
Ochoa et al. Journal of Cheminformatics (2023) 15:79
https://doi.org/10.1186/s13321-023-00748-2

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

pyPept: a python library to generate
atomistic 2D and 3D representations of peptides
Rodrigo Ochoa1, J. B. Brown1 and Thomas Fox1* 

Abstract 

We present pyPept, a set of executables and underlying python-language classes to easily create, manipulate,
and analyze peptide molecules using the FASTA, HELM, or recently-developed BILN notations. The framework enables
the analysis of both pure proteinogenic peptides as well as those with non-natural amino acids, including sup-
port to assemble a customizable monomer library, without requiring programming. From line notations, a peptide
is transformed into a molecular graph for 2D depiction tasks, the calculation of physicochemical properties, and other
systematic analyses or processing pipelines. The package includes a module to rapidly generate approximate pep-
tide conformers by incorporating secondary structure restraints either given by the user or predicted via pyPept,
and a wrapper tool is also provided to automate the generation and output of 2D and 3D representations of a pep-
tide directly from the line notation. HELM and BILN notations that include circular, branched, or stapled peptides are
fully supported, eliminating errors in structure creation that are prone during manual drawing and connecting. The
framework and common workflows followed in pyPept are described together with illustrative examples. pyPept
has been released at: https://​github.​com/​Boehr​inger-​Ingel​heim/​pyPept.

Keywords  Peptide, Python, Conformer, BILN, RDKit, Cheminformatics, Molecule depiction

Graphical Abstract

*Correspondence:
Thomas Fox
thomas.fox@boehringer-ingelheim.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00748-2&domain=pdf
https://github.com/Boehringer-Ingelheim/pyPept

Page 2 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79

Introduction
Peptides as therapeutic or diagnostic agents are a modal-
ity with proven translational success in clinical applica-
tions; more than 80 drugs on the market are peptide
molecules, with others actively in clinical trials [1]. In
an accompanying fashion, suitable in silico tools to rep-
resent, process, and analyze peptides have been steadily
published [2–5].

Among the available open source tools, many are
restricted to natural amino acids, but some also sup-
port enhancement by a selected set of non-natural amino
acids (NNAAs). This is the case for packages avail-
able in the Rosetta Commons project [6, 7], the PEP-
strMOD webserver [8], and the SwissSideChain database
[9]. Some tools, inspired by full proteins, can fail when
dealing with more complex peptidic structures, includ-
ing staples (e.g., a hydrocarbon chain attached to two
amino acids in order to help maintain alpha-helical con-
formation), non-stapled cyclic peptides, or multi-chain
branched peptides [10].

For the representation of peptides, the FASTA for-
mat is widely used and can be employed, e.g., to calcu-
late peptide properties based on experimentally available
physicochemical properties of natural monomers [11].
However, it is restricted to natural amino acids and sim-
ple peptides without extra bonds such as those involved
in formation of cyclic peptides. For example, the natu-
ral hormone oxytocin can be represented in FASTA by
its sequence CYIQNCPLG, but the ring formed by the
disulfide bond between the first and sixth cysteine mono-
mers is not accounted for.

For more complex macromolecular entities, line nota-
tions that go beyond the simple FASTA format have
been developed. A prominent example is the Hierarchi-
cal Editing Language for Macromolecules (HELM) [12,
13]. It relies on a monomer library that defines the indi-
vidual monomers and their possible connection points.
Together with the information on how these monomers
are connected, this allows an unambiguous represen-
tation of even very complex biomolecular entities in a
string. Recently, we described an intuitive line notation
termed BILN (Boehringer Ingelheim Line Notation)
[14], where a simple but, critically, human-readable and
robust format allows the representation and manipula-
tion of complex multi-chain peptides including staples
and cycles.

In principle, small molecule cheminformatics tools are
also applicable to peptides [15]. However, they look at the
peptide as a whole and neglect its construction principle
that it is an ordered sequence of monomers, something
that potentially could be used for more efficient compu-
tations. In addition, even when these tools offer mono-
mer support, this is usually limited to a hard-coded list

of amino acids. RDKit, a widely used open-source pack-
age for cheminformatics tasks [16], contains functions to
process HELM inputs, but only for a set of 48 residues,
consisting of the coding L-amino acids, their D-coun-
terparts, and analogs of natural amino acids, specifically
norleucine, selenomethionine, ornithine, norvaline, l-
and d-alpha aminobutyric acid, pyroglutamic acid, and
the acetyl capping group.

