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Abstract 

Graph neural networks have recently become a standard method for analyzing chemical compounds. In the field 
of molecular property prediction, the emphasis is now on designing new model architectures, and the importance 
of atom featurization is oftentimes belittled. When contrasting two graph neural networks, the use of different repre-
sentations possibly leads to incorrect attribution of the results solely to the network architecture. To better understand 
this issue, we compare multiple atom representations by evaluating them on the prediction of free energy, solubil-
ity, and metabolic stability using graph convolutional networks. We discover that the choice of atom representation 
has a significant impact on model performance and that the optimal subset of features is task-specific. Additional 
experiments involving more sophisticated architectures, including graph transformers, support these findings. Moreo-
ver, we demonstrate that some commonly used atom features, such as the number of neighbors or the number 
of hydrogens, can be easily predicted using only information about bonds and atom type, yet their explicit inclusion 
in the representation has a positive impact on model performance. Finally, we explain the predictions of the best-
performing models to better understand how they utilize the available atomic features.

Keywords Molecular property prediction, Atom featurization, Compound representation, Molecular graph, Graph 
neural networks

Introduction
Graph neural networks are widely used for predicting 
molecular properties. The interest in graph-based mod-
els has increased since they were shown to achieve com-
petitive results and often outperform models based on 
molecular fingerprints [1–4]. As a result, new models for 
this purpose have been proposed [5–10].

Since the beginning, the main focus of the deep learn-
ing community has been on developing better machinery 

for processing graph data. For instance Veličković  et al. 
[11] introduce the attention mechanism for graph neural 
networks, Li et al. [12] introduce a dummy super node—
an artificial node connected to all nodes in the graph that 
is responsible for learning graph-level representation, 
and Ryu  et al. [13] propose gated skip-connections—
connections which omit several layers and are equipped 
with a forgetting mechanism that allows training net-
works with more convolutional layers. Meanwhile, the 
introduction of Transformer [14] with its remarkable tri-
umphs in several domains [15, 16] inspired its adaptation 
to graph data [17, 18].

Authors of new methods often neglect the impact 
of the used atomic representation. Therefore, atoms 
are represented differently for each new graph-based 
model, leading to unfair attribution of the results solely 
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to the processing methods developed. This contrasts 
with many earlier works that used only a handful of well-
established representations, such as ECFP [19] or KRFP 
[20], for benchmarking classical (non-neural) machine 
learning methods [21, 22]. The use of these fingerprints 
has become widespread, facilitating the comparison of 
various methods. It is crucial that while the existence of 
dataset benchmarks such as MoleculeNet [21] is funda-
mental for a fair comparison between different models, 
it does not solve the issues arising from the lack of stand-
ardization of the input representations. Arguably, models 
trained on different input representations have access to 
different information, just like models trained on differ-
ent samples.

In Fig. 1, we present how the information available to a 
graph model changes based on the choice of atomic fea-
tures. A compound structure (left) can be encoded as a 
molecular graph in which atoms are nodes and bonds are 
edges. The representation in the middle uses only infor-
mation about the atom types. As a result, a graph model 
has access to information about which atoms are con-
nected (shown with dashed lines) and what their types 
are (represented with colors). However, this model lacks 
information about bond order or the number of attached 
hydrogens which is available when more atomic features 
are used (right).

There is a need for a systematic comparison of graph 
representations, which seems independent of the choice 
of architecture. In this work, we focus on atomic features 
and examine how they affect model performance. We 
investigate which features are more useful than others 
and how models utilize them when making predictions.

Our contributions can be summarized as follows:

• We provide a comprehensive list of atom and bond 
features widely used in molecular graph representa-
tions for graph neural networks.

• We qualitatively and quantitatively evaluate the 
importance of atomic features by comparing per-
formance of graph convolutional neural networks 
trained with twelve hand-crafted feature combina-
tions and four combinations found in related litera-
ture.

• We demonstrate that the choice of atomic features 
is task-dependent. By explaining model predictions, 
we confirm that the importance of certain features 
correlates with their distribution in the dataset. As a 
result, removing scarce or redundant atomic features 
like formal charges or aromaticity can improve per-
formance significantly.

