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Abstract 

We present pyPept, a set of executables and underlying python-language classes to easily create, manipulate, 
and analyze peptide molecules using the FASTA, HELM, or recently-developed BILN notations. The framework enables 
the analysis of both pure proteinogenic peptides as well as those with non-natural amino acids, including sup-
port to assemble a customizable monomer library, without requiring programming. From line notations, a peptide 
is transformed into a molecular graph for 2D depiction tasks, the calculation of physicochemical properties, and other 
systematic analyses or processing pipelines. The package includes a module to rapidly generate approximate pep-
tide conformers by incorporating secondary structure restraints either given by the user or predicted via pyPept, 
and a wrapper tool is also provided to automate the generation and output of 2D and 3D representations of a pep-
tide directly from the line notation. HELM and BILN notations that include circular, branched, or stapled peptides are 
fully supported, eliminating errors in structure creation that are prone during manual drawing and connecting. The 
framework and common workflows followed in pyPept are described together with illustrative examples. pyPept 
has been released at: https://​github.​com/​Boehr​inger-​Ingel​heim/​pyPept.
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Introduction
Peptides as therapeutic or diagnostic agents are a modal-
ity with proven translational success in clinical applica-
tions; more than 80 drugs on the market are peptide 
molecules, with others actively in clinical trials [1]. In 
an accompanying fashion, suitable in silico tools to rep-
resent, process, and analyze peptides have been steadily 
published [2–5].

Among the available open source tools, many are 
restricted to natural amino acids, but some also sup-
port enhancement by a selected set of non-natural amino 
acids (NNAAs). This is the case for packages avail-
able in the Rosetta Commons project [6, 7], the PEP-
strMOD webserver [8], and the SwissSideChain database 
[9]. Some tools, inspired by full proteins, can fail when 
dealing with more complex peptidic structures, includ-
ing staples (e.g., a hydrocarbon chain attached to two 
amino acids in order to help maintain alpha-helical con-
formation), non-stapled cyclic peptides, or multi-chain 
branched peptides [10].

For the representation of peptides, the FASTA for-
mat is widely used and can be employed, e.g., to calcu-
late peptide properties based on experimentally available 
physicochemical properties of natural monomers [11]. 
However, it is restricted to natural amino acids and sim-
ple peptides without extra bonds such as those involved 
in formation of cyclic peptides. For example, the natu-
ral hormone oxytocin can be represented in FASTA by 
its sequence CYIQNCPLG, but the ring formed by the 
disulfide bond between the first and sixth cysteine mono-
mers is not accounted for.

For more complex macromolecular entities, line nota-
tions that go beyond the simple FASTA format have 
been developed. A prominent example is the Hierarchi-
cal Editing Language for Macromolecules (HELM) [12, 
13]. It relies on a monomer library that defines the indi-
vidual monomers and their possible connection points. 
Together with the information on how these monomers 
are connected, this allows an unambiguous represen-
tation of even very complex biomolecular entities in a 
string. Recently, we described an intuitive line notation 
termed BILN (Boehringer Ingelheim Line Notation) 
[14], where a simple but, critically, human-readable and 
robust format allows the representation and manipula-
tion of complex multi-chain peptides including staples 
and cycles.

In principle, small molecule cheminformatics tools are 
also applicable to peptides [15]. However, they look at the 
peptide as a whole and neglect its construction principle 
that it is an ordered sequence of monomers, something 
that potentially could be used for more efficient compu-
tations. In addition, even when these tools offer mono-
mer support, this is usually limited to a hard-coded list 

of amino acids. RDKit, a widely used open-source pack-
age for cheminformatics tasks [16], contains functions to 
process HELM inputs, but only for a set of 48 residues, 
consisting of the coding L-amino acids, their D-coun-
terparts, and analogs of natural amino acids, specifically 
norleucine, selenomethionine, ornithine, norvaline, l- 
and d-alpha aminobutyric acid, pyroglutamic acid, and 
the acetyl capping group.