Another largely unsolved issue is the generation of suit-
able 3D conformations for peptides that can be used as
starting points for MD simulations [17], mutation pipe-
line analysis [18], or structure-based modeling and drug
design. Currently, most tools either focus on structure
prediction for whole proteins or small molecules, but
they do not cover the middle occupied by medium- to
large-sized peptides [5].

Finally, pharmaceutical companies generally require
the all-atom representation of a molecule for its registra-
tion in various databases, and historically molecules have
been drawn manually before registration. Even for short
peptides such as the 9-mer oxytocin, manual drawing of
these structures can be error-prone, and the rate of error
grows as peptide molecules evolve to contain longer main
chains, staples, cycles, or fatty-acid chains connected to a
peptide main chain. There is a clear need for a platform
that can take line formats of peptides, including arbitrary
NNAAs, and generate correct atomistic representations
with no manual intervention.

To fill the void of a toolkit for working with peptides
containing arbitrary monomers, unusual connections
between monomers, or branching, we developed the
python-language toolbox pyPept for handling complex
peptides. pyPept is internally based on BILN, but it also
can accept FASTA or HELM representations as input.
Using a monomer library and the information contained
in the input string, atom-level logical connections are
validated, and the molecule can optionally be converted
into a molecule object. This object can then be used to
run typical cheminformatics analyses and predict con-
formers according to structural restraints. Figure 1 shows
a general overview of the package.

Briefly, the package works as follows. The pyPept
Sequence class converts the input line notation into a
Sequence object, which is an ordered list of monomers
together with all of the connectivity information neces-
sary to accurately build the molecule. The Molecule class
takes this Sequence object and creates a molecule object
with a sanitized 2D representation. The Conformer class
leverages distance geometry functionality to generate
a 3D conformer. Here we found it necessary to provide
secondary structure constraints in the 3D generation to
obtain conformations that can be close to a bioactive one.
Therefore, we developed a method to predict peptide

Page 3 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79 	

secondary structure elements, which we packaged into
the SecStructPredictor class. In addition, we developed
a helper class Converter which can be used to translate
from HELM to BILN and back, or to convert a FASTA
string into BILN. A wrapper script (run_pyPept.py) is
also provided that automates the sequence-to-structure/
conformer conversion of a general peptide, thus demon-
strating how to connect the individual components, and
providing a non-programmatic way to use pyPept by sim-
ple command line execution.

Requirements
pyPept has been written in Python 3.9 using language-
standard internal libraries in conjunction with the
external packages RDKit [16] and BioPython [19], both
available through a package installer such as Conda.
Instructions on how to install pyPept using a setup.
py script are provided in the code repository. Examples
of execution and direct module calls are given in the

repository README file and in a directory “examples”
included in the software distribution.

Methods
Secondary structure prediction
From the BIOLIP database (version 04.2022) [20], we
extracted the 8112 bioactive peptides for which second-
ary structure annotations were returned by the DSSP
software [21]. The peptides, composed of natural amino
acids, are unique sequences showing a diverse set of
possible bound conformations, including 30% of helical
peptides and 10% forming parallel or anti-parallel beta
sheets, even for small peptides of five or six amino acids.
They were used to develop a matching algorithm between
a query sequence and the bioactive conformers.

Our method compares the query peptide by matching
its amino acids to those contained in database sequences,
where a substitution matrix generates the matching score
[22]. The selected matrix was fitted to capture the simi-
larity between known protein structures and is avail-
able in the BioPython package [19]. We chose to not
allow alignment gaps, thus, the comparisons are made
between fragments of the same length. Therefore, if the
query sequence is shorter than the database sequence,
we compare it with fragments of the database sequence.
Inversely, when the database sequence is shorter than
the query sequence, the query sequence is fragmented to
obtain peptides of the same length.

In practical applications, we recommend a peptide
query length in the range of 5–20 amino acids, given that
the reference set of bound peptides from BIOLIP has a
maximum length of 30 amino acids. For each compari-
son between sequences A and B, we calculate a similarity
score using the selected substitution matrix and normal-
ize it by:

where scoreAB is the alignment score between the two
peptides, and scoreAA and scoreBB are the alignment
scores for each peptide with itself.

After finding matches above a similarity threshold, a
profile with the hits is created, and each amino acid in the
query sequence is assigned the most frequent secondary
structure element. Using a set of experimental peptide
structures with different secondary structure categories,
we found a threshold for SAB in the range of 0.6–0.7 to be
suitable (see Additional file 1).