• Finally, we confirm that the findings described above 
hold for more sophisticated models, including graph 
transformers, but the optimal selection of atomic fea-
tures is model-dependent.

The code for the experiments is available online https:// 
github. com/ gmum/ graph- repre senta tions.

Related work
The two main components of molecular property pre-
diction are the representation of chemical compounds 
and the model used to calculate the property values. The 
classical machine learning methods that were used to 
find the relationship between the chemical structure of 
molecules and their properties used simple 1D molecu-
lar descriptors, e.g. lipophilicity or electron density, to 
predict more complex molecular properties [23]. Shortly 

Fig. 1 The information gain from using atomic features. Compound structure (left) can be encoded as a molecular graph in which atoms are 
nodes and bonds are edges. Atomic features are assigned to each node, and at least atom types (A) are required to identify atoms (middle). Bond 
identification (e.g. bond order) can be implicitly encoded in atomic features by providing information about the number of heavy neighbors (N) 
and implicit hydrogens (H). Other features such as inclusion in rings (R) or aromatic rings (A) can help graph models in finding relevant patterns 
(right)

https://github.com/gmum/graph-representations
https://github.com/gmum/graph-representations
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after, these descriptors were replaced by features derived 
from the structure of molecules.

A prominent example of structural compound descrip-
tors is molecular fingerprints, which are mappings from 
chemical substructures to feature vectors of constant 
size. Vectors constructed in this way can become an input 
to machine learning models, such as random forests, sup-
port vector machines, or neural networks, to find quan-
titative structure–property relationships (QSPR) [24–26]. 
While substructural fingerprints became a standard for 
modeling various molecular properties, some methods 
employed specialized fingerprints adapted to the task at 
hand [27, 28].

ECFP fingerprint [19] is one of the most commonly 
used fingerprints in this setup [26, 29, 30]. It is calculated 
with an algorithm that uses a hash function to encode 
fragments that are present in the molecule. The crucial 
part of this encoding is the atomic representation, which 
makes the individual atoms in fragments distinguishable. 
As their representation, Rogers and Hahn [19] use the 
number of non-hydrogen neighbors, the valence minus 
the number of hydrogens, the atomic number, the atomic 
mass, the atomic charge, the number of attached hydro-
gens, and inclusion in rings.

Klekota-Roth fingerprint (KRFP) [20] is another rep-
resentative example of a frequently used vector repre-
sentation. Notably, it was designed by fragmentation of 
compounds selected based on their biological activity 
and pooling the resulting substructures. This demon-
strates that careful choice of included information can 
lead to representations of general usefulness—KRFP was 
used to predict such properties as solubility [22], activity 
[31] or high-order electric properties [32].

With the development of recurrent neural networks 
for natural language processing, the textual SMILES [33] 
representation of a molecule became a common choice 
for both molecular property prediction [34–38] and mol-
ecule generation [39–42]. Nevertheless, this representa-
tion suffers from several drawbacks. SMILES encoding 
is not unique, which means that one molecule can be 
represented in several ways. The resulting strings may 
vary significantly, and it is impossible to determine if 
two SMILES encode the same molecule without trans-
lating them back to a molecular graph. This issue was 
only partially solved by the introduction of canonical 
SMILES [43]. Another disadvantage of SMILES is the 
limited information it can represent as it cannot be easily 
adapted for a downstream task.

Currently, graph representations of molecules are 
displacing molecular fingerprints, as graph neural net-
works can learn a molecular representation that is tai-
lored to the prediction task. Graph convolutional neural 

networks (GCNs) [44–49] and, more recently, also graph 
transformers [17, 18, 50, 51] demonstrate outstanding 
results across numerous molecular property prediction 
tasks. Chuang et  al. [52] discuss the crucial importance 
of molecular representations for tasks such as property 
prediction or generation of novel compounds. They high-
light opportunities offered by representation learning, 
which is the ability of neural networks to learn inter-
nal representation specialized for the downstream task 
directly from data. The authors focus on the internal rep-
resentation of neural networks, called latent space, and 
not on the input representation as in this work. However, 
the problem of input representation remains relevant, as 
it is the input representation that defines what informa-
tion is available to the model and, in consequence, what 
information can be used to build the latent space.

