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Abstract 

Decision tree ensembles are among the most robust, high-performing and computationally efficient machine 
learning approaches for quantitative structure–activity relationship (QSAR) modeling. Among them, gradient boost-
ing has recently garnered particular attention, for its performance in data science competitions, virtual screening 
campaigns, and bioactivity prediction. However, different variants of gradient boosting exist, the most popular being 
XGBoost, LightGBM and CatBoost. Our study provides the first comprehensive comparison of these approaches 
for QSAR. To this end, we trained 157,590 gradient boosting models, which were evaluated on 16 datasets and 94 
endpoints, comprising 1.4 million compounds in total. Our results show that XGBoost generally achieves the best pre-
dictive performance, while LightGBM requires the least training time, especially for larger datasets. In terms of feature 
importance, the models surprisingly rank molecular features differently, reflecting differences in regularization tech-
niques and decision tree structures. Thus, expert knowledge must always be employed when evaluating data-driven 
explanations of bioactivity. Furthermore, our results show that the relevance of each hyperparameter varies greatly 
across datasets and that it is crucial to optimize as many hyperparameters as possible to maximize the predictive per-
formance. In conclusion, our study provides the first set of guidelines for cheminformatics practitioners to effectively 
train, optimize and evaluate gradient boosting models for virtual screening and QSAR applications.
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Graphical abstract

Introduction
Quantitative structure–activity relationship (QSAR) 
modelling occupies a vital role in cheminformatics 
research [1–5]. QSAR aims to link the molecular struc-
ture with experimentally measurable properties, and it 
is routinely used to predict molecular properties such as 
bioactivity [6–9], toxicity [10–13] and absorption, distri-
bution, metabolism and excretion (ADME) [3, 14], thus 
covering a fundamental role in both hit discovery and 
hit-to-lead optimization.

QSAR aims to link the molecular structure (numeri-
cally encoded as the so-called molecular descriptors) 
[15–17] with experimentally measurable properties. For 
this application, decision tree ensembles are among the 
most used machine learning methods thanks to their 
excellent performance, ability to rank features in terms 
of importance and their ability to scale to large datasets 
[18, 19], alongside other popular frameworks like support 
vector machines (SVM) [20, 21].

Among decision tree ensembles, gradient boosting 
machines (GBM) have seen a strong surge in popularity 
in the last years, driven by excellent results in data sci-
ence competitions and state-of-the-art performance in 
modelling tabular data [22, 23]. GBM iteratively aggre-
gates predictive models so that each one compensates the 
errors from the previous step, thus yielding a high-per-
formance ensemble.

In cheminformatics, GBM has already found wide-
spread use in several QSAR tasks such as toxicity 

prediction [12], drug sensitivity analysis [24], anti-can-
cer activity modelling [25] and drug-target interaction 
identification [26], as well as showing competitive per-
formance with deep learning approaches in recent large-
scale benchmarking studies [16, 27–30].

However, several implementations of the GBM algo-
rithm exist, each with unique modifications to the origi-
nal formulation and employing different decision tree 
structures [23], such as XGBoost [31], LightGBM [32] 
and CatBoost. [33] While the importance of these dif-
ferences has been recognised in other fields [23], these 
algorithms are used interchangeably in chemoinformat-
ics, and to our knowledge their respective advantages are 
not well documented. Thus, there is an urgent need for 
a rigorous benchmarking of these different implementa-
tions for QSAR applications. This is further warranted by 
the uniqueness of cheminformatics datasets compared to 
other typical tabular datasets like finance and real estate 
price prediction [22, 23]. For example, datasets in this 
field tend to have a much higher number of features, they 
are often extremely imbalanced [34] and might contain 
false positives or false negatives [35].

The aim of this paper is to provide the first set of practi-
cal guidelines for the use of gradient boosting in QSAR 
applications, such as toxicology and drug discovery, by 
answering the following questions:

1. Which gradient boosting implementation performs 
the best for QSAR?
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2. Which package scales the best to large datasets, such 
as high throughput screens (HTS)?

3. Do they produce similar feature importance rank-
ings, or do they highlight different molecular fea-
tures?

4. Is it possible to identify the most important hyperpa-
rameters to optimize for these algorithms to acceler-
ate further the development and deployment of these 
methods for QSAR?

To answer these questions, we carried out a large-
scale benchmark of these three implementations on 16 
classification and regression datasets with 94 different 
endpoints commonly considered for virtual screening, 
covering a wide range of dataset size and class-imbalance 
ratios. To ensure the robustness of our results, we exten-
sively optimized each algorithm according to the guide-
lines set up by the respective authors of the packages and 
recent studies, constructing 157,590 individual QSAR 
models.