Another largely unsolved issue is the generation of suit-
able  3D conformations for peptides that can be used as 
starting points for MD simulations [17], mutation pipe-
line analysis [18], or structure-based modeling and drug 
design. Currently, most tools either focus on structure 
prediction for whole proteins or small molecules, but 
they do not cover the middle occupied by medium- to 
large-sized peptides [5].

Finally, pharmaceutical companies generally require 
the all-atom representation of a molecule for its registra-
tion in various databases, and historically molecules have 
been drawn manually before registration. Even for short 
peptides such as the 9-mer oxytocin, manual drawing of 
these structures can be error-prone, and the rate of error 
grows as peptide molecules evolve to contain longer main 
chains, staples, cycles, or fatty-acid chains connected to a 
peptide main chain. There is a clear need for a platform 
that can take line formats of peptides, including arbitrary 
NNAAs, and generate correct atomistic representations 
with no manual intervention.

To fill the void of a toolkit for working with peptides 
containing arbitrary monomers, unusual connections 
between monomers, or branching, we developed the 
python-language toolbox pyPept for handling complex 
peptides. pyPept is internally based on BILN, but it also 
can accept FASTA or HELM representations as input. 
Using a monomer library and the information contained 
in the input string, atom-level logical connections are 
validated, and the molecule can optionally be converted 
into a molecule object. This object can then be used to 
run typical cheminformatics analyses and predict con-
formers according to structural restraints. Figure 1 shows 
a general overview of the package.

Briefly, the package works as follows. The pyPept 
Sequence class converts the input line notation into a 
Sequence object, which is an ordered list of monomers 
together with all of the connectivity information neces-
sary to accurately build the molecule. The Molecule class 
takes this Sequence object and creates a molecule object 
with a sanitized 2D representation. The Conformer class 
leverages distance geometry functionality to generate 
a 3D conformer. Here we found it necessary to provide 
secondary structure constraints in the 3D generation to 
obtain conformations that can be close to a bioactive one. 
Therefore, we developed a method to predict peptide 
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secondary structure elements, which we packaged into 
the SecStructPredictor class. In addition, we developed 
a helper class Converter which can be used to translate 
from HELM to BILN and back, or to convert a FASTA 
string into BILN. A wrapper script (run_pyPept.py) is 
also provided that automates the sequence-to-structure/
conformer conversion of a general peptide, thus demon-
strating how to connect the individual components, and 
providing a non-programmatic way to use pyPept by sim-
ple command line execution.

Requirements
pyPept has been written in Python 3.9 using language-
standard internal libraries in conjunction with the 
external packages RDKit [16] and BioPython [19], both 
available through a package installer such as Conda. 
Instructions on how to install pyPept using a setup.
py script are provided in the code repository. Examples 
of execution and direct module calls are given in the 

repository README file and in a directory “examples” 
included in the software distribution.

Methods
Secondary structure prediction
From the BIOLIP database (version 04.2022) [20], we 
extracted the 8112 bioactive peptides for which second-
ary structure annotations were returned by the DSSP 
software [21]. The peptides, composed of natural amino 
acids, are unique sequences showing a diverse set of 
possible bound conformations, including 30% of helical 
peptides and 10% forming parallel or anti-parallel beta 
sheets, even for small peptides of five or six amino acids. 
They were used to develop a matching algorithm between 
a query sequence and the bioactive conformers.

Our method compares the query peptide by matching 
its amino acids to those contained in database sequences, 
where a substitution matrix generates the matching score 
[22]. The selected matrix was fitted to capture the simi-
larity between known protein structures and is avail-
able in the BioPython package [19]. We chose to not 
allow alignment gaps, thus, the comparisons are made 
between fragments of the same length. Therefore, if the 
query sequence is shorter than the database sequence, 
we compare it with fragments of the database sequence. 
Inversely, when the database sequence is shorter than 
the query sequence, the query sequence is fragmented to 
obtain peptides of the same length.