The atomic representations diverge, beginning with 
the earliest works on GCNs. For example, Kearnes et al. 
[53] use atom types, chirality, formal and partial charge, 
ring sizes, hybridization, hydrogen bonding, and aro-
maticity. Gilmer et  al.  [6] use one-hot encoding of 5 
atom types, hybridization, aromaticity, and whether an 
atom is an acceptor or donor, and add integer informa-
tion about the atomic number and number of hydrogen 
neighbors. Coley et al. [5] encode only 10 most common 
atom types along with the number of atom heavy neigh-
bors, the number of hydrogen neighbors, formal charge, 
aromaticity, and inclusion in a ring. Liu et al. [54] expand 
the one-hot representation to 22 most common atom 
types and add information about vdW and the covalent 
radius of the atom. However, they do not use information 
about atom neighborhood. Yang et al. [7] extend one-hot 
encoding to 100 dimensions and add information about 
atom’s chirality, atomic mass, hybridization, and number 
of bonds the atom is involved in. Moreover, some mod-
els also use bond representations. Commonly used bond 
features include bond order, stereochemistry, and infor-
mation on whether a bond is conjugated or part of an 
aromatic system.

Although molecular graphs encode more information 
than structural fingerprints, many important aspects 
of molecules are still lost. The graph topology does 
not encode 3D positions of atoms or their relative dis-
tances. This information cannot be approximated by the 
length of the shortest path between two atoms, which 
we illustrate using the compound shown in Fig.  2. As 
indicated in Table  1, the shortest path length is equal 
to 4 both between O:3 and O:11 and between O:3 and 
O:12; however, their relative distances in 3D space dif-
fer—they are equal to 2.68 and 4.17, respectively. At the 
same time, the distance between O:2 and O:11 is equal 
to 4.52 which is similar to that between O:3 and O:12, 
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but in this case the shortest path length is equal to 6. 
Information about stereochemistry is another feature 
that is not preserved in graph topology. These defi-
ciencies can be overcome by including 3D or stereo 
information among atomic features, which is another 
argument for the importance of atomic representation. 
However, global information about molecules, such 
as partition coefficient or polar surface area, which is 
available when using molecular descriptors, is still 
missing from graph representations. Attempts to make 
this information available to graph neural networks are 
already known in the literature [7, 49].

A huge diversity of atomic representations makes it 
difficult to compare the performance of different mod-
els. One must take into consideration that the differ-
ences in performance might arise not only from the 
choices concerning the architecture but also from the 
representation being used. To the best of our knowl-
edge, our research is the first comprehensive exami-
nation of atomic representations in graph neural 
networks. This study extends our preliminary work 
[55] that focused on a single graph architecture. We 
also provide an in-depth analysis of the atom feature 
importance across various molecular property predic-
tion tasks.

Atomic and bond features
Molecular graphs are attributed graphs in which atoms 
are vertices, and chemical bonds are edges. The vertices 
are attributed with atomic features that are transformed 
by graph layers to learn a more useful representation for 
a given prediction problem. Among the input atomic 
features are atomic symbols and the number of implicit 
hydrogens attached to the atom—hydrogens are often 
omitted in the molecular graphs, following the con-
densed line-angle formula convention from organic 
chemistry. Oftentimes, edges are attributed with bond 
features, e.g. bond orders. In the following, we describe 
the most common atomic and bond features.

Atomic features
Atomic features encode local information about atoms 
and their surrounding. Atom attribution in graphs helps 
machine learning models to distinguish different chemi-
cal compounds that share the same carbon scaffold 
(graph topology), and furthermore it informs about local 
connectivity and 3D features.