Methods
GBM is an ensemble algorithm, which aims to aggregate 
several decision trees into a single more performant pre-
dictor. Decision trees are a machine-learning algorithm 
that learns a flowchart-like structure of hierarchical 
binary decisions [36]. The terminal nodes of the graph 
are generally named leaves, which are used to assign 
sample predictions [36]. To explain how GBM constructs 
the decision tree ensemble, we first present the original 
implementation of the algorithm [37] followed by a sys-
tematic analysis of the changes introduced by XGBoost, 
LightGBM and CatBoost.

Gradient boosting
Given an input matrix X and a vector Y  of molecular 
properties (e.g., biological activity), the gradient boost-
ing algorithm approximates the underlying function 
F(x) , which maps the relationship between the molecular 
descriptor xi and the biological activity yi , with a function 
F̂(x) , constructed in an additive manner:

where σ is the learning rate, a constant regularization 
parameter limiting the influence of a given predictor 
within the ensemble, and F̂m(x) is the m th tree. Given a 
loss function L

(
yi, pi

)
 , such as the binary cross-entropy, 

that measures the quality of predictions pi with respect 
to real readouts yi , after the first iteration each new tree 
F̂m is learned by minimizing the following objective:

(1)F̂(x) =
M∑

m=1

σ ∗ F̂m(x)

where the derivative of the loss with respect to the 
ensemble output represents the prediction residuals of 
F̂(x) at the previous iteration, and Pm are the predictions 
at the current iteration. As such, each new decision tree is 
constructed so that it compensates the prediction errors 
of the model during the previous iteration, essentially 
conducting gradient descent in function space instead of 
parameter space.

The original formulation of GBM is the one employed 
by the popular machine learning package Scikit-learn 
[38]. Unfortunately, this implementation lacks many 
of the regularization and optimization methods imple-
mented by XGBoost, CatBoost and LightGBM and can-
not be parallelized across multiple CPU cores. For this 
reason, we did not include the Scikit-learn version of 
GBM in the benchmarking study.

XGBoost
XGBoost introduces a regularized learning objective [31]. 
At a given iteration m , instead of being computed accord-
ing to the loss function L

(
yi, pi

)
 , the residuals are calcu-

lated with the following formula:

where γ and � are regularization hyperparameters, Tm 
is the number of leaves in the m th tree and ‖wm‖

2 is the 
L2 norm of its leaf weights. Thanks to this modification, 
XGBoost learns simpler trees with smoother weights, 
which leads to better generalization [31]. Additionally, 
XGBoost employs Newton descent instead of gradient 
descent to optimize its trees, which leads to faster con-
vergence [39]. Finally, XGBoost also introduced a new 
feature split finding algorithm to speed up training [31].

LightGBM
This implementation also adopts many solutions pro-
posed by XGBoost to improve the performance such as 
the regularized learning objective and Newton descent. 
However, LightGBM introduces three new strategies to 
make training more efficient: a histogram-based split 
finding method, Exclusive Feature Bundling (EFB) and 
Gradient-based One-Side Sampling (GOSS) [32]. EFB 
employs heuristics to find groups of mutually exclu-
sive features and merges them together, thus reducing 
the dimensionality of the dataset, while GOSS relies on 
gradients to sample at each iteration the most impor-
tant dataset instances without changing the training set 
distribution. Each of these algorithms simplifies differ-
ent aspects of the original minimization objective, thus 

(2)F̂m = argminE
(
−∂L(Y ,Pm−1)

∂Pm−1
− Pm

)

(3)L∅
(
y, p

)
=

I∑
i=1

L
(
yi, pi

)
+ γTm + 1

2
��wm�

2
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speeding up training time with negligible loss in accu-
racy. Furthermore, LightGBM employs a different tree 
growth strategy compared to XGBoost. In most cases, 
trees are generated in a “breadth-first” fashion, where 
every time a new split is found, all other splits at the same 
level are first considered before increasing further the 
depth of the tree. This yields tree structures that have the 
same depth across all branches. In contrast, LightGBM 
grows trees in a “depth-first” fashion (Fig. 1), where the 
algorithm splits nodes exclusively according to the larg-
est performance gain [40]. This procedure leads to asym-
metric trees, where certain branches might be very deep 
while others might be shallow. This approach tends to 
converge faster, but might be susceptible to overfitting on 
small datasets [32].

