MinGaussian(µ , σ ): the right half of a Gaussian func-
tion. Values smaller than µ are given full score, and 
values larger than µ decrease continuously to zero.

(6)Score(mol) = GeoMean
(

score1(mol), ..., scorek(mol), ScoreSynth(mol)
)

– MaxGaussian(µ , σ ): the left half of a Gaussian func-
tion. Values larger than µ are given full score, and 
values smaller than µ decrease continuously to zero.

 The modifiers of the Guacamol tasks are specified in 
the original paper. The modifiers used in the Pi3K/
mTOR task are described in Table 3.

Results and discussions
In this section, first we compare the values of the different 
synthetic scores on molecules from the ChEMBL dataset, 
then we evaluate the performance of the RScore1min 
predictor (RSPred), then we analyze the results of the 
in-silico validation of the RScore3min, and finally we 
analyze the results of the different generations with and 
without synthetic constraints.

Comparison of synthetic scores
Based on our experience and discussions with chem-
ists, we consider the threshold for a good RScore to be 
0.5, as molecules above this threshold often are consid-
ered “good enough” for chemists. The total distribution of 
the RScore1min on a sample of molecules from Chembl 
24 is plotted on Fig. 2. It can be seen that around 66% of 
the sample have a good RScore1min ( ≥ 0.5), that a sig-
nificant part of the dataset is not solved by Spaya API and 
that a major mode around 0.7 is observed. The RScore 
is not directly interpretable but it takes into account the 
number of synthesis steps, which is a meaningful met-
ric for chemists. The graph Fig. 3 is a plot of the corre-
lation between the RScore1min and the number of steps 

Table 2 Blueprint of the task Pi3K/mTOR

Criteria Specification

Pi3K > 7

mTOR > 8.5

QED > 0.5

Tanimoto similarity > 0.5

contains structure smarts1 ( Eq. 3)

Table 3 Modifiers used for the different scoring functions in the 
Pi3K/mTOR task

Modifier

Pi3K MaxGaussian (7, 1)

mTOR MaxGaussian (8, 1)

QED MaxGaussian (0.6, 0.13)

Similarity MaxGaussian (0.75, 0.25)

RA Score MaxGaussian (0.7, 0.2)

SC Score MinGaussian (2.5, 0.4)

SA Score MinGaussian (2.5, 0.4)

RScore1min MaxGaussian (0.7, 0.2)

RSPred Score MaxGaussian (0.7, 0.2)
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of synthesis found by Spaya for the ChEMBL dataset 
sample.

It can be seen that few synthesis steps (fewer than 6) is 
a necessary condition for having a good RScore, though 
the contrary is not true. For instance a 2 steps route may 
have a bad score due to disconnections with low pre-
dicted probabilities. Indeed, the scoring function in Eq. 1 
considers other elements than the number of steps to 
evaluate the route.

As previously discussed, existing literature scores 
designed to estimate synthesizability do not perform 
a full retrosynthetic analysis of the target molecule. 
Those scores were compared on a bench of molecules 
in order to analyze the extent to which they agreed with 
one another.

On the ChEMBL dataset sample, the RA score (Fig. 4) 
often predicts a score of almost 1. Hence, this score 

is not useful to measure the difficulty of synthesis of 
feasible compounds (Fig.  5). This can be explained by 
the fact that the model computing the RA score was 
trained on a subset of ChEMBL. The SA score is sig-
nificantly correlated to the RScore1min (Fig. 6). Having 
a good SA score seems to be a sufficient condition to 
have a good RScore, while the contrary is not true: mol-
ecules with complex fragments will often have a bad 
SA score, even if they are synthesizable. As an example, 
the molecules in Additional file 2: Fig. S3 contain origi-
nal and complex fragments, but are easy to synthesize 
through Spaya. Finally, the SC score has no correlation 
at all with the RScore1min. (Fig. 7).