In practical applications, we recommend a peptide 
query length in the range of 5–20 amino acids, given that 
the reference set of bound peptides from BIOLIP has a 
maximum length of 30 amino acids. For each compari-
son between sequences A and B, we calculate a similarity 
score using the selected substitution matrix and normal-
ize it by:

where scoreAB is the alignment score between the two 
peptides, and scoreAA and scoreBB are the alignment 
scores for each peptide with itself.

After finding matches above a similarity threshold, a 
profile with the hits is created, and each amino acid in the 
query sequence is assigned the most frequent secondary 
structure element. Using a set of experimental peptide 
structures with different secondary structure categories, 
we found a threshold for SAB in the range of 0.6–0.7 to be 
suitable (see Additional file 1).

We also compared the predictions of our method 
against various state-of-the-art tools such as PSIPRED 
[23], ModPep [24], and AlphaFold2 [25]. Specifically, we 
selected a list of 38 peptides available in the PDB with 
lengths between 8 and 17 amino acids and a diverse set 

(1)SAB =
scoreAB

√
scoreAA ∗ scoreBB

Fig. 1  Summary of pyPept architecture and interfaces. Each 
monomer is mapped to chemical structure through a monomer 
dictionary, and monomers are connected by bonds defined 
for each monomer’s R-groups to yield a sanitized Sequence 
object. Information from the Sequence is used to create a Molecule 
object, and two options for 2D depictions are provided. Further, 
one can predict Conformer objects using additional secondary 
structure restraints. An executable driver program (run_pyPept.
py) encapsulates the sequence-to-structure conversion, offering 
a non-programmatic way to obtain conformers directly from line 
notations. The solid lines indicate the default run_pyPept.py 
execution, with supported options shown by dotted arrows
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of secondary structure motifs to test the predictions (see 
Additional file 1: Table S2). We found that the approach 
described here correctly predicts the secondary struc-
ture for most peptides, with 8 of 10 correct predictions 
for complex motifs based on co-occurring alpha-helix 
and beta-sheet conformations. This result was on par 
or better than the methods tested (see Additional file 1: 
Table S3). Our method can be easily embedded with the 
rest of the pyPept functionalities. Still further, the user 
can include secondary structure restraints from any other 
method or simply by manually providing the expected 
conformation as exemplified in the “Typical workflow” 
section.

Monomer library
Allowing arbitrary monomers in a peptide sequence 
affords monomer definitions that connect the identifiers 
in the line notation with the underlying chemical struc-
ture. In pyPept, we use a dictionary which, for each mon-
omer, contains the following information:

•	 chemical structure
•	 connection points
•	 possible leaving groups (that are removed when the 

respective connection points are used in a bond 
between monomers)

•	 the abbreviation to be used in the peptide line nota-
tion

•	 the natural analog of a monomer, if applicable
•	 additional information about a specific monomer 

such as its role, i.e., amino acid or capping group,
•	 its stereochemical SMILES representation, and 

finally,
•	 a corresponding PDB residue code.

As per the extensible definition of BILN [14], these mon-
omers can be any non-natural amino acid or non-amino 

acid with annotated leaving groups that will allow the 
formation of inter-monomer bonds. No assumptions on 
the type or nature of monomers, or their connections, 
are made. This allows the formation of additional bonds 
to describe branched peptides, as well as cyclic peptides 
using peptide, disulfide, or potentially other types of 
bonds (see examples in Table 1).

The Pistoia Alliance maintains a dataset of 322 HELM 
monomers [26]. This dataset closely follows the mono-
mer entry (dictionary) format described above; thus, the 
322 HELM monomers are adaptable for use in pyPept 
with only minor conversion effort. For convenience and 
to remove an entry barrier to apply pyPept, we provide 
a python script in the repository to convert the HELM 
monomer dataset into a format suitable for pyPept, as 
well as a structure definition file (SDF) with this modi-
fied monomer information. This can also be used to add 
proprietary monomers, as long as they are provided as a 
SDF file in the Pistoia monomer format. Specifically, the 
user can add the SDF format of the new monomer in the 
monomers.sdf file, which is located in the “data” folder 
of pyPept. The SDF requires some tags to allow the cor-
rect mapping into the dictionary, including the name of 
the monomer, the type of monomer (amino acid or cap-
ping group), the abbreviated symbol, if the monomer has 
a natural analog, and the corresponding leaving R-groups 
to bond other monomers. An example of a monomer 
entry using the SDF format is provided in the data folder 
with the name example_preProcessed_monomer.sdf.

