
Boldini et al. Journal of Cheminformatics (2023) 15:73
https://doi.org/10.1186/s13321-023-00743-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

Practical guidelines for the use of gradient
boosting for molecular property prediction
Davide Boldini1, Francesca Grisoni2,3, Daniel Kuhn4, Lukas Friedrich4 and Stephan A. Sieber1*

Abstract

Decision tree ensembles are among the most robust, high-performing and computationally efficient machine
learning approaches for quantitative structure–activity relationship (QSAR) modeling. Among them, gradient boost-
ing has recently garnered particular attention, for its performance in data science competitions, virtual screening
campaigns, and bioactivity prediction. However, different variants of gradient boosting exist, the most popular being
XGBoost, LightGBM and CatBoost. Our study provides the first comprehensive comparison of these approaches
for QSAR. To this end, we trained 157,590 gradient boosting models, which were evaluated on 16 datasets and 94
endpoints, comprising 1.4 million compounds in total. Our results show that XGBoost generally achieves the best pre-
dictive performance, while LightGBM requires the least training time, especially for larger datasets. In terms of feature
importance, the models surprisingly rank molecular features differently, reflecting differences in regularization tech-
niques and decision tree structures. Thus, expert knowledge must always be employed when evaluating data-driven
explanations of bioactivity. Furthermore, our results show that the relevance of each hyperparameter varies greatly
across datasets and that it is crucial to optimize as many hyperparameters as possible to maximize the predictive per-
formance. In conclusion, our study provides the first set of guidelines for cheminformatics practitioners to effectively
train, optimize and evaluate gradient boosting models for virtual screening and QSAR applications.

Keywords Gradient boosting, Virtual screening, QSAR

*Correspondence:
Stephan A. Sieber
stephan.sieber@tum.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00743-7&domain=pdf

Page 2 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

Graphical abstract

Introduction
Quantitative structure–activity relationship (QSAR)
modelling occupies a vital role in cheminformatics
research [1–5]. QSAR aims to link the molecular struc-
ture with experimentally measurable properties, and it
is routinely used to predict molecular properties such as
bioactivity [6–9], toxicity [10–13] and absorption, distri-
bution, metabolism and excretion (ADME) [3, 14], thus
covering a fundamental role in both hit discovery and
hit-to-lead optimization.

QSAR aims to link the molecular structure (numeri-
cally encoded as the so-called molecular descriptors)
[15–17] with experimentally measurable properties. For
this application, decision tree ensembles are among the
most used machine learning methods thanks to their
excellent performance, ability to rank features in terms
of importance and their ability to scale to large datasets
[18, 19], alongside other popular frameworks like support
vector machines (SVM) [20, 21].

Among decision tree ensembles, gradient boosting
machines (GBM) have seen a strong surge in popularity
in the last years, driven by excellent results in data sci-
ence competitions and state-of-the-art performance in
modelling tabular data [22, 23]. GBM iteratively aggre-
gates predictive models so that each one compensates the
errors from the previous step, thus yielding a high-per-
formance ensemble.

In cheminformatics, GBM has already found wide-
spread use in several QSAR tasks such as toxicity

prediction [12], drug sensitivity analysis [24], anti-can-
cer activity modelling [25] and drug-target interaction
identification [26], as well as showing competitive per-
formance with deep learning approaches in recent large-
scale benchmarking studies [16, 27–30].

However, several implementations of the GBM algo-
rithm exist, each with unique modifications to the origi-
nal formulation and employing different decision tree
structures [23], such as XGBoost [31], LightGBM [32]
and CatBoost. [33] While the importance of these dif-
ferences has been recognised in other fields [23], these
algorithms are used interchangeably in chemoinformat-
ics, and to our knowledge their respective advantages are
not well documented. Thus, there is an urgent need for
a rigorous benchmarking of these different implementa-
tions for QSAR applications. This is further warranted by
the uniqueness of cheminformatics datasets compared to
other typical tabular datasets like finance and real estate
price prediction [22, 23]. For example, datasets in this
field tend to have a much higher number of features, they
are often extremely imbalanced [34] and might contain
false positives or false negatives [35].

The aim of this paper is to provide the first set of practi-
cal guidelines for the use of gradient boosting in QSAR
applications, such as toxicology and drug discovery, by
answering the following questions:

1. Which gradient boosting implementation performs
the best for QSAR?

Page 3 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

2. Which package scales the best to large datasets, such
as high throughput screens (HTS)?

3. Do they produce similar feature importance rank-
ings, or do they highlight different molecular fea-
tures?

4. Is it possible to identify the most important hyperpa-
rameters to optimize for these algorithms to acceler-
ate further the development and deployment of these
methods for QSAR?

To answer these questions, we carried out a large-
scale benchmark of these three implementations on 16
classification and regression datasets with 94 different
endpoints commonly considered for virtual screening,
covering a wide range of dataset size and class-imbalance
ratios. To ensure the robustness of our results, we exten-
sively optimized each algorithm according to the guide-
lines set up by the respective authors of the packages and
recent studies, constructing 157,590 individual QSAR
models.

Methods
GBM is an ensemble algorithm, which aims to aggregate
several decision trees into a single more performant pre-
dictor. Decision trees are a machine-learning algorithm
that learns a flowchart-like structure of hierarchical
binary decisions [36]. The terminal nodes of the graph
are generally named leaves, which are used to assign
sample predictions [36]. To explain how GBM constructs
the decision tree ensemble, we first present the original
implementation of the algorithm [37] followed by a sys-
tematic analysis of the changes introduced by XGBoost,
LightGBM and CatBoost.

Gradient boosting
Given an input matrix X and a vector Y of molecular
properties (e.g., biological activity), the gradient boost-
ing algorithm approximates the underlying function
F(x) , which maps the relationship between the molecular
descriptor xi and the biological activity yi , with a function
F̂(x) , constructed in an additive manner:

where σ is the learning rate, a constant regularization
parameter limiting the influence of a given predictor
within the ensemble, and F̂m(x) is the m th tree. Given a
loss function L

(
yi, pi

)
 , such as the binary cross-entropy,

that measures the quality of predictions pi with respect
to real readouts yi , after the first iteration each new tree
F̂m is learned by minimizing the following objective:

(1)F̂(x) =
M∑

m=1

σ ∗ F̂m(x)

where the derivative of the loss with respect to the
ensemble output represents the prediction residuals of
F̂(x) at the previous iteration, and Pm are the predictions
at the current iteration. As such, each new decision tree is
constructed so that it compensates the prediction errors
of the model during the previous iteration, essentially
conducting gradient descent in function space instead of
parameter space.

The original formulation of GBM is the one employed
by the popular machine learning package Scikit-learn
[38]. Unfortunately, this implementation lacks many
of the regularization and optimization methods imple-
mented by XGBoost, CatBoost and LightGBM and can-
not be parallelized across multiple CPU cores. For this
reason, we did not include the Scikit-learn version of
GBM in the benchmarking study.