We also compared the predictions of our method
against various state-of-the-art tools such as PSIPRED
[23], ModPep [24], and AlphaFold2 [25]. Specifically, we
selected a list of 38 peptides available in the PDB with
lengths between 8 and 17 amino acids and a diverse set

(1)SAB =
scoreAB

√
scoreAA ∗ scoreBB

Fig. 1  Summary of pyPept architecture and interfaces. Each
monomer is mapped to chemical structure through a monomer
dictionary, and monomers are connected by bonds defined
for each monomer’s R-groups to yield a sanitized Sequence
object. Information from the Sequence is used to create a Molecule
object, and two options for 2D depictions are provided. Further,
one can predict Conformer objects using additional secondary
structure restraints. An executable driver program (run_pyPept.
py) encapsulates the sequence-to-structure conversion, offering
a non-programmatic way to obtain conformers directly from line
notations. The solid lines indicate the default run_pyPept.py
execution, with supported options shown by dotted arrows

Page 4 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79

of secondary structure motifs to test the predictions (see
Additional file 1: Table S2). We found that the approach
described here correctly predicts the secondary struc-
ture for most peptides, with 8 of 10 correct predictions
for complex motifs based on co-occurring alpha-helix
and beta-sheet conformations. This result was on par
or better than the methods tested (see Additional file 1:
Table S3). Our method can be easily embedded with the
rest of the pyPept functionalities. Still further, the user
can include secondary structure restraints from any other
method or simply by manually providing the expected
conformation as exemplified in the “Typical workflow”
section.

Monomer library
Allowing arbitrary monomers in a peptide sequence
affords monomer definitions that connect the identifiers
in the line notation with the underlying chemical struc-
ture. In pyPept, we use a dictionary which, for each mon-
omer, contains the following information:

•	 chemical structure
•	 connection points
•	 possible leaving groups (that are removed when the

respective connection points are used in a bond
between monomers)

•	 the abbreviation to be used in the peptide line nota-
tion

•	 the natural analog of a monomer, if applicable
•	 additional information about a specific monomer

such as its role, i.e., amino acid or capping group,
•	 its stereochemical SMILES representation, and

finally,
•	 a corresponding PDB residue code.

As per the extensible definition of BILN [14], these mon-
omers can be any non-natural amino acid or non-amino

acid with annotated leaving groups that will allow the
formation of inter-monomer bonds. No assumptions on
the type or nature of monomers, or their connections,
are made. This allows the formation of additional bonds
to describe branched peptides, as well as cyclic peptides
using peptide, disulfide, or potentially other types of
bonds (see examples in Table 1).

The Pistoia Alliance maintains a dataset of 322 HELM
monomers [26]. This dataset closely follows the mono-
mer entry (dictionary) format described above; thus, the
322 HELM monomers are adaptable for use in pyPept
with only minor conversion effort. For convenience and
to remove an entry barrier to apply pyPept, we provide
a python script in the repository to convert the HELM
monomer dataset into a format suitable for pyPept, as
well as a structure definition file (SDF) with this modi-
fied monomer information. This can also be used to add
proprietary monomers, as long as they are provided as a
SDF file in the Pistoia monomer format. Specifically, the
user can add the SDF format of the new monomer in the
monomers.sdf file, which is located in the “data” folder
of pyPept. The SDF requires some tags to allow the cor-
rect mapping into the dictionary, including the name of
the monomer, the type of monomer (amino acid or cap-
ping group), the abbreviated symbol, if the monomer has
a natural analog, and the corresponding leaving R-groups
to bond other monomers. An example of a monomer
entry using the SDF format is provided in the data folder
with the name example_preProcessed_monomer.sdf.

We note that in the Pistoia monomer set, no PDB
residue names are provided. We chose to use the names
reported in the chemical component dictionary [27]. If a
monomer is not contained in this dictionary, a new ran-
dom, though nonetheless unique, PDB code is created.