We note that in the Pistoia monomer set, no PDB 
residue names are provided. We chose to use the names 
reported in the chemical component dictionary [27]. If a 
monomer is not contained in this dictionary, a new ran-
dom, though nonetheless unique, PDB code is created.

Table 1  Examples of peptides using the three input formats BILN [14], HELM [13], and FASTA

BILN’s support for specification of R-groups in bond formation means that linkage types can be easily specified. The BILN notation uses the monomer format m(n,i) 
to indicate that monomer m is a part of the cycle or branch assigned ID number n and connects via R-group i to a paired monomer p(n,j). i and j can be any R-groups 
involved in single bond linkage formation. Thus, the cyclization by cysteine linkage [C(1,3)] is by disulfide bond in the third example but by peptide bond [C(1,1), 
C(1,2)] in the fourth example

BILN HELM FASTA

P-E-P-T-I-D-E PEPTIDE1{P.E.P.T.I.D.E}$$$$V2.0 PEPTIDE

ac-D-T-H-F-E-I-A-am PEPTIDE1{[ac].D.T.H.F.E.I.A.[am]}$$$$V2.0 None

C(1,3)-A-A-A-C(1,3) PEPTIDE1{C.A.A.A.C} $PEPTIDE1,PEPTIDE1,1:R3-5:R3$$$V2.0 CAAAC​

C(1,1)-A-A-A-C(1,2) PEPTIDE1{C.A.A.A.C} $PEPTIDE1,PEPTIDE1,1:R1-5:R2$$$V2.0 CAAAC​
A-G-Q-A-A-K(1,3)-E-F-I-A-
A.G-L-E-E(1,3)

PEPTIDE1{A.G.Q.A.A.K.E.F.I.A.A}| PEPTIDE2{G.L.E.E} 
$PEPTIDE1,PEPTIDE2,6:R3-4:R3$$$V2.0

None

N-Iva-F-D-I-meT-N-A-L-W-Y-
Aib-K

PEPTIDE1{N.[Iva].F.D.I.[meT].N.A.L.W.Y.[Aib].K} $$$$V2.0 None
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pyPept design: key classes and examples
Sequence class
This is the main class of the pyPept package. It converts 
the input BILN string (or HELM/FASTA transformed by 
the Converter class) into a Sequence object. In Table 1 we 
show some examples of peptides using the three input 
formats, where the FASTA format can be used only to 
represent natural amino acids, and it includes no infor-
mation on branching or cyclization.

The Sequence object holds a list of dictionaries, with 
each dictionary containing the necessary information for 
one monomer in the peptide sequence (see above, Mon-
omer Library). In addition, a Sequence object stores the 
information about which monomers are connected and 
which atoms form these bonds. A Sequence object goes 
beyond a pair of bonds found in two adjacent amino 
acids of a linear FASTA sequence and also manages the 
information necessary for cycles, branches, staples, and 
other peptide-specific bond structure.

In all monomer structures, the R-groups at connec-
tion points that are not involved in bonds are replaced 
by their correct leaving group (e.g., the R2-group at the 
C-terminal end of the peptide is replaced by an OH form-
ing the C-terminal carboxylic acid). During this proce-
dure, checks guarantee that the input BILN string is not 
malformed, that the correct number of bond identifiers 
are present, and that it only contains monomers included 
in the monomer library.

As a final processing step, we change the names of the 
atoms that are part of an amino acid residue and those 
of the capping groups to follow the IUPAC convention 
which appends greek letters to the element symbol (e.g., 
C α as CA, C β as CB, hydrogens HB2 and HB3 attached 
to C β ). To achieve these changes, the greekify method 
from the rdkit-to-params package [28] was adapted for 
our needs.