Atom types:  The most common feature included in 
atomic representations is the atom type, which is the 
chemical symbol of the atom. This is a crucial piece of 
information that allows one to differentiate between 
compounds that share the same graph topology. This 
information is included in the atomic featurization of 
almost all current molecular graph methods and is typi-
cally encoded with a one-hot vector. The set of encoded 
chemical elements is usually based on the input dataset, 
e.g. for organic druglike compounds, the set of encoded 
elements contains at least C, N, O, F, P, S, Cl, Br, and I. 
Hydrogens are often not included in the molecular graph 
(they are implicit), but it depends on the application.

Number of hydrogens:  Since hydrogens are often 
implicit in molecular graphs, the number of hydrogens 
attached to an atom is typically included among the 
atomic features. This information also helps in infer-
ring bond orders when they are not explicitly encoded in 
graph edges.

Number of heavy neighbors:  Heavy neighbors are non-
hydrogen atoms bonded to an atom. This information 
can be deduced from the molecular graph, but together 
with the number of hydrogens, it can substitute for the 
information about bond order and atom hybridization. 
Alternatively, implicit valence can be included to inform 
about the number of implicit hydrogens.

Number of radical electrons:  Radicals are atoms with 
an unpaired valence electron, and the compounds con-
taining them are reactive. Most datasets do not contain 
any radicals, so there is no need to encode the number 
of radical electrons. However, this information can be 
essential and complementary to the number of hydrogens 

Fig. 2 A 2D structure of aspirin. Graph topology cannot be used 
to approximate distances between atoms in space

Table 1 The length of the shortest path and distance in 3D 
space between selected oxygen atoms of the molecule shown 
in Fig. 2

Shortest path Distance [Å]

O:3 O:11 4 2.68

O:3 O:12 4 4.17

O:2 O:11 6 4.52

O:2 O:12 6 6.24
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and heavy neighbors, e.g. in chemical reaction datasets 
where radicals can occur.

Charge:  Charges on atoms are encoded in different 
ways depending on the charge type. Formal charges are 
one-hot encoded integer numbers. On the other hand, 
partial charges, e.g. Gastgeiger charges or charges based 
on electrostatic potential, are represented with float 
numbers.

Rings:  Inclusion in a ring can be marked as a binary 
value, by encoding the ring size in which the atom is pre-
sent, or by encoding the number of rings that contain this 
atom, e.g. spiro atoms and bridges in bicyclic compounds 
are a part of multiple rings. Aromaticity of the rings is 
oftentimes encoded as well using a separate bit in the fea-
ture vector.

Stereochemistry:  Orbital hybridization and chirality 
tags are among the most common features that explain 
the molecular geometry of the compound. They are 
encoded as one-hot vectors. For the chirality, the possible 
tags are R, S, and non-chiral. The set of encoded hybridi-
zations is limited to the ones present in the input data-
set. Furthermore, some representations include van der 
Waals radii or atomic mass to mark the space occupancy 
of the atom.

Reactivity:  Sometimes atomic representations com-
prise features related to reactivity or interaction forma-
tion. For example, acidic or basic atoms can be marked, 
as well as hydrogen bond acceptors and donors.

Bond features
Bond features can explicitly describe connections 
between atoms. Many graph neural networks omit bond 
attribution and use atomic features to deduce bond types 
in a molecular graph.

Bond order:  Bond order is the most fundamental 
feature in resolving chemical structures. It is usually 
encoded as a one-hot vector, optionally comprising aro-
matic bonds.

Conjugation:  Conjugated bonds, i.e. alternating single 
and double bonds, are often explicitly encoded in graph 
representation as they have specific chemical properties.

Rings:  Information on whether a bond is included in a 
ring can be marked on a separate bit of the representa-
tion. Aromaticity can be also marked using an additional 
bit.

Stereochemistry:  For double bonds, different isomeres 
can be encoded using E-Z notation, where E and Z are 
additional bits in the bond feature vector.