Catboost
There are three main features that distinguish CatBoost 
from LightGBM and XGBoost. First, it provides a novel 
Target Statistics (TS) algorithm to handle categorical 
variables, which leads to more robust performance on 
unseen data by addressing the issue of target leakage dur-
ing training [33]. However, categorical inputs are very 
rarely found in molecular descriptors [41], therefore this 
aspect is not of big relevance for cheminformatics appli-
cations. Second, it introduced ordered boosting, a vari-
ation of gradient boosting where each model is trained 
on a different partition of the training dataset, tackling 
the issue of prediction shift that arises by fitting trees 
on gradients obtained from samples already used dur-
ing training. In principle, this approach reduces the risk 
of overfitting, especially on small datasets [33]. Third, 
CatBoost employs “oblivious decision trees”, where the 
same variable and threshold are used to generate splits at 
a given depth level (Fig. 1) [33, 42]. This enforced symme-
try acts as regularization, constraining the expressiveness 
of tree models, and can be leveraged to provide uncer-
tainty estimates on predictions, similarly to Gaussian 

Processes models [43]. Finally, the authors of this library 
have researched extensively the theoretical properties of 
gradient boosting and proposed several new features like 
Langevin gradient descent [44] and sample importance 
analysis [45], which are only available in the CatBoost 
package [42].

Experiments
Datasets
To provide a robust evaluation framework for our bench-
mark analysis, we evaluated XGBoost, LightGBM and 
CatBoost on 16 classification and regression datasets 
from three well-established repositories: MoleculeNet, 
[27] MolData [1] and the ChEMBL benchmarking study 
from Cortés-Ciriano et  al [46] (Table 1). From the first, 
we included Tox21, MUV, HIV, ClinTox, BBBP, BACE 
and SIDER. From the second, we chose the Phosphatase, 
NTPase, Oxidoreductase and Fungal datasets. From the 
third, we selected HERG, Acetylcholinesterase, COX-2, 
erbB1 and JAK-2. We retrieved the MoleculeNet data-
sets from a recent benchmarking study [16], while we 
referred to the original publications for the MolData 
repository and the ChEMBL datasets [1, 46]. This selec-
tion entails approximately 1.4 million unique compounds 
and 94 endpoints on a wide variety of protein families 
and biological responses, ensuring that our findings are 
broadly applicable for cheminformatics applications. Our 
selection covers an extensive range of compounds per 
endpoint (from 2000 to 330,000) and imbalance ratios 
between compounds classified as either ‘positive’ or ‘neg-
ative’ (from 1:2 to 1:500), reflecting the diversity of data-
sets typically encountered in cheminformatics (Table 1).

Performance metrics
For each classification dataset, we evaluated the Receiver 
Operating Characteristic Area Under Curve (ROC-AUC) 
and Precision-Recall Area Under Curve (PR-AUC). Our 
selection is consistent with the figures of merit used in 

Fig. 1 Different tree structures and split indexes (shown inside each node) generated by XGBoost, LightGBM and CatBoost. XGBoost adopts 
a “breadth-first” search, maintaining constant tree depth across branches. LightGBM uses a “depth-first” criterion, yielding asymmetric trees. CatBoost 
relies on oblivious trees, where at a given depth the same split is used across all branches, as indicated by the constant split indexes
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the literature when evaluating these datasets and ensures 
that the results are not skewed by high imbalance ratios 
[1, 16, 27, 47, 48]. For the regression datasets, we evalu-
ated the Root Mean Squared Error (RMSE). To assess 
whether differences in performance are statistically sig-
nificant, we used the two-tailed Mann–Whitney test with 
Bonferroni correction [49].

Molecular descriptors
We featurized all compounds using the Extended-Con-
nectivity Fingerprints (ECFP) with radius of 2 and bit size 
of 1024 [50]. To ensure that bit collision is not a factor in 
any of our findings, we have investigated the change in 
vector sparsity when using larger bit sizes. Given that the 
number of unique fragments remains approximately con-
stant for all datasets when increasing the bit size (Addi-
tional file  1: Table  S1), we can exclude that bit collision 
plays a role for the benchmarks in this study.

Performance analysis
We used three different optimization and evaluation pro-
tocols, depending on whether the dataset is from Mol-
eculeNet, MolData or ChEMBL. The reason for this is 
to keep our analysis consistent with prior studies from 
the scientific literature, and because the datasets from 
MolData are several orders of magnitude larger than 
the ones in the MoleculeNet repository or from Cortés-
Ciriano et al [46].