RSPred
In hopes of replacing a full retrosynthetic analysis with a 
prediction, a deep learning model was trained to predict 

Fig. 2 Normalized histogram of the RScore1min on molecules from Chembl dataset

Fig. 3 Correlation between the RScore1min and the number of synthetic steps given by Spaya API on a sample from Chembl dataset
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Fig. 4 Histogram of RA score on the Chembl dataset

Fig. 5 Correlation between RA score and RScore1min on Chembl dataset

Fig. 6 Correlation between SA score and RScore1min on Chembl dataset
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the RScore1min obtained with Spaya-API. The perfor-
mance of the neural network was evaluated on a hold 
out test set of the preprocessed Chembl dataset. The 
box plot of the predictions made by the neural networks 
with regards to the true RScore is shown in Fig. 8. With a 
Pearson correlation of 0.75, the results are quite satisfy-
ing. For this reason, the prediction of the neural network 
is considered as a new synthetic score, RSPred, which can 
be used as an additional synthetic constraint in molecular 
generations.

Computing time
Computing time is an essential attribute of a score as it 
may limit its usage on large scale data sets. Table 4 dis-
plays computing time estimates of the different synthetic 
scores. The RScore1min, being obtained through a full 
retrosynthesis, is by far the most time consuming score. 
Thanks to its scalability, Spaya-API accelerates RScore 
computation on batches of molecules. The prediction 
of the latter, RSPred, is the fastest score to compute, 

only 1ms per molecule, 40 000 time faster than the 
RScore1min. The SA score closely follows with 2ms per 
molecule, the RA score is one order of magnitude slower 
while the SC score is two orders of magnitude slower.

Fig. 7 Correlation between SC score and RScore1min on Chembl dataset

Fig. 8 Correlation between the RScore1min and the values predicted from the neural network on a test set

Table 4 Computing time per molecule for the different 
synthetic scores

Synthetic score Time per 
molecule 
(ms)

RA score 28

SC score 241

SA score 2

RScore 40000

RSPred 1
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In‑silico validation of the RScore
The seven chemists asked to label the 30 selected mole-
cules as feasible or not feasible all agreed with each other 
except two chemists on two molecules. Based on this, we 
can consider the synthetic accessibility label as being reli-
able. Over the 30 molecules, 12 were labelled as feasible 
by chemists. Details about the chemists labels and the 
synthetic scores values of the 30 molecules are given in 
the Supporting Information.

In Table 5 are displayed the ROC AUC [36] scores for 
binary prediction of synthetic accessibility, using the dif-
ferent synthetic scores. In the first three rows, ROC AUC 
is computed only on molecules selected from one genera-
tion, whereas in the last row all 30 selected molecules are 
included. The only synthetic score that is able to perfectly 
classify feasible/non feasible molecules is RScore3min.

We acknowledge that this experiment is only a partial 
validation of RScore, and so we invite any research group 
that would be interested in this work to contact us for 
further evaluation of our score.

Evaluations of generations on 10 Guacamol tasks
In this section, we evaluate the synthesizability of the 
most optimal generated molecules from the 10 Guacamol 
tasks. We then consider the impact of adding a synthetic 
constraint during the generation. The results are analyzed 
based on the initial objective functions as well as the syn-
thetic accessibility as assessed by the RScore3min which 
is considered as the ground truth in this experiment.

Table  6 contains the reward and RScore3min (three 
minutes timeout) of the top 100 molecules generated 
without any synthetic constraint for each task. The rank-
ing is performed based on the reward of each task. It 
should be noted that the top 100 molecules are already 
good in terms of synthetic accessibility and reward: an 
average of 98% of the optimized molecules are synthesiz-
able (RScore3min above 0) according to Spaya-API, and a 
large majority even have a good RScore3min (above 0.5).