XGBoost
XGBoost introduces a regularized learning objective [31].
At a given iteration m , instead of being computed accord-
ing to the loss function L

(
yi, pi

)
 , the residuals are calcu-

lated with the following formula:

where γ and � are regularization hyperparameters, Tm
is the number of leaves in the m th tree and ‖wm‖

2 is the
L2 norm of its leaf weights. Thanks to this modification,
XGBoost learns simpler trees with smoother weights,
which leads to better generalization [31]. Additionally,
XGBoost employs Newton descent instead of gradient
descent to optimize its trees, which leads to faster con-
vergence [39]. Finally, XGBoost also introduced a new
feature split finding algorithm to speed up training [31].

LightGBM
This implementation also adopts many solutions pro-
posed by XGBoost to improve the performance such as
the regularized learning objective and Newton descent.
However, LightGBM introduces three new strategies to
make training more efficient: a histogram-based split
finding method, Exclusive Feature Bundling (EFB) and
Gradient-based One-Side Sampling (GOSS) [32]. EFB
employs heuristics to find groups of mutually exclu-
sive features and merges them together, thus reducing
the dimensionality of the dataset, while GOSS relies on
gradients to sample at each iteration the most impor-
tant dataset instances without changing the training set
distribution. Each of these algorithms simplifies differ-
ent aspects of the original minimization objective, thus

(2)F̂m = argminE
(
−∂L(Y ,Pm−1)

∂Pm−1
− Pm

)

(3)L∅
(
y, p

)
=

I∑
i=1

L
(
yi, pi

)
+ γTm + 1

2
��wm�

2

Page 4 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

speeding up training time with negligible loss in accu-
racy. Furthermore, LightGBM employs a different tree
growth strategy compared to XGBoost. In most cases,
trees are generated in a “breadth-first” fashion, where
every time a new split is found, all other splits at the same
level are first considered before increasing further the
depth of the tree. This yields tree structures that have the
same depth across all branches. In contrast, LightGBM
grows trees in a “depth-first” fashion (Fig. 1), where the
algorithm splits nodes exclusively according to the larg-
est performance gain [40]. This procedure leads to asym-
metric trees, where certain branches might be very deep
while others might be shallow. This approach tends to
converge faster, but might be susceptible to overfitting on
small datasets [32].

Catboost
There are three main features that distinguish CatBoost
from LightGBM and XGBoost. First, it provides a novel
Target Statistics (TS) algorithm to handle categorical
variables, which leads to more robust performance on
unseen data by addressing the issue of target leakage dur-
ing training [33]. However, categorical inputs are very
rarely found in molecular descriptors [41], therefore this
aspect is not of big relevance for cheminformatics appli-
cations. Second, it introduced ordered boosting, a vari-
ation of gradient boosting where each model is trained
on a different partition of the training dataset, tackling
the issue of prediction shift that arises by fitting trees
on gradients obtained from samples already used dur-
ing training. In principle, this approach reduces the risk
of overfitting, especially on small datasets [33]. Third,
CatBoost employs “oblivious decision trees”, where the
same variable and threshold are used to generate splits at
a given depth level (Fig. 1) [33, 42]. This enforced symme-
try acts as regularization, constraining the expressiveness
of tree models, and can be leveraged to provide uncer-
tainty estimates on predictions, similarly to Gaussian

Processes models [43]. Finally, the authors of this library
have researched extensively the theoretical properties of
gradient boosting and proposed several new features like
Langevin gradient descent [44] and sample importance
analysis [45], which are only available in the CatBoost
package [42].

Experiments
Datasets
To provide a robust evaluation framework for our bench-
mark analysis, we evaluated XGBoost, LightGBM and
CatBoost on 16 classification and regression datasets
from three well-established repositories: MoleculeNet,
[27] MolData [1] and the ChEMBL benchmarking study
from Cortés-Ciriano et al [46] (Table 1). From the first,
we included Tox21, MUV, HIV, ClinTox, BBBP, BACE
and SIDER. From the second, we chose the Phosphatase,
NTPase, Oxidoreductase and Fungal datasets. From the
third, we selected HERG, Acetylcholinesterase, COX-2,
erbB1 and JAK-2. We retrieved the MoleculeNet data-
sets from a recent benchmarking study [16], while we
referred to the original publications for the MolData
repository and the ChEMBL datasets [1, 46]. This selec-
tion entails approximately 1.4 million unique compounds
and 94 endpoints on a wide variety of protein families
and biological responses, ensuring that our findings are
broadly applicable for cheminformatics applications. Our
selection covers an extensive range of compounds per
endpoint (from 2000 to 330,000) and imbalance ratios
between compounds classified as either ‘positive’ or ‘neg-
ative’ (from 1:2 to 1:500), reflecting the diversity of data-
sets typically encountered in cheminformatics (Table 1).

Performance metrics
For each classification dataset, we evaluated the Receiver
Operating Characteristic Area Under Curve (ROC-AUC)
and Precision-Recall Area Under Curve (PR-AUC). Our
selection is consistent with the figures of merit used in

Fig. 1 Different tree structures and split indexes (shown inside each node) generated by XGBoost, LightGBM and CatBoost. XGBoost adopts
a “breadth-first” search, maintaining constant tree depth across branches. LightGBM uses a “depth-first” criterion, yielding asymmetric trees. CatBoost
relies on oblivious trees, where at a given depth the same split is used across all branches, as indicated by the constant split indexes

Page 5 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

the literature when evaluating these datasets and ensures
that the results are not skewed by high imbalance ratios
[1, 16, 27, 47, 48]. For the regression datasets, we evalu-
ated the Root Mean Squared Error (RMSE). To assess
whether differences in performance are statistically sig-
nificant, we used the two-tailed Mann–Whitney test with
Bonferroni correction [49].

Molecular descriptors
We featurized all compounds using the Extended-Con-
nectivity Fingerprints (ECFP) with radius of 2 and bit size
of 1024 [50]. To ensure that bit collision is not a factor in
any of our findings, we have investigated the change in
vector sparsity when using larger bit sizes. Given that the
number of unique fragments remains approximately con-
stant for all datasets when increasing the bit size (Addi-
tional file 1: Table S1), we can exclude that bit collision
plays a role for the benchmarks in this study.

Performance analysis
We used three different optimization and evaluation pro-
tocols, depending on whether the dataset is from Mol-
eculeNet, MolData or ChEMBL. The reason for this is
to keep our analysis consistent with prior studies from
the scientific literature, and because the datasets from
MolData are several orders of magnitude larger than
the ones in the MoleculeNet repository or from Cortés-
Ciriano et al [46].