Table 1  Examples of peptides using the three input formats BILN [14], HELM [13], and FASTA

BILN’s support for specification of R-groups in bond formation means that linkage types can be easily specified. The BILN notation uses the monomer format m(n,i)
to indicate that monomer m is a part of the cycle or branch assigned ID number n and connects via R-group i to a paired monomer p(n,j). i and j can be any R-groups
involved in single bond linkage formation. Thus, the cyclization by cysteine linkage [C(1,3)] is by disulfide bond in the third example but by peptide bond [C(1,1),
C(1,2)] in the fourth example

BILN HELM FASTA

P-E-P-T-I-D-E PEPTIDE1{P.E.P.T.I.D.E}$$$$V2.0 PEPTIDE

ac-D-T-H-F-E-I-A-am PEPTIDE1{[ac].D.T.H.F.E.I.A.[am]}$$$$V2.0 None

C(1,3)-A-A-A-C(1,3) PEPTIDE1{C.A.A.A.C} $PEPTIDE1,PEPTIDE1,1:R3-5:R3$$$V2.0 CAAAC​

C(1,1)-A-A-A-C(1,2) PEPTIDE1{C.A.A.A.C} $PEPTIDE1,PEPTIDE1,1:R1-5:R2$$$V2.0 CAAAC​
A-G-Q-A-A-K(1,3)-E-F-I-A-
A.G-L-E-E(1,3)

PEPTIDE1{A.G.Q.A.A.K.E.F.I.A.A}| PEPTIDE2{G.L.E.E}
$PEPTIDE1,PEPTIDE2,6:R3-4:R3$$$V2.0

None

N-Iva-F-D-I-meT-N-A-L-W-Y-
Aib-K

PEPTIDE1{N.[Iva].F.D.I.[meT].N.A.L.W.Y.[Aib].K} $$$$V2.0 None

Page 5 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79 	

pyPept design: key classes and examples
Sequence class
This is the main class of the pyPept package. It converts
the input BILN string (or HELM/FASTA transformed by
the Converter class) into a Sequence object. In Table 1 we
show some examples of peptides using the three input
formats, where the FASTA format can be used only to
represent natural amino acids, and it includes no infor-
mation on branching or cyclization.

The Sequence object holds a list of dictionaries, with
each dictionary containing the necessary information for
one monomer in the peptide sequence (see above, Mon-
omer Library). In addition, a Sequence object stores the
information about which monomers are connected and
which atoms form these bonds. A Sequence object goes
beyond a pair of bonds found in two adjacent amino
acids of a linear FASTA sequence and also manages the
information necessary for cycles, branches, staples, and
other peptide-specific bond structure.

In all monomer structures, the R-groups at connec-
tion points that are not involved in bonds are replaced
by their correct leaving group (e.g., the R2-group at the
C-terminal end of the peptide is replaced by an OH form-
ing the C-terminal carboxylic acid). During this proce-
dure, checks guarantee that the input BILN string is not
malformed, that the correct number of bond identifiers
are present, and that it only contains monomers included
in the monomer library.

As a final processing step, we change the names of the
atoms that are part of an amino acid residue and those
of the capping groups to follow the IUPAC convention
which appends greek letters to the element symbol (e.g.,
C α as CA, C β as CB, hydrogens HB2 and HB3 attached
to C β ). To achieve these changes, the greekify method
from the rdkit-to-params package [28] was adapted for
our needs.

A class method reads the monomer information and
stores it in a Pandas DataFrame [29] object to allow easy
access for the various Sequence methods.

Molecule class
The Molecule class contains methods to convert the
Sequence object into an RDKit ROMol molecule object.
To accomplish this, we sequentially take each monomer
in the Sequence object, merge its RDKit representation
with the growing peptide and then add, if applicable,
the appropriate bond(s) between the new monomer
and the peptide.

To obtain an extended conformation of the pep-
tide without overlapping atoms, the rdDepictor mod-
ule from RDKit is used [30]. Alternatively, we have

developed a procedure which changes the phi/psi
angles in the protein backbone to obtain an extended
2D conformation and adjusts the torsion between C α
and C β to obtain an aesthetically pleasing 2D depiction
of the peptide without overlapping atoms (see Fig. 1 for
an example).

At this point, the 2D peptide object can be exported
by a Molecule object method to different molecular for-
mats, such as SMILES or SDF.

SecStructPredictor class
Initial tests showed that the inclusion of secondary
structure information is necessary to have a chance of
obtaining a 3D structure that is close to the experimen-
tal conformation and is suitable for 3D modeling tasks.
As this experimental information is often unavailable,
and the existing secondary structure prediction tools
did not return results sufficiently accurate enough
for our purposes when applied to short and medium-
length peptides, we decided to develop a similarity-
based tool to assign secondary structure motifs to the
peptides based on a dataset of bioactive conformers
available in the PDB (see Methods section).