For each of the 10 benchmarks, in addition to the gen-
erations without any synthetic constraint, three genera-
tions were run with: 

1) SA score constraint
2) RScore1min constraint
3) RSPred constraint

All those generations are compared based on two met-
rics: the average RScore3min on the top 100 molecules, 
and the average reward on the top 100 molecules, where 
the top 100 are selected based on their score on the ini-
tial objective function. The plots in Fig. 9 summarize the 
results of the different generations. As previously stated, 
even without any synthetic constraint in the scoring 
function, the top 100 molecules of these generations have 
a reasonably good RScore3min. The SA score constraint 
improves the RScore3min of the top molecules, and the 
RScore1min and RSPred constraints improve it even 
more. Importantly, the reward is generally not degraded 
by the synthetic score constraint.

These tasks may be insufficient to evaluate the impact 
of adding a synthetic constraint during generation, due to 
their relative ease. Indeed, we have observed that in real-
life drug design projects the synthetic accessibility of the 
generated molecules is usually a more prominent issue 
when the optimization tasks are harder to solve. We rea-
son that this occurs because when the generator strug-
gles to find a solution it designs more and more awkward 
structures to satisfy the goal criteria, resulting in mole-
cules which are likely not synthesizable. Hence, the gen-
eration under synthetic constraint is a potential solution 
as it keeps orienting the generative model in a chemical 
space of feasible molecules. This is the motivation behind 
the “Pi3K/mTOR experiment”: it is a more realistic model 
of a real-life drug design project and reflects better the 
impact of using a synthetic accessibility constraint during 
molecular generation.

Table 5 AUC to predict binary target feasible/non feasible over 
the 30 selected molecules, coming from 3 similarity constrained 
generations

Molecule 
name

RA score SC score SA score RScore3min RSPred

Imatinib 0.8 0.28 1 1 0.68

Acetylsalicylic 
acid

0.44 0 0.33 1 0.222

Pi3K/mTOR 0.76 0.4 0.96 1 0.48

Overall 0.41 0.201 0.63 1 0.335

Table 6 Average RScore3min and average reward of the top 100 
molecules of the Guacamol generations without any synthetic 
accessibility constraint

Task name Average 
RScore3min

% with 
RScore3min 
≥ 0.5

Average reward

Amlodipine MPO 0.55 77 0.86

Deco HOP 0.66 97 0.99

Fexofenadine MPO 0.66 95 0.89

Osimertinib MPO 0.50 74 0.50

Perindopril MPO 0.59 94 0.59

Ranolazine MPO 0.39 50 0.39

Scaffold Hop 0.58 81 0.58

Sitagliptin MPO 0.60 82 0.60

Valsartan SMARTS 0.62 90 0.62

Zaleplon MPO 0.69 99 0.68
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Evaluations of generations performed on the Pi3K/mTOR 
dataset
This task is a generation around a library of 463 structur-
ally homogeneous Pi3K and mTOR inhibitors. The objec-
tive and targets can be found in Table  2. This dataset 
serves as a simplified proxy for a real life MPO in a lead 
optimization project with four objectives to be optimized 
(Table 2). Six generations were run based on this dataset: 
one without any synthetic score constraint, and five with 
synthetic score constraints (RA, SC, SA, RScore1min, 
and RSPred). When looking at the evolution of each 
component of the score among epochs in Additional 
file 2: Fig. S4, it can be noted that the reward increases 
and saturates systematically around epoch 60.

Synthetic accessibility of generated molecules 
in the blueprint
Here, the main metric to evaluate the quality of a gen-
eration method is the number of generated molecules 
validating all the constraints which also have a good 
RScore3min. The number of generated molecules for 
each generation (Table 7) is roughly constant (± 3%), but 
the number of unique molecules is more variable.

A molecule is said to be in the blueprint when the 
computed value of each objective is in the desired range. 
The graph Fig.  10 shows for each of the five genera-
tions the number of molecules in the blueprint and their 
RScore3min range.