A class method reads the monomer information and 
stores it in a Pandas DataFrame [29] object to allow easy 
access for the various Sequence methods.

Molecule class
The Molecule class contains methods to convert the 
Sequence object into an RDKit ROMol molecule object. 
To accomplish this, we sequentially take each monomer 
in the Sequence object, merge its RDKit representation 
with the growing peptide and then add, if applicable, 
the appropriate bond(s) between the new monomer 
and the peptide.

To obtain an extended conformation of the pep-
tide without overlapping atoms, the rdDepictor mod-
ule from RDKit is used [30]. Alternatively, we have 

developed a procedure which changes the phi/psi 
angles in the protein backbone to obtain an extended 
2D conformation and adjusts the torsion between C α 
and C β to obtain an aesthetically pleasing 2D depiction 
of the peptide without overlapping atoms (see Fig. 1 for 
an example).

At this point, the 2D peptide object can be exported 
by a Molecule object method to different molecular for-
mats, such as SMILES or SDF.

SecStructPredictor class
Initial tests showed that the inclusion of secondary 
structure information is necessary to have a chance of 
obtaining a 3D structure that is close to the experimen-
tal conformation and is suitable for 3D modeling tasks. 
As this experimental information is often unavailable, 
and the existing secondary structure prediction tools 
did not return results sufficiently accurate enough 
for our purposes when applied to short and medium-
length peptides, we decided to develop a similarity-
based tool to assign secondary structure motifs to the 
peptides based on a dataset of bioactive conformers 
available in the PDB (see Methods section).

The SecStructPredictor class collects the function-
ality to obtain, for a given peptide, a prediction of its 
secondary structure. Since experimental peptide struc-
tures are mostly of natural amino acids, in this proto-
col, non-natural amino acids are first mutated into their 
natural analogs, then this mutated peptide is compared 
with all sequences in the database. To assign the natural 
analog, pyPept checks first if the information about a 
natural analog was included in the dictionary. If not, a 
fingerprint-based similarity run is performed between 
the monomer of interest and the 20 standard natural 
residues. A potential natural analog is assigned based 
on the highest Tanimoto score above a threshold of 0.5. 
Otherwise, the non-natural amino acid is replaced by 
an alanine.

After this mapping and search for matching contexts, 
the secondary structure element for each residue in 
the original peptide is returned. The secondary struc-
ture categories are: B (beta bridge), H (alpha helix), E 
(beta strand), S (bend), T (turn), and G (3/10 helix). Of 
course, any other secondary structure prediction tool 
can be used to generate these annotations and use them 
to drive pyPept’s conformer generator.

Conformer class
The Conformer class is used to generate a 3D conformer 
of the peptide. We employ the ETKDGv3 (Experimen-
tal-Torsion Knowledge Distance Geometry) method 
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from RDKit followed by minimization of the structure 
[31, 32].

Using distance geometry without any constraints 
usually leads to random coil 3D structures. To end up 
with peptide conformations that are helical, for exam-
ple, one needs secondary structure information as con-
straints for the algorithm. As this information often is 
not available experimentally, we suggest to use a tool 
to predict the peptide secondary structure. This can 
be the SecStructPredictor class presented above, or any 
other method.

Based on the input secondary structure elements, 
fixed distances are assigned in the RDKit-defined dis-
tance bounds matrix to force the formation of α-helix 
or β-sheet conformations, which is not a feature availa-
ble in small molecule-oriented packages such as RDKit. 
The constraints are complemented by the ETKDGv3 
knowledge-based potential to predict the peptide con-
formers. In the case of non-natural amino acids, the 
natural analogs (if available in the monomer dictionary) 
are used to assign the secondary structure element. If 
no natural analog is available, alanines are used instead. 
At the end of this processing pipeline, a PDB file can be 
generated with unique 3-letter residue codes and atom 
names conforming to the IUPAC rules.