Quantitative analysis
We represent atoms with six commonly used atomic 
features: one-hot encoded atom type with the following 
elements: B, C, N, O, F, P, S, Cl, Br, I, and additional bit 
for other atoms; the number of heavy (non-hydrogen) 
atom neighbors (0 to 5, one-hot encoded), the number 
of attached hydrogens (0 to 4, one-hot encoded), formal 
charge (single bit), inclusion in a ring (single bit), and 
aromaticity (single bit). We consider four representation 
groups:

• Using all the atomic features,
• Using only atom types,
• Using exactly one atomic feature besides atom type,
• Using all atomic features but one.

The details of all the representations are given in Table 2.
For each representation, we train graph convolutional 

neural networks with 100 different architectures using 
mean squared error (MSE) loss. Moreover, we train 
two baseline models using ECFP fingerprints [19]. We 
report results on four datasets: water solubility data-
set ESOL [56] which serves to compare results on data 
split randomly (ESOL (random)) and based on molecu-
lar scaffolds (ESOL (scaffold)), QM9 [57] – a dataset for 
predicting quantum properties, and two metabolic sta-
bility datasets, Human and Rat [24]. In Table 3, we sum-
marize molecular properties predicted for each dataset, 

Table 2 Features included in each of the 12 atom representations

 Name
no.

A + F-

F A A + N A + H A + C A + R A + A F-N F-H F-C F-R F-A

1 2 3 4 5 6 7 8 9 10 11 12

Atom type � � � � � � � � � � � �

Neighbors � � � � � �

Hydrogens � � � � � �

Formal charge � � � � � �

In a ring � � � � � �

Aromatic � � � � � �
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the dataset sizes, and property values ranges. Full details 
of the training procedure and datasets can be found in 
Section Methods.

We compare the average performance of the models 
trained with different representations in Fig. 3. Datasets 
and representations are on the x-axis and on the y-axis 
the distributions of mean square errors on the test set of 
all models trained with a given representation. One can 
see that the representation choice indeed has an influ-
ence on average model performance and that including 
more information in a representation usually leads to 
better performance (representations 1 and 8–12 perform 
better than representations 2–7).

While comparison between all models illustrates gen-
eral tendencies, we are more interested in performance 
differences between only the best-performing models. 
We use performance on the validation set to choose 
a  single best-performing architecture independently for 
each dataset and representation. The performance on the 
test set is averaged over different runs and training data 
(if applicable) and shown in Table 4. As expected, mod-
els trained with full representation (repr. F) consistently 
achieve good results, while models with information only 
about the atom type (repr. A) perform much worse. More 
generally, representations with more features (repr.  F 
and  F-) allow better performance than representations 
with limited information (repr.  A and  A+). Among all 
atomic representations, the ones with the lowest error 
use the full or almost full set of features. The only excep-
tion is ESOL (random) for which two models have 
comparable performance – one trained with representa-
tion F-H (no hydrogens) and the other with representa-
tion A+N (only atom types and neighbors).

Comparison of models trained with information only 
about the atom type (repr.  A) with models trained with 
a single additional feature (repr.  A+) reveals that add-
ing information about the number of heavy neighbors 
(repr.  A+N) gives the largest increase in performance 
for three datasets (Rat, Human, and ESOL (random)). 

Moreover, adding information about the number of 
hydrogens (repr.  A+H) significantly improves perfor-
mance on ESOL (scaffold), though adding information 
about aromaticity (repr.  A+A) produces even better 
results. Adding information about aromaticity also gives 
the best performance among models trained with repre-
sentations  A+ on QM9; however, not adding any addi-
tional information is even better in this case.

Comparison of models trained with full representation 
(repr. F) with models trained with representations that lack 
a single feature (repr.  F-) confirms relevance of informa-
tion about the number of heavy neighbors and aromaticity, 
and additionally demonstrates the relevance of hydrogens. 
When information about the number of neighbors is dis-
carded (repr.  F-N) there is a significant drop in perfor-
mance for both metabolic stability datasets. In the case of 
hydrogens (repr.  F-H), a significant drop can be seen for 
two datasets as well – Human and QM9. Importantly, in 
the case of Human, the largest drop in performance is seen 
when the discarded information concerns ring systems 
(repr. F-R). In the case of ESOL (random), the largest drop 
can be observed for models trained without information 
about formal charge (repr.  F-C) and in the case of ESOL 
(scaffold) about aromaticity (repr. F-A).