The SecStructPredictor class collects the function-
ality to obtain, for a given peptide, a prediction of its
secondary structure. Since experimental peptide struc-
tures are mostly of natural amino acids, in this proto-
col, non-natural amino acids are first mutated into their
natural analogs, then this mutated peptide is compared
with all sequences in the database. To assign the natural
analog, pyPept checks first if the information about a
natural analog was included in the dictionary. If not, a
fingerprint-based similarity run is performed between
the monomer of interest and the 20 standard natural
residues. A potential natural analog is assigned based
on the highest Tanimoto score above a threshold of 0.5.
Otherwise, the non-natural amino acid is replaced by
an alanine.

After this mapping and search for matching contexts,
the secondary structure element for each residue in
the original peptide is returned. The secondary struc-
ture categories are: B (beta bridge), H (alpha helix), E
(beta strand), S (bend), T (turn), and G (3/10 helix). Of
course, any other secondary structure prediction tool
can be used to generate these annotations and use them
to drive pyPept’s conformer generator.

Conformer class
The Conformer class is used to generate a 3D conformer
of the peptide. We employ the ETKDGv3 (Experimen-
tal-Torsion Knowledge Distance Geometry) method

Page 6 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79

from RDKit followed by minimization of the structure
[31, 32].

Using distance geometry without any constraints
usually leads to random coil 3D structures. To end up
with peptide conformations that are helical, for exam-
ple, one needs secondary structure information as con-
straints for the algorithm. As this information often is
not available experimentally, we suggest to use a tool
to predict the peptide secondary structure. This can
be the SecStructPredictor class presented above, or any
other method.

Based on the input secondary structure elements,
fixed distances are assigned in the RDKit-defined dis-
tance bounds matrix to force the formation of α-helix
or β-sheet conformations, which is not a feature availa-
ble in small molecule-oriented packages such as RDKit.
The constraints are complemented by the ETKDGv3
knowledge-based potential to predict the peptide con-
formers. In the case of non-natural amino acids, the
natural analogs (if available in the monomer dictionary)
are used to assign the secondary structure element. If
no natural analog is available, alanines are used instead.
At the end of this processing pipeline, a PDB file can be
generated with unique 3-letter residue codes and atom
names conforming to the IUPAC rules.

In our experience, this procedure is suitable for
sequences shorter than 20 amino acids; for longer
sequences, many well-established protein modeling
tools are available as well [33].

We note that AlphaFold [25, 34] can also predict the
conformations of even short peptides, which are often
surprisingly close to the experimental bound or free
structure. However, this is again a tool that can only
deal with natural amino acids. Thus, pre- and post-
processing steps are necessary: first, replace the NNAA
with a close natural analog; second, conduct the Alpha-
Fold prediction; third, mutate the analog monomer
back to the NNAA using the conformer obtained.

Converter class
The native input format of the Sequence class is BILN.
To allow one to start from a HELM or FASTA repre-
sentation, we also provide a format conversion class
[14]. The Converter class allows a two-way conversion
between HELM and BILN, and from FASTA to BILN.

Typical workflows
API‑based workflow
We envision a typical use case in which one wishes to
obtain a 2D representation stored in SDF format, start-
ing from a BILN sequence. With the aforementioned
pyPept classes, this could look as follows:

molblock = mol.getMolecule(format="SDF")

with open("peptide_2D.sdf", "w") as f:

f.write(molblock)

from pyPept.sequence import Sequence

from pyPept.sequence import correct_pdb_atoms

from pyPept.molecule import Molecule

biln = "P-E-P-T-I-D-E"

sequence = Sequence(biln)

sequence = correct_pdb_atoms(sequence)

mol = Molecule(sequence)

From there, a few lines of additional code would
then generate a PDB file with a 3D representation of
the input peptide, based on the prediction or specified
input of its secondary structure:

from pyPept.conformer import Conformer

from pyPept.conformer import SecStructPredictor

fasta = Conformer.get_peptide(biln)

secstruct = SecStructPredictor.predict_active_ss(fasta)

romol = Conformer.generate_conformer(molblock, secstruct, generate_pdb=True)

Page 7 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79 	

A graphical summary of this workflow is shown in
Fig. 2.

The workflow above is a routine task. To automate
this workflow and remove the need for one to imple-
ment it themselves, we provide a command line wrap-
per script which takes the peptide representation and
additional options as command-line arguments:

usage: run_pyPept.py [-h] (--biln string | --helm string | --fasta string)

[--depiction text] [--prefix text] [--secstruct text]

[--noconf] [--imagesize dim dim] [--logfile filename] [-v]

Generate atomistic 2D and 3D representations of peptides from

given monomer sequences.