For MoleculeNet datasets, we replicated a previously 
proposed procedure [16], whereby for each endpoint, 
each classifier is optimized with Hyperopt [51] for 100 

iterations using an extensive hyperparameter grid, deter-
mined according to existing guidelines and benchmarks 
[22, 39, 40, 42]. The full hyperparameter grid is available 
in the Supporting Information. Each optimization itera-
tion measured the average PR-AUC with a given hyper-
parameter setting across three random train-test splits 
with an 80:20 ratio. Then, the model was run with the 
optimal hyperparameters on 50 independent evaluations 
with random splits, using the same ratio between train-
ing and test set. After each run, the ROC-AUC and PR-
AUC were measured on the test set as well as the training 
time. Finally, for a given dataset, the performance metrics 
and training times were averaged across replicates and 
across endpoints.

For the MolData benchmarks, we used the scaffold 
splits provided by Arshadi and coworkers during opti-
mization and evaluation [1]. As such, for each endpoint, 
each classifier was optimized for 100 iterations using 
Hyperopt [51] with the same grid as above. Each iteration 
measured the PR-AUC obtained by the classifier with a 
given hyperparameter setting on the validation set. Then, 
the model was run with optimal hyperparameters on five 
independent evaluations with different random seeds, 
measuring the ROC-AUC and PR-AUC on the test set 
as well as the training time. As above, the results were 
reported as averages across replicates and endpoint for a 
given dataset.

For the regression datasets from Cortés-Ciriano et  al. 
[46], we adopted the procedure employed in the original 
publication. In short, each dataset was split into train-
ing, validation and test sets with a 70:15:15 ratio using 

Table 1 Datasets employed in this study. For datasets with multiple endpoints, we reported the ranges between minimum and 
maximum values regarding the compounds per endpoint and imbalance ratios

Name Type Source Endpoints Compounds per endpoint Class imbalance ratio

Tox21 Classification MoleculeNet 12 5810–7265 1:5–1:33

HIV Classification MoleculeNet 1 40,748 1:27

MUV Classification MoleculeNet 17 14,415–14,903 1:486–1:613

BACE Classification MoleculeNet 1 1513 1:1

BBBP Classification MoleculeNet 1 2039 1:3

SIDER Classification MoleculeNet 27 1427 1:12–1:63

ClinTox Classification MoleculeNet 2 1478 1:12–1:14

Phosphatase Classification MolData 5 260,322–298,215 1:121–1:576

NTPase Classification MolData 6 251,895–301,932 1:3–1:16,265

Oxidoreductase Classification MolData 10 79,853–325,083 1:9–1:9847

Fungal Classification MolData 7 152,880–302,256 1:135–1:640

HERG Regression Cortés-Ciriano et al. 1 5207 N.A

Acetylcholinesterase Regression Cortés-Ciriano et al. 1 3159 N.A

COX-2 Regression Cortés-Ciriano et al. 1 2855 N.A

erbB1 Regression Cortés-Ciriano et al. 1 4868 N.A

JAK-2 Regression Cortés-Ciriano et al. 2655 N.A
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random splits. We then performed hyperparameter tun-
ing via Hyperopt, optimizing RMSE on the validation 
split for 100 iterations, using the same grid as above. 
Finally, we repeated training on the training split and 
evaluation of RMSE on the test set for 50 iterations. As 
such, the final RMSE values were indicated as averages 
across replicates for each dataset.

Feature ranking analysis
One of the advantages of GBM is that it can provide 
information on the feature importance, which can be 
used as a tool to provide indication of what drives the 
model predictions, and, in certain cases, to achieve model 
explainability [52]. We used Shapley values [19, 53] to 
assess which molecular features are the most important 
according to each GBM predictor. Shapley values quan-
tify the importance of each feature (‘feature attribution’ 
[37]) by evaluating the change in a model’s predictions 
across all possible permutations [19, 52]. To obtain fea-
ture rankings for each dataset, we collected the Shapley 
values from each model with optimal hyperparameters 
during the evaluation procedure. Then, we averaged them 
across independent runs and dataset endpoint, obtaining 
one ranked list of variables per dataset for each model. 
To compare the variable rankings between pairs of GBM 
implementations, we employed the following formula:

where k is the cut-off for the number of most important 
variables to consider (set to k = 20 in the present study) 
and Vsk is the number of unique variables when consid-
ering both importance rankings. Intuitively, this metric 
measures the agreement of the two rankings, irrespective 
of the specific ordering, among the top 20 most impor-
tant variables. For example, a score of 50 indicates that 
two GBM models have 10 molecular features in com-
mon when looking at their respective top 20 most impor-
tant variables, regardless of whether these 10 features 
received the same rank in both lists. This score there-
fore shows whether the use of different gradient boost-
ing algorithms would highlight the same features as most 
important, without being influenced by the ranking of 
less informative variables. However, it should be kept in 
mind that for many molecular representations such as 
hashed fingerprints, translating feature importance rank-
ings into chemical insights is not a trivial task [54].