For MoleculeNet datasets, we replicated a previously
proposed procedure [16], whereby for each endpoint,
each classifier is optimized with Hyperopt [51] for 100

iterations using an extensive hyperparameter grid, deter-
mined according to existing guidelines and benchmarks
[22, 39, 40, 42]. The full hyperparameter grid is available
in the Supporting Information. Each optimization itera-
tion measured the average PR-AUC with a given hyper-
parameter setting across three random train-test splits
with an 80:20 ratio. Then, the model was run with the
optimal hyperparameters on 50 independent evaluations
with random splits, using the same ratio between train-
ing and test set. After each run, the ROC-AUC and PR-
AUC were measured on the test set as well as the training
time. Finally, for a given dataset, the performance metrics
and training times were averaged across replicates and
across endpoints.

For the MolData benchmarks, we used the scaffold
splits provided by Arshadi and coworkers during opti-
mization and evaluation [1]. As such, for each endpoint,
each classifier was optimized for 100 iterations using
Hyperopt [51] with the same grid as above. Each iteration
measured the PR-AUC obtained by the classifier with a
given hyperparameter setting on the validation set. Then,
the model was run with optimal hyperparameters on five
independent evaluations with different random seeds,
measuring the ROC-AUC and PR-AUC on the test set
as well as the training time. As above, the results were
reported as averages across replicates and endpoint for a
given dataset.

For the regression datasets from Cortés-Ciriano et al.
[46], we adopted the procedure employed in the original
publication. In short, each dataset was split into train-
ing, validation and test sets with a 70:15:15 ratio using

Table 1 Datasets employed in this study. For datasets with multiple endpoints, we reported the ranges between minimum and
maximum values regarding the compounds per endpoint and imbalance ratios

Name Type Source Endpoints Compounds per endpoint Class imbalance ratio

Tox21 Classification MoleculeNet 12 5810–7265 1:5–1:33

HIV Classification MoleculeNet 1 40,748 1:27

MUV Classification MoleculeNet 17 14,415–14,903 1:486–1:613

BACE Classification MoleculeNet 1 1513 1:1

BBBP Classification MoleculeNet 1 2039 1:3

SIDER Classification MoleculeNet 27 1427 1:12–1:63

ClinTox Classification MoleculeNet 2 1478 1:12–1:14

Phosphatase Classification MolData 5 260,322–298,215 1:121–1:576

NTPase Classification MolData 6 251,895–301,932 1:3–1:16,265

Oxidoreductase Classification MolData 10 79,853–325,083 1:9–1:9847

Fungal Classification MolData 7 152,880–302,256 1:135–1:640

HERG Regression Cortés-Ciriano et al. 1 5207 N.A

Acetylcholinesterase Regression Cortés-Ciriano et al. 1 3159 N.A

COX-2 Regression Cortés-Ciriano et al. 1 2855 N.A

erbB1 Regression Cortés-Ciriano et al. 1 4868 N.A

JAK-2 Regression Cortés-Ciriano et al. 2655 N.A

Page 6 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

random splits. We then performed hyperparameter tun-
ing via Hyperopt, optimizing RMSE on the validation
split for 100 iterations, using the same grid as above.
Finally, we repeated training on the training split and
evaluation of RMSE on the test set for 50 iterations. As
such, the final RMSE values were indicated as averages
across replicates for each dataset.

Feature ranking analysis
One of the advantages of GBM is that it can provide
information on the feature importance, which can be
used as a tool to provide indication of what drives the
model predictions, and, in certain cases, to achieve model
explainability [52]. We used Shapley values [19, 53] to
assess which molecular features are the most important
according to each GBM predictor. Shapley values quan-
tify the importance of each feature (‘feature attribution’
[37]) by evaluating the change in a model’s predictions
across all possible permutations [19, 52]. To obtain fea-
ture rankings for each dataset, we collected the Shapley
values from each model with optimal hyperparameters
during the evaluation procedure. Then, we averaged them
across independent runs and dataset endpoint, obtaining
one ranked list of variables per dataset for each model.
To compare the variable rankings between pairs of GBM
implementations, we employed the following formula:

where k is the cut-off for the number of most important
variables to consider (set to k = 20 in the present study)
and Vsk is the number of unique variables when consid-
ering both importance rankings. Intuitively, this metric
measures the agreement of the two rankings, irrespective
of the specific ordering, among the top 20 most impor-
tant variables. For example, a score of 50 indicates that
two GBM models have 10 molecular features in com-
mon when looking at their respective top 20 most impor-
tant variables, regardless of whether these 10 features
received the same rank in both lists. This score there-
fore shows whether the use of different gradient boost-
ing algorithms would highlight the same features as most
important, without being influenced by the ranking of
less informative variables. However, it should be kept in
mind that for many molecular representations such as
hashed fingerprints, translating feature importance rank-
ings into chemical insights is not a trivial task [54].

Finally, to evaluate the influence of converging to dif-
ferent hyperparameter configurations, regardless of
algorithmic differences in the gradient boosting imple-
mentation, we also evaluated the feature ranking over-
lap between two independent LightGBM optimization
runs. The analysis was limited to LightGBM due to

(4)Overlap% =
(
1−

Vsk
k

)
∗ 100, k = 20

computational costs and that considering one GBM is
sufficient to evaluate the variability in feature ranking
overlap induced by the stochasticity in the hyperparam-
eter optimization process.

Hyperparameter analysis
To evaluate the influence of each hyperparameter on
the optimization process, we employed the Functional
ANOVA (fANOVA) [55]. To acquire a sufficient collec-
tion of hyperparameter combinations, we optimized
LightGBM with Hyperopt for 500 iterations on each
endpoint, using the same hyperparameter grid and
evaluation criteria as above. Because of the high compu-
tational cost for this analysis, we limited our study only
to one GBM implementation and exclusively to classifi-
cation datasets. Then, after pruning the worst 150 itera-
tions, we processed the resulting parameter-performance
pairs using fANOVA, yielding individual hyperparameter
importance scores and their first-order interactions. By
limiting the analysis to well-performing configurations,
we ensured that the importance estimates for the param-
eters reflect their importance on reaching the optimum,
and not on causing large oscillations in performance [55].
We excluded the SIDER and Fungal datasets from this
analysis, since they were reserved as test sets to evalu-
ate whether selecting hyperparameters according to
their fANOVA importance score generalizes to unseen
datasets. Furthermore, to assess the influence of molecu-
lar descriptors on the optimal hyperparameters, we also
repeated this procedure using the MACCS keys [56]
and an assortment of 207 physical–chemical descriptors
from RDKit as featurization options. The complete list
of descriptors is available in the Supporting Information
(Additional file 1: Table S2).