Main arguments:

-h, --help show this help message and exit

--biln string BILN string with the peptide to analyze.

--helm string HELM string with the peptide to analyze.

--fasta string FASTA string with the peptide to analyze.

Only natural amino acids are allowed.

Additional options:

--depiction text Method to generate the 2D image.

Two options are supported: "local" (default) or "rdkit".

--prefix text Name used in the output files. The default is "peptide".

--secstruct text Use the given secondary structure.

Otherwise, the secondary structure is predicted and used.

--sdf2D Generate a 2D SDF file of the peptide.

--noconf Do not generate a conformer for the peptide.

--imagesize dim dim Image size for 2D depiction, default (1200, 1200).

All‑in‑one execution
The sequence-to-conformer protocol can be run all
at once by executing the provided wrapper script. An
example execution using a randomly-generated peptide
sequence is as follows:

python run_pyPept.py --biln "ac-D-T-H-F-E-I-A-am" --depiction rdkit

where the capped peptide in BILN format is used as
input (with quotation to avoid any mis-processing by
the host operating system), and the RDKit built-in func-
tion is used to generate the 2D depiction. As examples,
we ran the method with a set of peptides having differ-
ent features, including the presence of non-natural amino
acids, capping groups, and the presence of multiple

chains (Fig. 3). In the second case (Fig. 3b), the peptide
main chain is predicted as partly α-helical based on our
conformer prediction method. In the third case (Fig. 3c),
a branched peptide with a bond connection between a
lysine and a glutamic acid is shown.

Page 8 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79

Conclusions
With clinical precedent for their therapeutic ben-
efit, peptides have been and will continue to be actively
developed, with increasingly complex topologies, neces-
sitating a complementary infrastructure for peptide
information communication (e.g., BILN in presenta-
tions or patent applications), automated conversion of
the human-communicable format into formats that can
be directly submitted to compound registration systems,
and for computational chemistry purposes. The pyPept
package provides a publicly accessible collaborative effort
to achieve these goals, with a low barrier to entry which
enables less tech-savvy experimental and design research
organizations to maximally benefit. pyPept facilitates the
generation of 2D and 3D conformations of a peptide even
in the presence of non-natural amino acids, non-amino-
acid monomers, branches, and cyclic structures, which
are certain to increase as peptide synthesis technologies
have continued to improve.

For peptide design teams, they can easily convert
a series of peptides stored in a spreadsheet with one
monomer per column into matching BILNs. Then, it is
straightforward to directly apply the pyPept 2D depiction
pipeline and generate 2D representations for all peptides.

Since 2D representation is still at the core of the com-
pound registration process for many companies, use of
pyPept for systematic representation generation avoids
the error-prone manual drawing of peptide structures.

The 3D pipeline produces a peptide structure that can
be used as a starting point for MD simulations, struc-
ture-based modeling efforts, or other methods to obtain
low-energy conformations of the peptide [35]. It remains
to be clarified, admittedly, how well our procedure pre-
dicts the bioactive conformations of peptides. One of the
issues is that all secondary structure predictors (as other
peptide/protein conformer predictors, including Alpha-
Fold) work based on natural amino acids. The introduc-
tion of NNAAs in a post-processing step may completely
alter the local conformation and, thus, the overall struc-
ture of the peptide. We fully acknowledge the need for a
more systematic analysis.

Despite such an aspect, we believe that pyPept is a
framework that will facilitate the generation of 2D and
3D structures of complex peptides, reducing human
error and accelerating not only drug discovery but all
research fields involving peptides.

Fig. 2  Detailed description of peptide 2D/3D generation from sequence. a Main components of the monomer dictionary used to define each BILN
component and to allow the generation of peptide bonds between them. In addition, the monomer atoms are named according to the IUPAC
convention. b Example of a peptide with a non-natural amino acid and the 2D depiction of the RDKit molecular object with modified peptide bond
dihedrals to minimize overlapping atoms. c Scheme showing the prediction of the secondary structure of the example peptide in (b), the addition
of restrained distances into the RDKit bound matrix, and the subsequent prediction of the most probable conformer using the ETKDGv3 method

Page 9 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79 	

Data availability

•	 Project name: pyPept (version 1.0)
•	 Project home page: https://​github.​com/​Boehr​inger-​

Ingel​heim/​pyPept
•	 Operating system(s) tested: Linux
•	 Programming language: Python 3.9 or higher
•	 Other requirements: RDKit 2020 or later; Biopy-

thon 1.7.9 recommended.
•	 License: MIT

The code is available as a Github repository. Any ques-
tions related to the implementation can be directed to
the authors’ email accounts.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00748-2.