First, we observe that the generation without synthetic 
constraint and the one with the RA constraint both 
contain a high percentage of non-synthesizable mol-
ecules (as assessed by the RScore3min), which would 

be problematic in a real-life project. In the other gen-
erations, almost all molecules in the blueprint are syn-
thesizable, however the generation with SC constraint 
produced very few molecules in the blueprint, and the 
generation with SA constraint significantly less molecules 
(268) compared to the generation with RScore1min con-
straint (706) and the generation with RSPred constraint 
(655). The generation with the RScore1min constraint 
gave, unsurprisingly, the best results, as the RScore1min 
is highly correlated with the RScore3min which is used 
as the ground truth of synthesizability in this experiment. 
The RSPred generation produced almost as many easy to 
make molecules as the RScore1min generation. It seems 
that the RSPred constraint was sufficient to lead the gen-
erative algorithm towards the generation of synthesizable 
molecules (Fig. 10).

To achieve a less biased evaluation of the generative 
AI model, we employed an alternative method to assess 

Fig. 9 Reward and accessibility of the top 100 molecules for each task and with different synthetic constraints. The red line is the average 
reward (without the synthetic score) on the top 100 molecules of the generation. The green line is the percentage of the top 100 molecules 
with a RScore3min above or equal to 0.5

Table 7 Number of molecules generated for each generation; 
the first column indicates which synthetic score constraint was 
used. The last column corresponds to the number of generated 
molecules in the blueprint

Synthetic constraint n Molecules n Unique 
molecules

None 80399 16085

RAscore 80663 14509

SCscore 80291 14635

SAscore 78612 12775

RScore1min 83215 11081

RSPred 79861 12703
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the synthetic accessibility of the generated molecules. 
As detailed in section In-silico validation of the RScore, 
while it is difficult to definitively establish a ground 
truth for this metric, we found that chemists’ intui-
tion provided a valuable means of evaluating synthetic 
accessibility. In this regard, we asked the same panel of 
seven chemists to evaluate the synthetic accessibility of 
the top 10 molecules (based on the reward) generated 
in each experiment. The chemist score for a molecule 
was determined by calculating the average of labels 
0/1 assigned by the panel. As presented in Table 8, the 
application of any synthetic accessibility constraint led 
to a significant improvement in the average chemist 
score, with RScore1mn, RSPred, and SAscore yielding 
the best results. The standard deviation of the 7 scores 

given by chemists remained below 0.2 for all experi-
ments. Overall these findings underscore the potential 
of incorporating synthetic accessibility constraints in 
generative AI models for drug design. The top 10 mol-
ecules per generation scored by chemists are shown in 
Additional file 2: Figs. S5–S10.

Diversity of generated molecules
Table  9 displays information about the generated mole-
cules which met all the objectives described in Table 2. It 
shows that the generations under RScore1min or RSPred 
constraint enabled to find two to four times more easy-
to-make molecules than the other generation meth-
ods. We notice that the generations with no synthetic 
constraint and under RA constraint produced more 
molecules in the blueprint but few of those had a good 
RScore3min, while the generations under SC and SA 
constraints produced less molecules in the blueprint, and 
less molecules in the blueprint with a good RScore3min.

To evaluate the diversity of the generated molecules, 
we computed the number and percentage (in parenthe-
sis) of Murcko scaffolds and generic Murckos scaffolds 
[37] among the molecules in the blueprint with a good 
RScore3min. We observe that diversity is not signifi-
cantly different among the different methods, though 
RScore1min and RSPred generations did produce more 
scaffolds than the other methods. The RScore1min 
and RSPred methods also generated a significant num-
ber of compounds which could not be found with the 
other methods (more than 300). This seems to imply 
that the synthetic constraint in the RScore and RSPred 

Fig. 10 Number of molecules in the blueprint for each generation, with indication on their RScore3min range

Table 8 Comparison of the chemist score over the top 10 
molecules for each generation.