Finally, to evaluate the influence of converging to dif-
ferent hyperparameter configurations, regardless of 
algorithmic differences in the gradient boosting imple-
mentation, we also evaluated the feature ranking over-
lap between two independent LightGBM optimization 
runs. The analysis was limited to LightGBM due to 

(4)Overlap% =
(
1−

Vsk
k

)
∗ 100, k = 20

computational costs and that considering one GBM is 
sufficient to evaluate the variability in feature ranking 
overlap induced by the stochasticity in the hyperparam-
eter optimization process.

Hyperparameter analysis
To evaluate the influence of each hyperparameter on 
the optimization process, we employed the Functional 
ANOVA (fANOVA) [55]. To acquire a sufficient collec-
tion of hyperparameter combinations, we optimized 
LightGBM with Hyperopt for 500 iterations on each 
endpoint, using the same hyperparameter grid and 
evaluation criteria as above. Because of the high compu-
tational cost for this analysis, we limited our study only 
to one GBM implementation and exclusively to classifi-
cation datasets. Then, after pruning the worst 150 itera-
tions, we processed the resulting parameter-performance 
pairs using fANOVA, yielding individual hyperparameter 
importance scores and their first-order interactions. By 
limiting the analysis to well-performing configurations, 
we ensured that the importance estimates for the param-
eters reflect their importance on reaching the optimum, 
and not on causing large oscillations in performance [55]. 
We excluded the SIDER and Fungal datasets from this 
analysis, since they were reserved as test sets to evalu-
ate whether selecting hyperparameters according to 
their fANOVA importance score generalizes to unseen 
datasets. Furthermore, to assess the influence of molecu-
lar descriptors on the optimal hyperparameters, we also 
repeated this procedure using the MACCS keys [56] 
and an assortment of 207 physical–chemical descriptors 
from RDKit as featurization options. The complete list 
of descriptors is available in the Supporting Information 
(Additional file 1: Table S2).

Software and implementation
Molecular descriptors were computed using RDKit (Ver-
sion 2022.09.4) for python. [50] For training the models, 
XGBoost (Version 1.7.1) [39], LightGBM (Version 3.3.5) 
[40] and CatBoost (Version 1.1.1) [42] were employed. 
Scikit-learn (Version 1.2.1) [38] was used to split the 
MoleculeNet datasets and compute ROC-AUC and PR-
AUC values. Each model was tuned via Bayesian hyper-
parameter optimization using the Hyperopt package 
(Version 0.2.7) [51]. Finally, SHAP (Version 0.41.0) [19] 
was utilized to compute Shapley values and the fANOVA 
package (Version 2.0.5) [55] was employed for the hyper-
parameter importance analysis. All calculations were 
performed on an AMD Ryzen Threadripper 3970X CPU 
with 32 cores and 64 threads. Training of the gradient 
boosting models was parallelized across all cores avail-
able. The code to reproduce the results is available at 
https:// github. com/ dahvi da/ GBM_ Bench marki ng.

https://github.com/dahvida/GBM_Benchmarking
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Results and discussion
Predictive performance
Overall, XGBoost achieves the best performance on 
most of the datasets (Fig.  2a, b and Additional file  1: 
Figure S1), with statistically significant differences in 
most cases. Interestingly, there seems to be a correla-
tion between the improvement provided by XGBoost 
over the alternatives and dataset size. For smaller clas-
sification datasets (e.g., BACE, BBBP and ClinTox), 

CatBoost performs worse, with LightGBM being able 
to match or outperform XGBoost. This aspect is seem-
ingly in contradiction with the concerns of overfitting 
due to its depth-first tree structure reported elsewhere. 
[40] For medium-sized datasets (e.g., Tox21, MUV and 
HIV, ranging from approximately 7000 compounds to 
40,000), CatBoost tends to perform better than Light-
GBM, and it outperforms XGBoost on the Tox21 
dataset. Finally, for large datasets (NTPase, Phos-
phatase and Oxidoreductase datasets, having more 
than 300,000 molecules per endpoint), XGBoost out-
performs both LightGBM and CatBoost. When con-
sidering all datasets, XGBoost provides roughly a 5% 
improvement on average over LightGBM and CatBoost 
in terms of ROC-AUC and PR-AUC.