Fig. 3 Distribution of mean square error on the test set of all models trained with the selected representation. Including more information 
in representation usually leads to better performance

Table 3 Description of the properties being predicted for each 
dataset along with dataset sizes and property values ranges

The property values were not normalized for the model training

Dataset name Predicted property Range Number 
of 
samples

Human Metabolic stability T1/2 
(log h)

0, 4.8 3578

Rat Metabolic stability T1/2 
(log h)

0, 4.5 1819

QM9 Atomization free energy 
at room temperature (eV)

− 714.6, − 117.8 134K

ESOL Aqueous solubility (log 
M/L)

− 4.1, 2.2 1128
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To systematically study the error distributions, we run 
Wilcoxon tests for a pairwise representation comparison. 
The p-values of the one-sided tests are plotted in Fig.  4. 
We observe that many representations are equivalent even 
before applying the Bonferroni correction (p ≥ 0.05 ), e.g. 
for Rat, the lowest p-value is above the level of significance 
(p ≥ 0.002 in a two-tailed Wilcoxon test, while the signifi-
cant differences should be below 0.05/66 pairwise tests). 
The differences between representations are most apparent 
for QM9, which is the largest dataset in the comparison (p 
≤ 0.05

/

66 in all two-tailed Wilcoxon tests in addition to the 
ones between representations A + N vs. A + C, A + C vs 
F−H, and F–C vs. F–R).

There are several patterns that can be observed in the 
heatmaps. 

1 Representations with an almost full set of features 
are usually comparable with each other (bright area 
in the bottom right corner) and better than nearly 
empty feature vectors (dark area in the top right cor-
ner).

2 There are features that perform significantly worse 
than others when used alone, e.g. including only aro-
maticity (repr.  7) gives inferior results to using no 
atomic features in QM9 and ESOL with a random 
split. On the other hand, adding information about 
heavy neighbors (repr. 3) or hydrogens (repr. 4) yields 
the biggest performance boost across all datasets.

3 Removing features related to aromaticity (repr.  12), 
inclusion in a ring (repr.  11), and formal charges 
(repr. 10) can improve model quality, compared with 
the full representation (repr. 1).

4 Based on the dark cells in rows 2 and 7, we can con-
clude that representations A and A+A work signifi-

cantly worse than other representations across all 
datasets.

Feature prediction
After discovering that different atomic representations 
lead to significantly different performance of graph 
neural networks, we decided to test if some of the con-
sidered features can be predicted from the other ones. 
In other words, we test for the redundancy of atomic 
features. In these experiments, a graph neural network 
with only a subset of atomic features is trained to pre-
dict another subset of features. We formulate this task 
as node-level classification, i.e. the network predicts 
obscured features in each node. We use a random sub-
set of 50  000 compounds from the ZINC database to 
perform this analysis. We randomly split the data into 
train and test sets using the 4:1 ratio.

Some atomic features are correlated with other prop-
erties or can be deterministically computed from other 
features and molecular graph topology. For example, 
the number of hydrogens for small organic molecules 
can be implicitly assumed based on the atom type and 
the number of neighboring heavy atoms. As can be 
seen in Table 5 the number of neighbors, the number 
of hydrogens and whether an atom is aromatic can be 
accurately predicted using only graph connections and 
atom types, which would suggest that these features 
are redundant and can be inferred from the data set. 
On the other hand, we saw in other experiments that 
including these features in representation improves 
model performance. We hypothesize that the input 
atom representation acts as an inductive bias in learn-
ing, which is especially helpful for small data sets.