Software and implementation
Molecular descriptors were computed using RDKit (Ver-
sion 2022.09.4) for python. [50] For training the models,
XGBoost (Version 1.7.1) [39], LightGBM (Version 3.3.5)
[40] and CatBoost (Version 1.1.1) [42] were employed.
Scikit-learn (Version 1.2.1) [38] was used to split the
MoleculeNet datasets and compute ROC-AUC and PR-
AUC values. Each model was tuned via Bayesian hyper-
parameter optimization using the Hyperopt package
(Version 0.2.7) [51]. Finally, SHAP (Version 0.41.0) [19]
was utilized to compute Shapley values and the fANOVA
package (Version 2.0.5) [55] was employed for the hyper-
parameter importance analysis. All calculations were
performed on an AMD Ryzen Threadripper 3970X CPU
with 32 cores and 64 threads. Training of the gradient
boosting models was parallelized across all cores avail-
able. The code to reproduce the results is available at
https:// github. com/ dahvi da/ GBM_ Bench marki ng.

https://github.com/dahvida/GBM_Benchmarking

Page 7 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

Results and discussion
Predictive performance
Overall, XGBoost achieves the best performance on
most of the datasets (Fig. 2a, b and Additional file 1:
Figure S1), with statistically significant differences in
most cases. Interestingly, there seems to be a correla-
tion between the improvement provided by XGBoost
over the alternatives and dataset size. For smaller clas-
sification datasets (e.g., BACE, BBBP and ClinTox),

CatBoost performs worse, with LightGBM being able
to match or outperform XGBoost. This aspect is seem-
ingly in contradiction with the concerns of overfitting
due to its depth-first tree structure reported elsewhere.
[40] For medium-sized datasets (e.g., Tox21, MUV and
HIV, ranging from approximately 7000 compounds to
40,000), CatBoost tends to perform better than Light-
GBM, and it outperforms XGBoost on the Tox21
dataset. Finally, for large datasets (NTPase, Phos-
phatase and Oxidoreductase datasets, having more
than 300,000 molecules per endpoint), XGBoost out-
performs both LightGBM and CatBoost. When con-
sidering all datasets, XGBoost provides roughly a 5%
improvement on average over LightGBM and CatBoost
in terms of ROC-AUC and PR-AUC.

Regarding the regression datasets, LightGBM tends
to achieve worse RMSE scores, while XGBoost ranks
as the best performing algorithm on most benchmarks
(Fig. 2b). CatBoost is generally able to match the per-
formance of XGBoost, although the differences are sta-
tistically significant.

When considering the training times across all data-
sets (Fig. 2c), a similar dependence on the dataset size
can be observed. LightGBM is the fastest algorithm
on all benchmarks, due to the algorithm’s focus on
reducing computational load. CatBoost is the slowest
algorithm for small and medium sized datasets, while
XGBoost requires significantly more time to train for
larger datasets than both alternatives. While the abso-
lute difference of training times for a single model is
not particularly great (i.e., 5 versus 140 s on a CPU with
32 cores), it can significantly impact hyperparameter
optimization procedures, where the model needs to
be retrained many times. Furthermore, this difference
will also grow significantly if less cores are available for
training.

In summary, XGBoost provides the best predictive
performance for cheminformatics out of all gradient
boosting implementations, at the cost of training speed
for larger datasets. LightGBM and CatBoost have com-
parable performance, but the former provides substan-
tial benefits in terms of training time over the other
algorithms.

Feature ranking comparison
We observed a remarkable variability between the impor-
tance rankings across different implementations, espe-
cially when comparing them to the overlap scores of
two independent optimization and training runs for the
same GBM algorithm (Fig. 3). For MUV, for example,
there is approximately only a 20% overlap for any imple-
mentation pair, while for other datasets the agreement
reaches up to 90%. The reason for the variability across

Fig. 2 Performance comparison of all gradient boosting
implementations in terms of a PR-AUC, b RMSE and c training time.
All calculations were performed on an AMD Ryzen Threadripper
3970X CPU. Statistical tests are carried out with respect to XGBoost.
Error bars represent the standard deviation (N = 50 for MoleculeNet
datasets, N = 5 for MolData datasets), while the asterisks denote
whether the difference is significant (*: α < 0.05, **: α < 0.01,
with Bonferroni correction)

Page 8 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

implementations could be due to the use of different tree
structures, as well as converging to different hyperpa-
rameter optima. For example, tuning the minimum split
gain can lead to the selection of different splits, which
in turn would yield different variable importance scores.
This would explain the results obtained when comparing
two runs of the same GBM algorithm across all datasets,
since even in that scenario the variable overlap scores are
distributed between 70 and 90% (Fig. 3). Another pos-
sible explanation for this pattern is that the algorithms
highlight similar molecular fragments, but those frag-
ments are mapped to different bits in the ECFP repre-
sentation, thus producing semantically similar rankings
despite not focusing on the same variables. To investigate
this hypothesis, we calculated the top 20 ranked frag-
ments for all GBM algorithms for the BACE datasets
and manually inspected them (Additional file 1: Figure
S2). When comparing the most important fragments
between pairs of GBM predictor, each model had approx-
imately ten unique substructures, which did not have
any analogues in the other rankings. As such, it seems
that each implementation indeed generates semanti-
cally distinct explanations for a given dataset, highlight-
ing potential differences in the learned structure–activity
relationships.

The main takeaway from this analysis is that using gra-
dient boosting to evaluate which molecular features or
fragments are the most influential is a non-trivial task,
given the low agreement between different implemen-
tations of the same algorithm. Expert knowledge must
always be employed to evaluate each fingerprint bit or
molecular descriptor and to assess whether the expla-
nations provided by the model are reasonable. Finally,
averaging the Shapley scores on different hyperpa-
rameter optima or across different gradient boosting

implementations might yield better estimates of feature
importance.

Hyperparameter importance
After calculating the hyperparameter importance across
datasets for LightGBM, we evaluated their distribution
on different endpoints (Fig. 4). The analysis was limited
to one GBM implementation due to the high number
of optimization iterations required per endpoint. We
focused our analysis on the following hyperparameters:

• “colsample_bytree”: fraction of features to sample
at the beginning of the construction of a given tree.
Tuning it helps with regularization of the ensemble.

• “learning_rate”: regulates how much each tree affects
the overall performance of the ensemble, or in other
words how many boosting rounds are required to
converge. Large learning rates help with underfitting,
small learning rates can help with regularization.

• “max_depth”: defines the maximum depth for con-
structing individual trees. Large values help with
underfitting, small values can help with regulariza-
tion.

• “min_child_samples”: minimum number of samples
for a given leaf node. Affects tree construction and
can help with regularization.

• “min_child_weight”: minimal sum of hessians for a
given leaf node. Affects tree construction and can
help with regularization.

• “min_split_gain”: minimal decrease in loss required
to further split a node. Affects tree construction and
can help with regularization.

• “neg_subsample”: fraction of majority class samples
to use for bagging when constructing a given tree.
Helps with class imbalance and regularization.

• “num_leaves”: Maximum number of leaves a given
tree can have. Similar to max_depth but provides
more fine-grained control on the shape of the tree
since LightGBM uses depth-first trees.

• “reg_alpha”: L1 norm regularization coefficient of the
leaf weights.

• “reg_lambda”: L2 norm regularization coefficient of
the leaf weights.