Regarding the regression datasets, LightGBM tends 
to achieve worse RMSE scores, while XGBoost ranks 
as the best performing algorithm on most benchmarks 
(Fig.  2b). CatBoost is generally able to match the per-
formance of XGBoost, although the differences are sta-
tistically significant.

When considering the training times across all data-
sets (Fig. 2c), a similar dependence on the dataset size 
can be observed. LightGBM is the fastest algorithm 
on all benchmarks, due to the algorithm’s focus on 
reducing computational load. CatBoost is the slowest 
algorithm for small and medium sized datasets, while 
XGBoost requires significantly more time to train for 
larger datasets than both alternatives. While the abso-
lute difference of training times for a single model is 
not particularly great (i.e., 5 versus 140 s on a CPU with 
32 cores), it can significantly impact hyperparameter 
optimization procedures, where the model needs to 
be retrained many times. Furthermore, this difference 
will also grow significantly if less cores are available for 
training.

In summary, XGBoost provides the best predictive 
performance for cheminformatics out of all gradient 
boosting implementations, at the cost of training speed 
for larger datasets. LightGBM and CatBoost have com-
parable performance, but the former provides substan-
tial benefits in terms of training time over the other 
algorithms.

Feature ranking comparison
We observed a remarkable variability between the impor-
tance rankings across different implementations, espe-
cially when comparing them to the overlap scores of 
two independent optimization and training runs for the 
same GBM algorithm (Fig.  3). For MUV, for example, 
there is approximately only a 20% overlap for any imple-
mentation pair, while for other datasets the agreement 
reaches up to 90%. The reason for the variability across 

Fig. 2 Performance comparison of all gradient boosting 
implementations in terms of a PR-AUC, b RMSE and c training time. 
All calculations were performed on an AMD Ryzen Threadripper 
3970X CPU. Statistical tests are carried out with respect to XGBoost. 
Error bars represent the standard deviation (N = 50 for MoleculeNet 
datasets, N = 5 for MolData datasets), while the asterisks denote 
whether the difference is significant (*: α < 0.05, **: α < 0.01, 
with Bonferroni correction)



Page 8 of 13Boldini et al. Journal of Cheminformatics           (2023) 15:73 

implementations could be due to the use of different tree 
structures, as well as converging to different hyperpa-
rameter optima. For example, tuning the minimum split 
gain can lead to the selection of different splits, which 
in turn would yield different variable importance scores. 
This would explain the results obtained when comparing 
two runs of the same GBM algorithm across all datasets, 
since even in that scenario the variable overlap scores are 
distributed between 70 and 90% (Fig.  3). Another pos-
sible explanation for this pattern is that the algorithms 
highlight similar molecular fragments, but those frag-
ments are mapped to different bits in the ECFP repre-
sentation, thus producing semantically similar rankings 
despite not focusing on the same variables. To investigate 
this hypothesis, we calculated the top 20 ranked frag-
ments for all GBM algorithms for the BACE datasets 
and manually inspected them (Additional file  1: Figure 
S2). When comparing the most important fragments 
between pairs of GBM predictor, each model had approx-
imately ten unique substructures, which did not have 
any analogues in the other rankings. As such, it seems 
that each implementation indeed generates semanti-
cally distinct explanations for a given dataset, highlight-
ing potential differences in the learned structure–activity 
relationships.

The main takeaway from this analysis is that using gra-
dient boosting to evaluate which molecular features or 
fragments are the most influential is a non-trivial task, 
given the low agreement between different implemen-
tations of the same algorithm. Expert knowledge must 
always be employed to evaluate each fingerprint bit or 
molecular descriptor and to assess whether the expla-
nations provided by the model are reasonable. Finally, 
averaging the Shapley scores on different hyperpa-
rameter optima or across different gradient boosting 

implementations might yield better estimates of feature 
importance.

Hyperparameter importance
After calculating the hyperparameter importance across 
datasets for LightGBM, we evaluated their distribution 
on different endpoints (Fig.  4). The analysis was limited 
to one GBM implementation due to the high number 
of optimization iterations required per endpoint. We 
focused our analysis on the following hyperparameters:

• “colsample_bytree”: fraction of features to sample 
at the beginning of the construction of a given tree. 
Tuning it helps with regularization of the ensemble.

• “learning_rate”: regulates how much each tree affects 
the overall performance of the ensemble, or in other 
words how many boosting rounds are required to 
converge. Large learning rates help with underfitting, 
small learning rates can help with regularization.