Table 4 Average mean squared error on the test set of the best-performing model for each representation and dataset

Two baselines based on the ECFP fingerprints are included. The best results are in bold. The error variance is below 0.001 for all datasets excluding QM9 and thus is not 
reported. Graph models perform better when trained with representations that include more features and usually outperform baseline models trained on traditional 
fingerprints

Representation Rat ↓ Human ↓ QM9 ↓ ESOL (random) ↓ ESOL (scaffold) ↓

F
A

0.182
0.214

0.218
0.246

9.193
26.369

0.118
0.159

0.166
0.235

A + N
A + H
A + C
A + R
A + A

0.188
0.196
0.215
0.194
0.203

0.225
0.248
0.246
0.235
0.241

46.386
41.047
52.825
89.794
27.365

0.113
0.131
0.174
0.115
0.187

0.242
0.215
0.229
0.237
0.212

F-N
F-H
F-C
F-R
F-A

0.200
0.183
0.180
0.181
0.178

0.220
0.220
0.213
0.223
0.216

39.243
60.035

9.698
8.278

23.786

0.190
0.113
0.123
0.119
0.120

0.189
0.202
0.201
0.185
0.221

Tree-based baseline 0.207 0.235 699.125 0.432 0.801

XGBoost baseline 0.216 0.233 803.153 0.483 0.452
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In Table 6, we show the accuracy of prediction if an 
atom belongs to a ring system. The number of graph 
layers corresponds to the size of a receptive field in 
graph neural networks. We use only atom types as the 
input representation. A clear correlation between the 
number of graph layers and network ability to discover 
ring systems can be observed. Typically, for drug-like 
organic compounds, rings contain up to 8  atoms, and 
neural networks with 4 or more layers obtain almost 
perfect accuracy.

We conclude this section by stating that even though 
the examined atomic features can be predicted with 
high accuracy based on atom type and molecular graph 
topology alone, including them in representation is 
beneficial for model performance.

Statistical analysis of explanations
In this section, we explain predictions of models trained 
with different representations to analyze which features 
they use and to what extent. We restrict our analysis to 
a single best-performing architecture for each dataset 
and representation. The averaged MSE of these models is 
reported in Table 4. We use GNNExplainer [58] to calcu-
late how important each feature is for predicting a prop-
erty of a given molecule.

The analysis of Fig. 5 suggests that there seems to be a 
correlation between feature values and their importance 
scores. For all molecules, the bars of features with rela-
tively high importance scores have vibrant colors, while 
most of the features of lesser importance are represented 
with pale-colored bars. We will call features with non-
zero value for at least one atom in a molecule present, 
and features that are equal to zero for all atoms absent.

In Table 7, we measure the correlation between feature 
values and importance scores quantitatively. For each 
dataset, we calculate the number of present and absent 
features and the number of important and unimportant 
features in each of these groups. We say that a feature is 
important if its importance score is higher than the mean 
importance for the prediction. We define the absent-
important ratio as the number of absent features that 
are important divided by the number of all absent fea-
tures, and, analogously, the present-ignored ratio as the 
number of unimportant present features divided by the 
number of all present features. One can see that absent 
features are almost always unimportant, except for the 
QM9 dataset, where over 10% of absent features have 
importance scores higher than mean. At the same time, 
present features usually have high importance scores. 
Here again, QM9 models ignore present features most 
often – over 30% of the time. For models trained on other 
datasets, this value is between 18% (ESOL (scaffold)) and 
27% (Human).

In Fig.  5, one can find exceptions to this general pat-
tern – the importance of a feature is not always related 
to its presence in the analyzed structures. For example, 
both molecules on the left contain an aromatic ring but 
have low importance scores for this feature. Additionally, 
the top right molecule and both molecules at the bottom 
contain at least one oxygen atom, but this feature has a 
relatively high importance score only in the case of the 
molecule from the bottom right column. On the other 
hand, the presence of other atom types (such as C, N, or 
Cl) is usually related to an increased importance of the 
corresponding feature.

In Fig. 6, we show samples from the QM9 dataset for 
a model trained with representation F-N where the cor-
relation between feature values and their importance can 
be observed (top) and for a model trained with represen-
tation F-A where it cannot be observed (bottom). In the 
top chart, the present features are indeed generally given 
more importance, while the absent features receive lower 
importance scores. This is not the case in the bottom 
picture where the only features with high importance 
are: having one heavy neighbor, charge, and being in a 
ring. The importance of the remaining features is limited 
regardless of their presence.