The chemist score for a molecule is the average of labels 0/1 given by 7 chemists 
to assess the synthetic accessibility. The first column indicates which synthetic 
accessibility constraint was used in this generation. The last column show the 
standard deviation of the scores given by the chemists

Synthetic contsraint Chemist score Std 
chemists 
score

None 0 0

SCscore 0.58 0.20

RAscore 0.61 0.20

SAscore 0.63 0.15

RScore1mn 0.63 0.16

RSPred 0.63 0.16



Page 13 of 17Parrot et al. Journal of Cheminformatics           (2023) 15:83  

generations led the generative algorithm to explore a 
different area of the chemical space, identifying solu-
tions meeting both the blueprint and the synthetic 
accessibility constraint that could not be found with 
other methods.

In order to illustrate the output of those generations, 
we show in Additional file  2: Figs. S3–S10 the top 10 
molecules of each generation, where the selection pro-
cess was the following: after filtering on the molecules 
validating the four thresholds, the top 10 molecules 
regarding the optimized synthetic score were selected. 
In Additional file 2: Fig. S11 are shown some molecules 

generated under RScore1min constraint that may be 
interesting according to a chemist. An example of a syn-
thetic route can be found in Fig. 11. This route contains 3 
commercial compounds and two synthesis steps.

Discussion
In this paper, we introduced the RScore, a new in silico 
score of the synthetic accessibility of molecules, which 
is meant to be used to assess the synthetic accessibility 
of molecules designed by generative algorithms. Unlike 
other synthetic accessibility scores, the RScore is built 
based on the results of a full retrosynthetic analysis. As 

Table 9 Some statistics about the molecules in the blueprint for the 6 generations

Standard Murckos and Generic Murckos: the number of different Murcko. Feasible/good RScore: number of molecules with RScore > 0 / ≥ 0.5 . Unique: # of molecules 
that are only in this generation (and not in any of the other five). All the columns after ’good RScore3min’ refer to the molecules in the blueprint with a good 
RScore3min

Synth constraint Count Average 
RScore3min

Feasible Good RScore3min Standard Murckos Generic Murckos Unique

None 5005 0.08 1959 282 (6%) 59 (21%) 36 (13%) 34

RA 3574 0.11 2660 360 (10%) 79 (22%) 47 (13%) 64

SC 211 0.35 202 127 (60%) 19 (15%) 14 (11%) 64

SA 311 0.56 311 286 (92%) 40 (14%) 31 (11%) 145

RScore1min 850 0.49 843 706 (83%) 69 (10%) 46 (7%) 314

RSPred 985 0.46 971 655 (66%) 104 (16%) 73 (11%) 357

Fig. 11 Example of a synthesis route obtained by Spaya
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it is slower and more expensive to compute, it is impor-
tant to understand how it compares to alternative scores. 
The experiment we performed regarding the in silico 
validation of the RScore showed that it outperformed 
the other synthetic accessibility scores, but more impor-
tantly, it behaved as a global score, in the sense that its 
value remains consistent over a broad chemical space. 
Indeed, as the RScore links an input molecule to a large 
set of building blocks, it successfully ranks molecules 
coming from heterogeneous chemical series, whereas the 
other benchmarked scores do not generalize in the same 
way. Conversely, the SA Score, which was the second best 
score in this experiment, performed well for each sepa-
rate generation, i.e., it was able to assess the relative com-
plexity of molecules similar to each other, but it failed 
to discriminate the synthetic accessibility of molecules 
with very different chemical structures. As a result, the 
RScore may be well fit for assessing the synthetic acces-
sibility of highly diverse sets of generated molecules, 
such as in hit discovery/scaffold hopping scenarios. 
Complexity and synthetic accessibility are two different 
notions, and although they are usually correlated, com-
plex molecules can be feasible and simple molecules can 
be unfeasible. It is easy to find complex molecules that 
are synthetically easy to make: a simple reaction using 
two complex building blocks may lead to an easily acces-
sible and highly complex molecule. Because of the way 
it is built, the RScore is therefore better suited to assess 
synthetic accessibility, whereas the SA score is better 
suited to assess molecular complexity. Another impor-
tant feature of the RScore is that it can be customized to 
a specific context both in terms of available reactions and 
available building blocks. Indeed, changing the reaction 
space or the catalogue of building blocks may give dif-
ferent RScore results for a given set of molecules (Data 
not shown). This feature can be very useful in real-life 
projects, however it makes the formal assessment of the 
RScore vs other scores more complex.