• “max_depth”: defines the maximum depth for con-
structing individual trees. Large values help with 
underfitting, small values can help with regulariza-
tion.

• “min_child_samples”: minimum number of samples 
for a given leaf node. Affects tree construction and 
can help with regularization.

• “min_child_weight”: minimal sum of hessians for a 
given leaf node. Affects tree construction and can 
help with regularization.

• “min_split_gain”: minimal decrease in loss required 
to further split a node. Affects tree construction and 
can help with regularization.

• “neg_subsample”: fraction of majority class samples 
to use for bagging when constructing a given tree. 
Helps with class imbalance and regularization.

• “num_leaves”: Maximum number of leaves a given 
tree can have. Similar to max_depth but provides 
more fine-grained control on the shape of the tree 
since LightGBM uses depth-first trees.

• “reg_alpha”: L1 norm regularization coefficient of the 
leaf weights.

• “reg_lambda”: L2 norm regularization coefficient of 
the leaf weights.

• “scale_pos_weight”: scaling coefficient for the minor-
ity class when computing the cross-entropy loss. 
Large values can offset class imbalance.

• “subsample_freq”: affects how often to perform bag-
ging when training the ensemble. If set to k, bagging 
is performed every k trees.

Generally speaking, the importance of the individ-
ual hyperparameters in the optimization process var-
ies greatly across datasets. Furthermore, 1st order 

Fig. 3 Box-plot distribution of overlap scores across all datasets 
for each gradient boosting implementation pair. The length 
of the box denotes the interquartile range, the diamond indicates 
the mean and the horizontal line defines the median. The comparison 
between two independent optimization runs using the same 
algorithm was limited to LightGBM due to its computational cost
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interactions between parameters play a more significant 
role in reaching the global optimum than tuning them in 
isolation, as highlighted by their larger importance score. 
This is consistent with the strong correlations between 
parameters and their non-linear effects on model 

behavior [39, 40, 42], which make Bayesian hyperparam-
eter optimization necessary in the first place [51].

Looking at individual contributions (Fig. 4a), it is pos-
sible to identify highly influential hyperparameters, such 
as the learning rate and the minimum split gain, as well 

Fig. 4 Violin plot distribution of the importance scores across all endpoints for the Tox21, MUV, HIV, BBBP, BACE, ClinTox, Phosphatase, NTPase 
and Oxidoreductase datasets. aThe distribution of individual contributions for each hyperparameter, denoted by a numerical identifier. b The score 
variation of pairwise interactions. Each interaction is defined by the combination of two numeric identifiers for conciseness
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as less relevant ones, such as tree-wise feature sam-
pling. However, all importance score distributions are 
remarkably skewed, highlighting that each contribution 
can strongly vary across different datasets. When look-
ing at the top ten most influential pairwise interactions 
(Fig.  4b), most of them are related to the learning rate 
and the scaling coefficient for the contribution of the 
minority class to the global loss, highlighting the impor-
tance of tuning weighted cross-entropy when dealing 
with imbalanced classification. While some of these find-
ings are consistent with the optimization guidelines from 
the literature, such as tuning the learning rate and the 
minimum split gain, others appear to contradict them. 
For example, while stochastic sampling of instances and 
features is believed to be an effective regularization tech-
nique for gradient boosting [31], in this analysis tuning it 
seems to be not influential in converging to the param-
eter configuration optimum.

To evaluate the robustness of our importance esti-
mates, we chose to optimize LightGBM again on all 
datasets, tuning only the most influential parameters 
according to the fANOVA analysis. To do so, we selected 
only the parameters that appeared at least once among 
the top 10 most important interaction terms, yielding a 
grid of 7 hyperparameters instead of 12 (available in the 
Supporting Information). To test whether this reduced 
selection leads to faster convergence of the optimization 
process, we used 30 iterations instead of 100. As a nega-
tive control, we also evaluated the performance achieved 
by optimizing all hyperparameters for the same number 
of iterations. Finally, we expressed the ROC-AUC and 
PR-AUC values achieved by these benchmarks as a frac-
tion of the performance of the optimization process with 
all parameters and 100 iterations. This evaluation scheme 
allows us to assess how well quickly tuning only the most 
important hyperparameters approximates the original 
large-scale optimization procedure.