In our experience, this procedure is suitable for 
sequences shorter than 20 amino acids; for longer 
sequences, many well-established protein modeling 
tools are available as well [33].

We note that AlphaFold [25, 34] can also predict the 
conformations of even short peptides, which are often 
surprisingly close to the experimental bound or free 
structure. However, this is again a tool that can only 
deal with natural amino acids. Thus, pre- and post-
processing steps are necessary: first, replace the NNAA 
with a close natural analog; second, conduct the Alpha-
Fold prediction; third, mutate the analog monomer 
back to the NNAA using the conformer obtained.

Converter class
The native input format of the Sequence class is BILN. 
To allow one to start from a HELM or FASTA repre-
sentation, we also provide a format conversion class 
[14]. The Converter class allows a two-way conversion 
between HELM and BILN, and from FASTA to BILN.

Typical workflows
API‑based workflow
We envision a typical use case in which one wishes to 
obtain a 2D representation stored in SDF format, start-
ing from a BILN sequence. With the aforementioned 
pyPept classes, this could look as follows:

molblock = mol.getMolecule(format="SDF")

with open("peptide_2D.sdf", "w") as f:

f.write(molblock)

from pyPept.sequence import Sequence

from pyPept.sequence import correct_pdb_atoms

from pyPept.molecule import Molecule

biln = "P-E-P-T-I-D-E"

sequence = Sequence(biln)

sequence = correct_pdb_atoms(sequence)

mol = Molecule(sequence)

From there, a few lines of additional code would 
then generate a PDB file with a 3D representation of 
the input peptide, based on the prediction or specified 
input of its secondary structure:

from pyPept.conformer import Conformer

from pyPept.conformer import SecStructPredictor

fasta = Conformer.get_peptide(biln)

secstruct = SecStructPredictor.predict_active_ss(fasta)

romol = Conformer.generate_conformer(molblock, secstruct, generate_pdb=True)
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A graphical summary of this workflow is shown in 
Fig. 2.

The workflow above is a routine task. To automate 
this workflow and remove the need for one to imple-
ment it themselves, we provide a command line wrap-
per script which takes the peptide representation and 
additional options as command-line arguments:

usage: run_pyPept.py [-h] (--biln string | --helm string | --fasta string)

[--depiction text] [--prefix text] [--secstruct text]

[--noconf] [--imagesize dim dim] [--logfile filename] [-v]

Generate atomistic 2D and 3D representations of peptides from

given monomer sequences.

Main arguments:

-h, --help show this help message and exit

--biln string BILN string with the peptide to analyze.

--helm string HELM string with the peptide to analyze.

--fasta string FASTA string with the peptide to analyze.

Only natural amino acids are allowed.

Additional options:

--depiction text Method to generate the 2D image.

Two options are supported: "local" (default) or "rdkit".

--prefix text Name used in the output files. The default is "peptide".

--secstruct text Use the given secondary structure.

Otherwise, the secondary structure is predicted and used.

--sdf2D Generate a 2D SDF file of the peptide.

--noconf Do not generate a conformer for the peptide.

--imagesize dim dim Image size for 2D depiction, default (1200, 1200).

All‑in‑one execution
The sequence-to-conformer protocol can be run all 
at once by executing the provided wrapper script. An 
example execution using a randomly-generated peptide 
sequence is as follows:

python run_pyPept.py --biln "ac-D-T-H-F-E-I-A-am" --depiction rdkit

where the capped peptide in BILN format is used as 
input (with quotation to avoid any mis-processing by 
the host operating system), and the RDKit built-in func-
tion is used to generate the 2D depiction. As examples, 
we ran the method with a set of peptides having differ-
ent features, including the presence of non-natural amino 
acids, capping groups, and the presence of multiple 