• “scale_pos_weight”: scaling coefficient for the minor-
ity class when computing the cross-entropy loss.
Large values can offset class imbalance.

• “subsample_freq”: affects how often to perform bag-
ging when training the ensemble. If set to k, bagging
is performed every k trees.

Generally speaking, the importance of the individ-
ual hyperparameters in the optimization process var-
ies greatly across datasets. Furthermore, 1st order

Fig. 3 Box-plot distribution of overlap scores across all datasets
for each gradient boosting implementation pair. The length
of the box denotes the interquartile range, the diamond indicates
the mean and the horizontal line defines the median. The comparison
between two independent optimization runs using the same
algorithm was limited to LightGBM due to its computational cost

Page 9 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

interactions between parameters play a more significant
role in reaching the global optimum than tuning them in
isolation, as highlighted by their larger importance score.
This is consistent with the strong correlations between
parameters and their non-linear effects on model

behavior [39, 40, 42], which make Bayesian hyperparam-
eter optimization necessary in the first place [51].

Looking at individual contributions (Fig. 4a), it is pos-
sible to identify highly influential hyperparameters, such
as the learning rate and the minimum split gain, as well

Fig. 4 Violin plot distribution of the importance scores across all endpoints for the Tox21, MUV, HIV, BBBP, BACE, ClinTox, Phosphatase, NTPase
and Oxidoreductase datasets. aThe distribution of individual contributions for each hyperparameter, denoted by a numerical identifier. b The score
variation of pairwise interactions. Each interaction is defined by the combination of two numeric identifiers for conciseness

Page 10 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

as less relevant ones, such as tree-wise feature sam-
pling. However, all importance score distributions are
remarkably skewed, highlighting that each contribution
can strongly vary across different datasets. When look-
ing at the top ten most influential pairwise interactions
(Fig. 4b), most of them are related to the learning rate
and the scaling coefficient for the contribution of the
minority class to the global loss, highlighting the impor-
tance of tuning weighted cross-entropy when dealing
with imbalanced classification. While some of these find-
ings are consistent with the optimization guidelines from
the literature, such as tuning the learning rate and the
minimum split gain, others appear to contradict them.
For example, while stochastic sampling of instances and
features is believed to be an effective regularization tech-
nique for gradient boosting [31], in this analysis tuning it
seems to be not influential in converging to the param-
eter configuration optimum.

To evaluate the robustness of our importance esti-
mates, we chose to optimize LightGBM again on all
datasets, tuning only the most influential parameters
according to the fANOVA analysis. To do so, we selected
only the parameters that appeared at least once among
the top 10 most important interaction terms, yielding a
grid of 7 hyperparameters instead of 12 (available in the
Supporting Information). To test whether this reduced
selection leads to faster convergence of the optimization
process, we used 30 iterations instead of 100. As a nega-
tive control, we also evaluated the performance achieved
by optimizing all hyperparameters for the same number
of iterations. Finally, we expressed the ROC-AUC and
PR-AUC values achieved by these benchmarks as a frac-
tion of the performance of the optimization process with
all parameters and 100 iterations. This evaluation scheme
allows us to assess how well quickly tuning only the most
important hyperparameters approximates the original
large-scale optimization procedure.

As shown in Fig. 5, given the same number of itera-
tions, using only the best parameters for the optimization
process leads to consistent performance gains compared
to tuning all hyperparameters. This indicates that the
scores from fANOVA accurately reflect the importance
of tuning a given hyperparameter for reaching the opti-
mum. Interestingly, in some cases the optimal hyperpa-
rameter grid is able to outperform the results obtained
tuning all hyperparameters for 100 iterations, such as
for the NTP dataset in terms of PR-AUC and ROC-AUC
(Fig. 5 and Additional file 1: Figure S2).

However, when evaluating the effectiveness of adjust-
ing only the most important parameters on holdout
datasets, the performance improvements are inconsist-
ent. This indicates that the hyperparameter importance
scores obtained by analysis of a set of endpoints do not

generalize on external endpoints (Additional file 1: Figure
S1). Therefore, deciding which parameters to tune must
be determined on a case-by-case basis. A similar pattern
is also observed when evaluating the influence of chang-
ing molecular representation for constructing the QSAR

Fig. 5 LightGBM PR-AUC comparison between carrying
out hyperparameter tuning according to the optimal grid obtained
from fANOVA and tuning all hyperparameters. a Performance
on the datasets used for the fANOVA analysis. b Performance
on the holdout datasets and with different molecular representations.
Each approach was optimized for 30 iterations. The performance
is reported in relation to the results obtained by tuning all parameters
for 100 iterations. Error bars represent the standard deviation
(N = 50 for MoleculeNet datasets, N = 5 for MolData datasets),
while the asterisks denote whether the difference is significant (*:
α < 0.05, **: α < 0.01, with Bonferroni correction)

Page 11 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

model, indicating that the parameter importance scores
are highly feature-specific (Fig. 5 and Additional file 1:
Figure S2).

In conclusion, optimization analysis tools such as
fANOVA can be useful to further improve gradi-
ent boosting in cases where QSAR models need to be
retrained periodically as new data is collected, for exam-
ple for ADME prediction toolkits [3, 57]. However, the
importance estimates provided by fANOVA do not gen-
eralize to unseen endpoints or different molecular rep-
resentations, and limiting the optimization process to a
handful of parameters can affect the performance of the
classifier by up to 20%. Therefore, our recommendation
is to tune all possible parameters when training gradi-
ent boosting models for QSAR, if the computational
time to do so is not prohibitive. If optimizing all param-
eters is too costly, adjusting the learning rate, the weight
of the minority class and the minimum gain to split will
likely lead to the best results on a limited computational
budget.

Conclusions
This work investigated the differences between popu-
lar gradient boosting implementations in the context of
cheminformatics, to guide future QSAR modelling pro-
jects. Specifically, our analysis focused on predictive per-
formance and training time, as well as on feature ranking
consistency among methods. Furthermore, we investi-
gated which hyperparameters are the most important to
tune for gradient boosting machines to reach better per-
formance faster. To achieve these goals, we evaluated 11
different datasets, encompassing approximately 1.4 mil-
lion unique compounds with a diverse selection of data-
set sizes and imbalance ratios.

XGBoost generally outperformed all alternatives in
terms of predictive performance by approximately 5%, at
the cost of longer training times for larger datasets (e.g.
above 100,000 compounds). LightGBM and CatBoost
achieve similar performance, but the former requires sig-
nificantly less time to be trained compared to the other
implementations. The improvement is especially signifi-
cant for datasets with more than 100,000 compounds,
where LightGBM could be trained approximately 100
times faster than XGBoost and 50 times faster than
CatBoost. In terms of feature importance, each imple-
mentation tends to rank molecular features differently.
This not only indicates that each approach might learn
slightly different structure–activity relationships, but
also that caution must be exercised when using these
tools to assess which fragments or properties are relevant
for the biological response modelled. In this context,
expert knowledge is key to critically evaluate whether
these explanations could be due to chance correlation.