As the RScore is intended to be used in the context of 
generative chemistry, not only to triage the molecules 
produced by generative algorithms but also to guide gen-
erative algorithms, it is important to understand how 
the introduction of a synthetic constraint influences the 
output of molecular generations in various tasks. We 
showed that for simple Guacamol tasks, the impact of 
introducing a synthetic constraint is limited as most of 
the molecules generated have good synthetic accessibil-
ity scores. However, this may not be the case for more 
complex generative tasks incorporating a larger num-
ber of objectives difficult to combine, which are more 
representative of real-life projects. This was the objec-
tive of the Pi3K/mTOR experiment, which is closer to a 
real-life MPO scenario. In that experiment, introducing 

a synthetic accessibility constraint during the generation 
proved to have a major impact on the synthesizability of 
the generated molecules, and RScore1min appeared to 
be the best synthetic accessibility score in that context, 
as it outperformed the other methods by enabling the 
generation of a high number of molecules in the blue-
print with good synthetic accessibility. We also showed 
that the RSPred, a neural network trained to predict 
the RScore, is a good proxy of the RScore1min with a 
much lower computational cost, making it very interest-
ing to use as a substitute of the slower and more costly 
RScore1min in generative chemistry pipelines. Among 
the remaining scores which were evaluated as synthetic 
constraints during molecular generation, the SA score 
was the only one which produced mostly synthesizable 
results, though the generation under SA constraint still 
produced less than half as many molecules as the genera-
tion under RScore1min or RSPred constraint. The other 
synthetic constraints did not perform well in the experi-
ment: the RA score has a poor precision, meaning that 
among the molecules well scored by RA score, very few 
actually have a good RScore3min. When used as a con-
straint in the reward of a generation, most molecules get 
a high RA score, so the generator cannot be optimized 
towards easier to make molecules. The SC score has no 
correlation to the RScore3min, so it comes as no surprise 
that generation under SC score constraint fails to opti-
mize the RScore3min during the generation and gives 
poor results. The prior used in this study was trained on 
ChEMBL24 [20], which included approximately 30% of 
molecules with a bad RScore (Fig. 2). We did not assess 
if using a dataset with only synthesizable molecules to 
train the prior would result in more synthesizable gener-
ated molecules. At the same time, reducing the size and 
chemical diversity of the initial set might also have an 
impact on the ability to find solutions to the MPO prob-
lem. This will be the topic of future works.