chains (Fig. 3). In the second case (Fig. 3b), the peptide 
main chain is predicted as partly α-helical based on our 
conformer prediction method. In the third case (Fig. 3c), 
a branched peptide with a bond connection between a 
lysine and a glutamic acid is shown.
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Conclusions
With clinical precedent for their therapeutic ben-
efit, peptides have been and will continue to be actively 
developed, with increasingly complex topologies, neces-
sitating a complementary infrastructure for peptide 
information communication (e.g., BILN in presenta-
tions or patent applications), automated conversion of 
the human-communicable format into formats that can 
be directly submitted to compound registration systems, 
and for computational chemistry purposes. The pyPept 
package provides a publicly accessible collaborative effort 
to achieve these goals, with a low barrier to entry which 
enables less tech-savvy experimental and design research 
organizations to maximally benefit. pyPept facilitates the 
generation of 2D and 3D conformations of a peptide even 
in the presence of non-natural amino acids, non-amino-
acid monomers, branches, and cyclic structures, which 
are certain to increase as peptide synthesis technologies 
have continued to improve.

For peptide design teams, they can easily convert 
a series of peptides stored in a spreadsheet with one 
monomer per column into matching BILNs. Then, it is 
straightforward to directly apply the pyPept 2D depiction 
pipeline and generate 2D representations for all peptides. 

Since 2D representation is still at the core of the com-
pound registration process for many companies, use of 
pyPept for systematic representation generation avoids 
the error-prone manual drawing of peptide structures.

The 3D pipeline produces a peptide structure that can 
be used as a starting point for MD simulations, struc-
ture-based modeling efforts, or other methods to obtain 
low-energy conformations of the peptide [35]. It remains 
to be clarified, admittedly, how well our procedure pre-
dicts the bioactive conformations of peptides. One of the 
issues is that all secondary structure predictors (as other 
peptide/protein conformer predictors, including Alpha-
Fold) work based on natural amino acids. The introduc-
tion of NNAAs in a post-processing step may completely 
alter the local conformation and, thus, the overall struc-
ture of the peptide. We fully acknowledge the need for a 
more systematic analysis.

Despite such an aspect, we believe that pyPept is a 
framework that will facilitate the generation of 2D and 
3D structures of complex peptides, reducing human 
error and accelerating not only drug discovery but all 
research fields involving peptides.

Fig. 2  Detailed description of peptide 2D/3D generation from sequence. a Main components of the monomer dictionary used to define each BILN 
component and to allow the generation of peptide bonds between them. In addition, the monomer atoms are named according to the IUPAC 
convention. b Example of a peptide with a non-natural amino acid and the 2D depiction of the RDKit molecular object with modified peptide bond 
dihedrals to minimize overlapping atoms. c Scheme showing the prediction of the secondary structure of the example peptide in (b), the addition 
of restrained distances into the RDKit bound matrix, and the subsequent prediction of the most probable conformer using the ETKDGv3 method
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Data availability

•	 Project name: pyPept (version 1.0)
•	 Project home page: https://​github.​com/​Boehr​inger-​

Ingel​heim/​pyPept
•	 Operating system(s) tested: Linux
•	 Programming language: Python 3.9 or higher
•	 Other requirements: RDKit 2020 or later; Biopy-

thon 1.7.9 recommended.
•	 License: MIT

The code is available as a Github repository. Any ques-
tions related to the implementation can be directed to 
the authors’ email accounts.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00748-2.

Additional file 1. Validation and assessment of the secondary structure 
predictor.

Fig. 3  Example of peptides formatted with pyPept, sequences are shown in BILN format. a Capped peptide with acetyl group at the N-terminal 
part and an amino group at the C-terminal part. b A peptide with three non-natural amino acids highlighted in green (Iva: Isovaline), red 
(meT: N-Methyl-Threonine) and blue (Aib: Alpha-aminoisobutyric acid). In this case, the main peptide was predicted as an α-helix. c A peptide 
with a branch generated between a lysine and a glutamic acid through the third R-group located in their side chains. The bridge is identifiable 
in both the 2D and 3D representations

https://github.com/Boehringer-Ingelheim/pyPept
https://github.com/Boehringer-Ingelheim/pyPept
https://doi.org/10.1186/s13321-023-00748-2
https://doi.org/10.1186/s13321-023-00748-2
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