Finally, our hyperparameter importance analysis high-
lights that there is significant variability in how much a
given parameter affects convergence to the optimum
between datasets. As such, our indication is to tune as
many parameters as possible when optimizing gradient
boosting models. If the computational budget is limited,
our recommendation is to focus on the learning rate, the
minimum split gain and the weight of the minority class
if the dataset is imbalanced.

In conclusion, our study provides a set of practical
guidelines for the use of gradient boosting for molec-
ular property prediction. Given the rising popularity
of this algorithm for virtual screening and QSAR, we
believe our study will provide useful advice in its opti-
mization, its use cases and limitations, thus benefitting
the cheminformatics community as a whole.

Abbreviations
QSAR Quantitative structure-activity relationship
ADME Absorption distribution metabolism excretion
SVM Support vector machine
GBM Gradient boosting machine
HTS High throughput screening
EFB Exclusive feature bundling
GOSS Gradient-based one sided sampling
TS Target Statistics
ROC-AUC Receiver operator characteristic area under curve
PR-AUC Precision recall area under curve
RMSE Root mean squared error
ECFP Extended connectivity fingerprint
fANOVA Functional analysis of variance

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321- 023- 00743-7.

Additional file 1: Figure S1. Performance comparison between clas-
sification models according to ROC-AUC. Figure S2. LightGBM ROC-AUC
comparison between carrying out hyperparameter tuning according to
the optimal grid obtained from fANOVA and tuning all hyperparameters.
a) Performance on the datasets used for the fANOVA analysis. b) Perfor-
mance on the holdout datasets and with different molecular representa-
tions. Each approach was optimized for 30 iterations. The performance is
reported in relation to the results obtained by tuning all parameters for
100 iterations. Error bars represent the standard deviation (N=50 for Mol-
eculeNet datasets, N=5 for MolData datasets), while the asterisks denote
whether the difference is significant (*: α<0.05, **: α<0.01, with Bonferroni
correction). Figure S3. Top 20 most important molecular fragments
according to each GBM implementation for the BACE dataset. Table S1.
Mean number of unique substructures per compound across datasets
and bit sizes. Table S2. List of calculated 2D molecular descriptors from
the RDKIT package.

Acknowledgements
The authors thank Günter Klambauer for the useful feedback on the project
and the fruitful discussion on the results.

Author contributions
Conceptualization: D.B. Benchmarking: D.B. Software: D.B. Methodology: D.B.
and F.G. Analysis of the results: all authors. Writing original draft: D.B. Writing
review and editing: all authors. All authors have given approval to the final
version of the manuscript.

https://doi.org/10.1186/s13321-023-00743-7
https://doi.org/10.1186/s13321-023-00743-7

Page 12 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

Funding
Open Access funding enabled and organized by Projekt DEAL. The authors
thank Merck KGaA Darmstadt for their generous support with the Merck
Future Insight Prize 2020.

Availability of data and materials
The datasets and code supporting the conclusions of this article are available
in the “GBM_Benchmarking” GitHub repository [https:// github. com/ dahvi da/
GBM_ Bench marki ng].

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Department of Bioscience, Center for Functional Protein Assemblies (CPA),
Technical University of Munich, Garching bei Munich, Germany. 2 Depart-
ment of Biomedical Engineering, Institute for Complex Molecular Sciences,
Eindhoven University of Technology, Eindhoven, The Netherlands. 3 Centre
for Living Technologies, Alliance TU/E, WUR, UU, UMC Utrecht, Utrecht, The
Netherlands. 4 Merck Healthcare KGaA, Darmstadt, Germany.

Received: 31 March 2023 Accepted: 9 August 2023

References
 1. Keshavarzi Arshadi A, Salem M, Firouzbakht A, Yuan JS (2022) MolData, a

molecular benchmark for disease and target based machine learning. J
Cheminf 14(1):10. https:// doi. org/ 10. 1186/ s13321- 022- 00590-y

 2. Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hop-
per T, Kelley B, Mathea M, Palmer A, Settels V, Jaakkola T, Jensen K, Barzilay
R (2019) Analyzing learned molecular representations for property
prediction. J Chem Inf Model 59(8):3370–3388. https:// doi. org/ 10. 1021/
acs. jcim. 9b002 37

 3. Aleksić S, Seeliger D, Brown JB (2021) ADMET Predictability at Boehringer
Ingelheim: state-of-the-art, and do bigger datasets or algorithms make a
difference? Mol Inform. https:// doi. org/ 10. 1002/ minf. 20210 0113

 4. Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans
H, Clevert D-A, Hochreiter S (2018) Large-scale comparison of machine
learning methods for drug target prediction on ChEMBL. Chem Sci
9(24):5441–5451. https:// doi. org/ 10. 1039/ C8SC0 0148K

 5. Chen H, Kogej T, Engkvist O (2018) Cheminformatics in drug discovery, an
industrial perspective. Mol Inform 37(9–10):1800041. https:// doi. org/ 10.
1002/ minf. 20180 0041

 6. Withnall M, Lindelöf E, Engkvist O, Chen H (2020) Building attention and
edge message passing neural networks for bioactivity and physical-
chemical property prediction. J Cheminf 12(1):1. https:// doi. org/ 10. 1186/
s13321- 019- 0407-y

 7. Santana MVS, De S-J (2021) Novo design and bioactivity prediction of
sars-cov-2 main protease inhibitors using recurrent neural network-
based transfer learning. BMC Chem 15(1):8. https:// doi. org/ 10. 1186/
s13065- 021- 00737-2

 8. Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella
TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS, Oliva G, Siqueira-
Neto JL, Madrid PB, Ekins S (2021) Machine learning models identify
inhibitors of SARS-CoV-2. J Chem Inf Model. https:// doi. org/ 10. 1021/ acs.
jcim. 1c006 83

 9. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, Mac-
Nair CR, French S, Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-
Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaak-
kola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic
discovery. Cell 180(4):688-702.e13. https:// doi. org/ 10. 1016/j. cell. 2020. 01.
021

 10. Jain S, Siramshetty VB, Alves VM, Muratov EN, Kleinstreuer N, Tropsha
A, Nicklaus MC, Simeonov A, Zakharov AV (2021) Large-scale modeling
of multispecies acute toxicity end points using consensus of multitask

deep learning methods. J Chem Inf Model 61(2):653–663. https:// doi.
org/ 10. 1021/ acs. jcim. 0c011 64

 11. Walter M, Allen LN, de la Vega de León A, Webb SJ, Gillet VJ (2022)
Analysis of the benefits of imputation models over traditional QSAR
models for toxicity prediction. J Cheminf 14(1):32. https:// doi. org/ 10.
1186/ s13321- 022- 00611-w