This work has several limitations: first, we acknowl-
edge that the validation of the RScore as a good syn-
thetic accessibility score has been performed on a small 
number of molecules (30), and the validation dataset can 
be expanded. For such purpose, it would be a useful con-
tribution to the community to develop and make avail-
able benchmark datasets of generated molecules with 
synthetic accessibility labels assigned by chemists which 
could be used to assess the value of synthetic feasiblity 
scores in a generative chemistry context. Second, the 
example use case with RScore1min as a synthetic con-
straint during complex MPO generation was conducted 
on only one dataset. The reason for this is the difficulty to 
find adequate publicly available datasets which are repre-
sentative of the challenges of multi-parametric optimiza-
tion in real-life lead optimization projects. We found the 
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MPO datasets and tasks available in the Guacamol bench-
mark trivial to solve, and therefore not adequate for our 
purpose. Additional work has been performed by Iktos 
on other MPO datasets (not disclosed), showing simi-
lar results and conclusions aligned with the Pi3K/mTOR 
experiment. Third, in all our experiments of generations 
under synthetic constraint, we consider the “ground truth” 
of synthetic accessibility to be the RScore3min, which cre-
ates a strong bias, since by construction the RScore1min 
is strongly correlated to the RScore3min. It is therefore 
not surprising that generations under RScore1min per-
form better generating molecules with good RScore3min 
scores as compared to other synthetic constraints. The 
reason for such choice in the design of our experiments is 
that there is no known computational score which could 
be considered as an objective measure of the synthetic 
accessibility of molecules. Additionally, the number of 
molecules resulting from a molecular generation experi-
ment made it impractical to ask chemists to assess them 
by hand. The absence of an absolute ground truth of what 
is synthetic accessibility, the fact that chemists themselves 
may sometimes disagree on the ease of synthesis of a 
given molecule, and the fact that the synthetic accessibil-
ity of a molecule may be highly dependent on the build-
ing blocks and reactions available, which themselves vary 
over time, all contribute to making a completely rigorous 
and objective analysis close to impossible. Despite these 
intrinsic limitations, we reiterate what we believe is the 
major advantage of the RScore, i.e., the fact that it derives 
from the output of a real retrosynthetic analysis. In our 
experience using the RScore on a daily basis to assess the 
synthetic accessibility of molecules produced by genera-
tive algorithms, alongside traditional medicinal chemistry 
analysis, we usually observe a good agreement between 
the RScore and the chemists’ opinions.

Conclusion
Molecular generation methods are known to produce 
unrealistic structures which can be impossible to syn-
thesize, and known synthetic scores often fail to address 
that issue. In this paper, we introduce a new synthetic 
accessibility score, RScore, derived from Spaya [19], a 
data-driven synthetic planning software developed by 
Iktos. The main advantage that distinguishes RScore 
from other synthetic scores is that it is computed from 
the output of a full retrosynthetic analysis performed by 
Spaya. We show on a limited validation dataset that the 
RScore correlates very well, and better than other syn-
thetic accessibility scores, with the assessment made 
by seven chemists regarding the synthetic accessibility 
of generated molecules. An important feature of the 
RScore is that it can be customized to better reflect the 

synthetic constraints of real life situations: the user can 
impose intermediate products to be in the routes, limit 
the number of steps, and customize the list of starting 
materials or the reaction space.

We also show that introducing the RScore as a synthetic 
constraint in a complex MPO molecular generation task 
which tends to produce synthetically infeasible molecules 
enables the design of synthetically accessible molecules 
by the generative algorithm, whereas other known syn-
thetic scores do not perform as well. Conversely, for rela-
tively simple molecular generation tasks, applying the the 
RScore as a post-processing filter seems to be sufficient, 
as most generated molecules have good synthetic accessi-
bility. This warrants the use of a synthetic constraint, ide-
ally RScore3min, in generative chemistry pipelines when 
trying to solve complex MPO challenges.

The computational complexity of the RScore is a limita-
tion, hence a predictor of the RScore, RSPred, was built 
in order to accelerate the scoring. In a relatively difficult 
MPO task where generations under constraint of differ-
ent synthetic scores were compared, RSPred constrained 
generations gave the best results second to RScore. We 
feel that RSPred strikes a good compromise, produc-
ing good results while being fast to compute. However, 
just as any machine learning model, the RSPred predic-
tor has an applicability domain, in this case that of the 
ChEMBL dataset on which it was trained. Although the 
RSPred results were good in our experiment, this may be 
explained by the fact that the initial chemical space was 
already within the applicability domain of the predic-
tor. In other cases, when the initial chemical space is far 
from ChEMBL, the predictor may have poor results and 
might lead the generation to an area of false positives. To 
address that issue, a preliminary fine tuning of the pre-
dictor on the chemical space of the generation might 
be helpful, if not necessary, to make sure the predictor’s 
performance is still sufficient. Investigations are ongoing 
regarding that topic.
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RSPred constrained generation. Figure S11. Molecules generated during 
RScore constrained generation.
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