Additional file 1. Validation and assessment of the secondary structure
predictor.

Fig. 3  Example of peptides formatted with pyPept, sequences are shown in BILN format. a Capped peptide with acetyl group at the N-terminal
part and an amino group at the C-terminal part. b A peptide with three non-natural amino acids highlighted in green (Iva: Isovaline), red
(meT: N-Methyl-Threonine) and blue (Aib: Alpha-aminoisobutyric acid). In this case, the main peptide was predicted as an α-helix. c A peptide
with a branch generated between a lysine and a glutamic acid through the third R-group located in their side chains. The bridge is identifiable
in both the 2D and 3D representations

https://github.com/Boehringer-Ingelheim/pyPept
https://github.com/Boehringer-Ingelheim/pyPept
https://doi.org/10.1186/s13321-023-00748-2
https://doi.org/10.1186/s13321-023-00748-2

Page 10 of 10Ochoa et al. Journal of Cheminformatics (2023) 15:79

Acknowledgements
We thank Alexander Weber, Nils Weskamp, Stefan Peters, and Peter Haebel
for helpful discussions, valuable suggestions, and assistance during review of
software code.

Author contributions
RO, JB, and TF created, reviewed and implemented the code, wrote the docu-
mentation and the manuscript.

Funding
All authors are full time employees at Boehringer Ingelheim Pharma GmbH &
Co KG.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG,
88397 Biberach/Riss, Germany.

Received: 24 April 2023 Accepted: 23 August 2023

References
	1.	 Muttenthaler M, King GF, Adams DJ, Alewood PF (2021) Trends in peptide

drug discovery. Nat Rev Drug Discov 20(4):309–325
	2.	 Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F,

Schymkowitz J (2011) Computational design of peptide ligands. Trends
Biotechnol 29(5):231–239

	3.	 Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo
XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical
business: from exploration to exploitation. EuPA Open Proteom 4:58–69

	4.	 Milton J, Zhang T, Bellamy C, Swayze E, Hart C, Weisser M, Hecht S,
Rotstein S (2017) HELM software for biopolymers. J Chem Inf Model
57(6):1233–1239

	5.	 Ochoa R, Cossio P (2021) PepFun: open source protocols for peptide-
related computational analysis. Molecules 26(6):1664

	6.	 Mulligan VK, Workman S, Sun T, Rettie S, Li X, Worrall LJ, Craven TW, King
DT, Hosseinzadeh P, Watkins AM et al (2021) Computationally designed
peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1. Proc
Natl Acad Sci 118(12):e2012800118

	7.	 Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O
(2017) High-resolution global peptide-protein docking using fragments-
based piper-flexpepdock. PLoS Comput Biol 13(12):1005905

	8.	 Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava
GP (2015) Pepstrmod: structure prediction of peptides containing natural,
non-natural and modified residues. Biol Direct 10(1):1–19

	9.	 Gfeller D, Michielin O, Zoete V (2012) Swisssidechain: a molecular
and structural database of non-natural sidechains. Nucleic Acids Res
41(D1):327–332

	10.	 Lenci E, Trabocchi A (2020) Peptidomimetic toolbox for drug discovery.
Chem Soc Rev 49(11):3262–3277

	11.	 Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kane-
hisa M (2007) AAindex: amino acid index database, progress report 2008.
Nucleic Acids Res 36(suppl-1):202–205

	12.	 Zhang T, Li H, Xi H, Stanton RV, Rotstein SH (2012) HELM: a hierarchical
notation language for complex biomolecule structure representation. J
Chem Inf Model 52(10):2796–2806

	13.	 Pistoia HELM GitHub page. https://​github.​com/​Pisto​iaHELM. Accessed
2023-01-19

	14.	 Fox T, Bieler M, Haebel P, Ochoa R, Peters S, Weber A (2022) BILN: a
human-readable line notation for complex peptides. J Chem Inf Model
62(17):3942–3947

	15.	 Tu M, Cheng S, Lu W, Du M (2018) Advancement and prospects of
bioinformatics analysis for studying bioactive peptides from food-derived

protein: sequence, structure, and functions. TrAC Trends Anal Chem
105:7–17

	16.	 Landrum G RDKit. https://​rdkit.​org. Accessed 2023-01-19
	17.	 Kamenik AS, Lessel U, Fuchs JE, Fox T, Liedl KR (2018) Peptidic macrocy-

cles—conformational sampling and thermodynamic characterization. J
Chem Inf Model 58(5):982–992