 12. Zhang J, Mucs D, Norinder U, Svensson F (2019) LightGBM: an effective
and scalable algorithm for prediction of chemical toxicity-application
to the tox21 and mutagenicity data sets. J Chem Inf Model. https:// doi.
org/ 10. 1021/ acs. jcim. 9b006 33

 13. Grisoni F, Consonni V, Ballabio D (2019) Machine learning consensus
to predict the binding to the androgen receptor within the CoMPARA
project. J Chem Inf Model 59(5):1839–1848. https:// doi. org/ 10. 1021/
acs. jcim. 8b007 94

 14. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu
A, Chen X, Hou T, Cao D (2021) ADMETlab 20: an integrated online
platform for accurate and comprehensive predictions of ADMET prop-
erties. Nucleic Acids Res. https:// doi. org/ 10. 1093/ nar/ gkab2 55

 15. Chuang KV, Gunsalus LM, Keiser MJ (2020) Learning molecular rep-
resentations for medicinal chemistry: miniperspective. J Med Chem
63(16):8705–8722. https:// doi. org/ 10. 1021/ acs. jmedc hem. 0c003 85

 16. Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B, Wang Z, Shen C, Cao D, Wu
J, Hou T (2021) Could Graph neural networks learn better molecular
representation for drug discovery? a comparison study of descriptor-
based and graph-based models. J Cheminf 13(1):12. https:// doi. org/ 10.
1186/ s13321- 020- 00479-8

 17. Winter R, Montanari F, Noé F, Clevert D-A (2019) Learning continu-
ous and data-driven molecular descriptors by translating equivalent
chemical representations. Chem Sci 10(6):1692–1701. https:// doi. org/
10. 1039/ C8SC0 4175J

 18. Biau G, Scornet E (2016) A random forest guided tour. TEST 25(2):197–
227. https:// doi. org/ 10. 1007/ s11749- 016- 0481-7

 19. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R,
Himmelfarb J, Bansal N, Lee S-I (2020) From local explanations to global
understanding with explainable AI for trees. Nat Mach Intell 2(1):56–67.
https:// doi. org/ 10. 1038/ s42256- 019- 0138-9

 20. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297. https:// doi. org/ 10. 1007/ BF009 94018

 21. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020)
A comprehensive survey on support vector machine classification:
applications. Chall Trends Neurocomp 408:189–215. https:// doi. org/ 10.
1016/j. neucom. 2019. 10. 118

 22. Shwartz-Ziv R, Armon A (2022) Tabular data: deep learning is not all
you need. Inf Fusion 81:84–90. https:// doi. org/ 10. 1016/j. inffus. 2021. 11.
011

 23. Bentéjac C, Csörgő A, Martínez-Muñoz G (2021) A comparative analysis
of gradient boosting algorithms. Artif Intell Rev 54(3):1937–1967.
https:// doi. org/ 10. 1007/ s10462- 020- 09896-5

 24. Zheng S, Aldahdooh J, Shadbahr T, Wang Y, Aldahdooh D, Bao J,
Wang W, Tang J (2021) Drugcomb update: a more comprehensive
drug sensitivity data repository and analysis portal. Nucleic Acids Res
49(W1):W174–W184. https:// doi. org/ 10. 1093/ nar/ gkab4 38

 25. Zhu Y, Brettin T, Evrard YA, Partin A, Xia F, Shukla M, Yoo H, Doroshow
JH, Stevens RL (2020) Ensemble transfer learning for the prediction
of anti-cancer drug response. Sci Rep 10(1):18040. https:// doi. org/ 10.
1038/ s41598- 020- 74921-0

 26. Zhang Y, Jiang Z, Chen C, Wei Q, Gu H, Yu B (2022) Deepstack-DTIs:
predicting drug-target interactions using LightGBM feature selection
and deep-stacked ensemble classifier. Interdiscip Sci Comput Life Sci
14(2):311–330. https:// doi. org/ 10. 1007/ s12539- 021- 00488-7

 27. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS,
Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular
machine learning. Chem Sci 9(2):513–530. https:// doi. org/ 10. 1039/
C7SC0 2664A

 28. Siramshetty VB, Nguyen D-T, Martinez NJ, Southall NT, Simeonov A,
Zakharov AV (2020) Critical analysis. J Chem Inf Model 60(12):6007–
6019. https:// doi. org/ 10. 1021/ acs. jcim. 0c008 84

 29. Boldini D, Friedrich L, Kuhn D, Sieber SA (2022) Tuning gradient boost-
ing for imbalanced bioassay modelling with custom loss functions. J
Cheminf 14(1):80. https:// doi. org/ 10. 1186/ s13321- 022- 00657-w

https://github.com/dahvida/GBM_Benchmarking
https://github.com/dahvida/GBM_Benchmarking
https://doi.org/10.1186/s13321-022-00590-y
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1002/minf.202100113
https://doi.org/10.1039/C8SC00148K
https://doi.org/10.1002/minf.201800041
https://doi.org/10.1002/minf.201800041
https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1186/s13065-021-00737-2
https://doi.org/10.1186/s13065-021-00737-2
https://doi.org/10.1021/acs.jcim.1c00683
https://doi.org/10.1021/acs.jcim.1c00683
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1021/acs.jcim.0c01164
https://doi.org/10.1021/acs.jcim.0c01164
https://doi.org/10.1186/s13321-022-00611-w
https://doi.org/10.1186/s13321-022-00611-w
https://doi.org/10.1021/acs.jcim.9b00633
https://doi.org/10.1021/acs.jcim.9b00633
https://doi.org/10.1021/acs.jcim.8b00794
https://doi.org/10.1021/acs.jcim.8b00794
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1021/acs.jmedchem.0c00385
https://doi.org/10.1186/s13321-020-00479-8
https://doi.org/10.1186/s13321-020-00479-8
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1093/nar/gkab438
https://doi.org/10.1038/s41598-020-74921-0
https://doi.org/10.1038/s41598-020-74921-0
https://doi.org/10.1007/s12539-021-00488-7
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1021/acs.jcim.0c00884
https://doi.org/10.1186/s13321-022-00657-w

Page 13 of 13Boldini et al. Journal of Cheminformatics (2023) 15:73

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 30. van Tilborg D, Alenicheva A, Grisoni F (2022) Exposing the limitations
of molecular machine learning with activity cliffs. J Chem Inf Model
62(23):5938–5951. https:// doi. org/ 10. 1021/ acs. jcim. 2c010 73

 31. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM San Francisco California
USA. 2016. https:// doi. org/ 10. 1145/ 29396 72. 29397 85

 32. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Light-
GBM: a highly efficient gradient boosting decision tree in advances in
neural information processing systems. Curran Assoc. https:// doi. org/ 10.
48550/ arXiv. 1706. 09516

 33. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018)
CatBoost: unbiased boosting with categorical features. Adv Neural Inf
Process Sys. https:// doi. org/ 10. 48550/ arXiv. 1706. 09516