As shown in Fig.  5, given the same number of itera-
tions, using only the best parameters for the optimization 
process leads to consistent performance gains compared 
to tuning all hyperparameters. This indicates that the 
scores from fANOVA accurately reflect the importance 
of tuning a given hyperparameter for reaching the opti-
mum. Interestingly, in some cases the optimal hyperpa-
rameter grid is able to outperform the results obtained 
tuning all hyperparameters for 100 iterations, such as 
for the NTP dataset in terms of PR-AUC and ROC-AUC 
(Fig. 5 and Additional file 1: Figure S2).

However, when evaluating the effectiveness of adjust-
ing only the most important parameters on holdout 
datasets, the performance improvements are inconsist-
ent. This indicates that the hyperparameter importance 
scores obtained by analysis of a set of endpoints do not 

generalize on external endpoints (Additional file 1: Figure 
S1). Therefore, deciding which parameters to tune must 
be determined on a case-by-case basis. A similar pattern 
is also observed when evaluating the influence of chang-
ing molecular representation for constructing the QSAR 

Fig. 5 LightGBM PR-AUC comparison between carrying 
out hyperparameter tuning according to the optimal grid obtained 
from fANOVA and tuning all hyperparameters. a Performance 
on the datasets used for the fANOVA analysis. b Performance 
on the holdout datasets and with different molecular representations. 
Each approach was optimized for 30 iterations. The performance 
is reported in relation to the results obtained by tuning all parameters 
for 100 iterations. Error bars represent the standard deviation 
(N = 50 for MoleculeNet datasets, N = 5 for MolData datasets), 
while the asterisks denote whether the difference is significant (*: 
α < 0.05, **: α < 0.01, with Bonferroni correction)
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model, indicating that the parameter importance scores 
are highly feature-specific (Fig.  5 and Additional file  1: 
Figure S2).

In conclusion, optimization analysis tools such as 
fANOVA can be useful to further improve gradi-
ent boosting in cases where QSAR models need to be 
retrained periodically as new data is collected, for exam-
ple for ADME prediction toolkits [3, 57]. However, the 
importance estimates provided by fANOVA do not gen-
eralize to unseen endpoints or different molecular rep-
resentations, and limiting the optimization process to a 
handful of parameters can affect the performance of the 
classifier by up to 20%. Therefore, our recommendation 
is to tune all possible parameters when training gradi-
ent boosting models for QSAR, if the computational 
time to do so is not prohibitive. If optimizing all param-
eters is too costly, adjusting the learning rate, the weight 
of the minority class and the minimum gain to split will 
likely lead to the best results on a limited computational 
budget.

Conclusions
This work investigated the differences between popu-
lar gradient boosting implementations in the context of 
cheminformatics, to guide future QSAR modelling pro-
jects. Specifically, our analysis focused on predictive per-
formance and training time, as well as on feature ranking 
consistency among methods. Furthermore, we investi-
gated which hyperparameters are the most important to 
tune for gradient boosting machines to reach better per-
formance faster. To achieve these goals, we evaluated 11 
different datasets, encompassing approximately 1.4 mil-
lion unique compounds with a diverse selection of data-
set sizes and imbalance ratios.

XGBoost generally outperformed all alternatives in 
terms of predictive performance by approximately 5%, at 
the cost of longer training times for larger datasets (e.g. 
above 100,000 compounds). LightGBM and CatBoost 
achieve similar performance, but the former requires sig-
nificantly less time to be trained compared to the other 
implementations. The improvement is especially signifi-
cant for datasets with more than 100,000 compounds, 
where LightGBM could be trained approximately 100 
times faster than XGBoost and 50 times faster than 
CatBoost. In terms of feature importance, each imple-
mentation tends to rank molecular features differently. 
This not only indicates that each approach might learn 
slightly different structure–activity relationships, but 
also that caution must be exercised when using these 
tools to assess which fragments or properties are relevant 
for the biological response modelled. In this context, 
expert knowledge is key to critically evaluate whether 
these explanations could be due to chance correlation. 

Finally, our hyperparameter importance analysis high-
lights that there is significant variability in how much a 
given parameter affects convergence to the optimum 
between datasets. As such, our indication is to tune as 
many parameters as possible when optimizing gradient 
boosting models. If the computational budget is limited, 
our recommendation is to focus on the learning rate, the 
minimum split gain and the weight of the minority class 
if the dataset is imbalanced.

In conclusion, our study provides a set of practical 
guidelines for the use of gradient boosting for molec-
ular property prediction. Given the rising popularity 
of this algorithm for virtual screening and QSAR, we 
believe our study will provide useful advice in its opti-
mization, its use cases and limitations, thus benefitting 
the cheminformatics community as a whole.
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