	18.	 Ochoa R, Soler MA, Laio A, Cossio P (2021) PARCE: protocol for amino acid
refinement through computational evolution. Comput Phys Commun
260:107716

	19.	 Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B et al (2009) Biopython: freely available
python tools for computational molecular biology and bioinformatics.
Bioinformatics 25(11):1422–1423

	20.	 Yang J, Roy A, Zhang Y (2012) BioLiP: a semi-manually curated database
for biologically relevant ligand–protein interactions. Nucleic Acids Res
41(D1):1096–1103

	21.	 Frishman D, Argos P (1995) Knowledge-based protein secondary struc-
ture assignment. Proteins Struct Funct Bioinform 23(4):566–579

	22.	 Johnson MS, Overington JP, Blundell TL (1993) Alignment and searching
for common protein folds using a data bank of structural templates. J Mol
Biol 231(3):735–752

	23.	 Buchan DW, Jones DT (2019) The psipred protein analysis workbench: 20
years on. Nucleic Acids Res 47(W1):402–407

	24.	 Yan Y, Zhang D, Huang S-Y (2017) Efficient conformational ensemble
generation of protein-bound peptides. J Cheminform 9(1):59

	25.	 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunya-
suvunakool K, Bates R, Žídek A, Potapenko A et al (2021) Highly accurate
protein structure prediction with AlphaFold. Nature 596(7873):583–589

	26.	 Pistoia HELM monomer dataset. https://​github.​com/​Pisto​iaHELM/​HELMM​
onome​rSets. Accessed 2023-01-19

	27.	 PDB component dictionary. https://​www.​ebi.​ac.​uk/​pdbe-​srv/​pdbec​hem/.
Accessed 2023-01-19

	28.	 RDKit to params. https://​github.​com/​matte​oferla/​rdkit_​to_​params.
Accessed 2023-01-19

	29.	 McKinney W (2012) Python for data analysis: data wrangling with Pandas,
NumPy, and IPython. O’Reilly Media Inc., Sebastopol

	30.	 RDKit - rdDepictor documentation. http://​rdkit.​org/​docs/​source/​rdkit.​
Chem.​rdDep​ictor.​html. Accessed 2023-01-19

	31.	 Riniker S, Landrum GA (2015) Better informed distance geometry: using
what we know to improve conformation generation. J Chem Inf Model
55(12):2562–2574

	32.	 Wang S, Witek J, Landrum GA, Riniker S (2020) Improving conformer
generation for small rings and macrocycles based on distance geometry
and experimental torsional-angle preferences. J Chem Inf Model
60(4):2044–2058

	33.	 Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of
comparative protein modeling by MODELLER. Proteins Struct Funct Bioinf
23(3):318–326

	34.	 AlphaFold2 GitHub page. https://​github.​com/​deepm​ind/​alpha​fold.
Accessed 2023-01-19

	35.	 Villard J, Kilic M, Rothlisberger U (2023) Surrogate based genetic
algorithm method for efficient identification of low-energy peptide
structures. J Chem Theory Comput 19(3):1080–1097. https://​doi.​org/​10.​
1021/​acs.​jctc.​2c010​78

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/PistoiaHELM
https://rdkit.org
https://github.com/PistoiaHELM/HELMMonomerSets
https://github.com/PistoiaHELM/HELMMonomerSets
https://www.ebi.ac.uk/pdbe-srv/pdbechem/
https://github.com/matteoferla/rdkit_to_params
http://rdkit.org/docs/source/rdkit.Chem.rdDepictor.html
http://rdkit.org/docs/source/rdkit.Chem.rdDepictor.html
https://github.com/deepmind/alphafold
https://doi.org/10.1021/acs.jctc.2c01078
https://doi.org/10.1021/acs.jctc.2c01078

	pyPept: a python library to generate atomistic 2D and 3D representations of peptides
	Abstract
	Introduction
	Requirements
	Methods
	Secondary structure prediction
	Monomer library

	pyPept design: key classes and examples
	Sequence class
	Molecule class
	SecStructPredictor class
	Conformer class
	Converter class

	Typical workflows
	API-based workflow
	All-in-one execution

	Conclusions
	Data availability

	Anchor 19
	Acknowledgements
	References