 34. Esposito C, Landrum GA, Schneider N, Stiefl N, Riniker S (2021) GHOST:
adjusting the decision threshold to handle imbalanced data in machine
learning. J Chem Inf Model 61(6):2623–2640. https:// doi. org/ 10. 1021/ acs.
jcim. 1c001 60

 35. Dahlin JL, Nissink JWM, Strasser JM, Francis S, Higgins L, Zhou H, Zhang
Z, Walters MA (2015) PAINS in the assay: chemical mechanisms of assay
interference and promiscuous enzymatic inhibition observed during a
sulfhydryl-scavenging HTS. J Med Chem 58(5):2091–2113. https:// doi.
org/ 10. 1021/ jm501 9093

 36. Breiman L (2017) Classification and regression trees. Routledge, New York
 37. Friedman JH (2001) Greedy function approximation: a gradient boosting

machine. Ann Stat 29(5):1189–1232. https:// doi. org/ 10. 1214/ aos/ 10132
03451

 38. Pedregosa F (2012) Scikit-learn: machine learning in python. Mach Learn.
https:// doi. org/ 10. 48550/ arXiv. 1201. 0490

 39. XGBoost Documentation—xgboost 1.6.2 documentation. https:// xgboo
st. readt hedocs. io/ en/ stable/. Accessed 31 Aug 2022

 40. Welcome to LightGBM’s documentation!—LightGBM 3.3.2 documenta-
tion. https:// light gbm. readt hedocs. io/ en/ v3.3. 2/. Accessed 31 Aug 2022

 41. Todeschini R, Consonni V (2000) Handbook of molecular descriptors.
Methods Princ Med Chem. https:// doi. org/ 10. 1002/ 97835 27613 106

 42. CatBoost - state-of-the-art open-source gradient boosting library with
categorical features support. https:// catbo ost. ai. Accessed 31 Aug 2022

 43. Ustimenko A, Beliakov A, Prokhorenkova L (2022) Gradient boosting per-
forms gaussian process inference. ArXiv. https:// doi. org/ 10. 48550/ arXiv.
2206. 05608

 44. Ustimenko, A.; Prokhorenkova, L. SGLB: Stochastic Gradient Langevin
Boosting. http:// arxiv. org/ abs/ 2001. 07248. Accessed 20 May 2022.

 45. Sharchilev, B.; Ustinovsky, Y.; Serdyukov, P.; de Rijke, M. Finding Influential
Training Samples for Gradient Boosted Decision Trees. arXiv March 12,
2018. http:// arxiv. org/ abs/ 1802. 06640 Accessed 29 Jul 2022

 46. Cortés-Ciriano I, Bender A (2019) Deep confidence: a computationally
efficient framework for calculating reliable prediction errors for deep
neural networks. J Chem Inf Model 59(3):1269–1281. https:// doi. org/ 10.
1021/ acs. jcim. 8b005 42

 47. Fu G, Yi L, Pan J (2019) Tuning model parameters in class-imbalanced
learning with precision-recall curve. Biom J 61(3):652–664. https:// doi.
org/ 10. 1002/ bimj. 20180 0148

 48. Feng Y, Zhou M, Tong X Imbalanced classification: a paradigm-based
review. http:// arxiv. org/ abs/ 2002. 04592. Accessed 10 Oct 2022

 49. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc
56(293):52–64. https:// doi. org/ 10. 2307/ 22823 30

 50. RDKit. https:// www. rdkit. org/. Accessed 09 May 2021
 51. Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD (2015) Hyperopt: a

python library for model selection and hyperparameter optimization.
Comput Sci Discov 8(1):014008. https:// doi. org/ 10. 1088/ 1749- 4699/8/ 1/
014008

 52. Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with
explainable artificial intelligence. Nat Mach Intell 2(10):573–584. https://
doi. org/ 10. 1038/ s42256- 020- 00236-4

 53. Shapley L (1953) A value for n-person games. In: Kuhn HW, Tucker A (eds)
Contributions to the theory of games (AM-28). Princeton University Press,
Princeton

 54. Sheridan RP (2019) Interpretation of QSAR models by coloring atoms
according to changes in predicted activity: how robust is it? J Chem Inf
Model 59(4):1324–1337. https:// doi. org/ 10. 1021/ acs. jcim. 8b008 25

 55. Hutter F, Hoos H, Leyton-Brown K (2014) An Efficient Approach for Assess-
ing Hyperparameter Importance. In Proceedings of the 31st International
Conference on International Conference on Machine Learning. ICML’14;
JMLR.org: Beijing, China. 32:I-754–I-762. https:// dl. acm. org/ doi/ 10. 5555/
30448 05. 30448 91

 56. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL
keys for use in drug discovery. J Chem Inf Model. https:// doi. org/ 10. 1021/
ci010 132r

 57. Göller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S, ter Laak A,
Wichard J, Lobell M, Hillisch A (2020) Bayer’s in silico ADMET platform:
a journey of machine learning over the past two decades. Drug Discov
Today 25(9):1702–1709. https:// doi. org/ 10. 1016/j. drudis. 2020. 07. 001

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acs.jcim.2c01073
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.1706.09516
https://doi.org/10.48550/arXiv.1706.09516
https://doi.org/10.48550/arXiv.1706.09516
https://doi.org/10.1021/acs.jcim.1c00160
https://doi.org/10.1021/acs.jcim.1c00160
https://doi.org/10.1021/jm5019093
https://doi.org/10.1021/jm5019093
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.48550/arXiv.1201.0490
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/v3.3.2/
https://doi.org/10.1002/9783527613106
https://catboost.ai
https://doi.org/10.48550/arXiv.2206.05608
https://doi.org/10.48550/arXiv.2206.05608
http://arxiv.org/abs/2001.07248
http://arxiv.org/abs/1802.06640
https://doi.org/10.1021/acs.jcim.8b00542
https://doi.org/10.1021/acs.jcim.8b00542
https://doi.org/10.1002/bimj.201800148
https://doi.org/10.1002/bimj.201800148
http://arxiv.org/abs/2002.04592
https://doi.org/10.2307/2282330
https://www.rdkit.org/
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1021/acs.jcim.8b00825
https://dl.acm.org/doi/10.5555/3044805.3044891
https://dl.acm.org/doi/10.5555/3044805.3044891
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci010132r
https://doi.org/10.1016/j.drudis.2020.07.001

	Practical guidelines for the use of gradient boosting for molecular property prediction
	Abstract
	Introduction
	Methods
	Gradient boosting
	XGBoost
	LightGBM
	Catboost

	Experiments
	Datasets
	Performance metrics
	Molecular descriptors
	Performance analysis
	Feature ranking analysis
	Hyperparameter analysis
	Software and implementation

	Results and discussion
	Predictive performance
	Feature ranking comparison
	Hyperparameter importance

	Conclusions
	Anchor 22
	Acknowledgements
	References