In Table  7, we presented absent-important ratios and 
present-ignored ratios calculated over predictions for 
all samples in each dataset. However, there can be sig-
nificant differences between models with different rep-
resentations or between different features. In Fig.  7, we 
show distributions of these ratios when calculated sepa-
rately for each feature, model, and data part (train, valida-
tion, test or fold and test in the case of cross-validation). 
For brevity, the ratios of all features in the same group 
are shown as a single distribution. One can see that the 
absent-important ratio typically has values lower than 0.1 
and slightly higher for inclusion in a ring than for other 
features. On the other hand, the present-ignored ratios 
have much higher values, sometimes reaching 1. This 
means that absent features are consistently ignored by 
models, while present features are usually important but 
in some cases ignored. Therefore, in the following analy-
ses, we focus on the present-ignored ratios, which show 
higher variability. Moreover, in order to get more mean-
ingful results, we only analyze ratios calculated on at least 
20 samples and remove features which are not present in 
at least 100 samples in the training data because neural 
networks might not be able to learn to use features that 
are very rare.

We start by comparing models trained with represen-
tation F and representation A in terms of importance of 
each atom type – the distributions of present-ignored 
ratios are shown in Fig.  8. As expected, models trained 
with representation  A strongly rely on atom types and 
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ignore these features less often than models trained with 
full representation that can use plenty of other features.

In Figs.  9, 10, we analyze the influence of adding a 
single feature group to a representation by comparing 
distributions of present-ignored ratios of representa-
tion A models with distributions for models trained with 
representations A+.

Examination of Fig.  9 reveals that adding informa-
tion about the number of heavy neighbors or hydrogens 
lowers the average importance scores of all atom types. 
In both cases, this can be clearly seen for carbon, which 
is rarely ignored by any models. However, models that 
have access only to information about atom type rely 
on this feature more strongly. Distributions for nitrogen 
and oxygen are also visibly shifted towards higher val-
ues, both when the added information is the number of 
heavy neighbors and hydrogens. On the other hand, the 
distribution shift for sulfur is less emphasized. Some dif-
ferences can also be observed. The distribution shift for 
fluorine and chlorine is much stronger when the added 
information is the number of heavy neighbors than when 
it is the number of hydrogens. This suggests that the for-
mer one might be more informative for graph models. 
The additional features are used to a various extent. For 
example features N 2 and N 3 (two or three heavy neigh-
bors) have mean present-ignored ratios equal to 0.1 while 
feature N  1 (one neighbor) has an average ratio of 0.44 
(note that visualizations show median, not mean value).

In Fig. 10, we visualize the change in distributions when 
the added information encodes inclusion in a ring or aro-
maticity. Again, it is visible that models that have access 
to more features rely on atom types to a lower extent, 
and the vital importance of carbon is confirmed. Here, 
the distribution shifts for nitrogen and oxygen are not as 
strong as in the case when adding information about the 
number of heavy neighbors or hydrogens, and for models 
trained with representation A+A it is quite subtle.

To summarize, the analysis of Figs.  9 and  10 dem-
onstrates that information about the number of heavy 

neighbors, hydrogens, inclusion in a ring or aromaticity 
can partially substitute for information about the atom 
type, which is indicated by higher present-ignored ratios 
of models that have access to additional features. More-
over, information about whether an atom is a carbon is 
vital and rarely ignored, regardless of the representation.

On the other hand, information about charge is a poor 
substitute for atom type. In Fig. 11, we focus on charge 
and its usefulness for graph models. In this case, we 
restrict our analysis to QM9 models because the num-
ber of molecules with charge is too small in other data-
sets (less than 100 molecules). Moreover, we note that 
QM9 molecules consist of only carbon, nitrogen, oxygen 
and fluorine atoms; however, the number of molecules 
that contain fluorine in our training data is too small and 
we discard this feature. On the left, we compare mod-
els trained with information only about atom types with 
models which additionally have access to information 
about charge. The influence of charge is quite opposite to 
the influence of other features – models that have access 
to this feature rely on atom types even more strongly 
than models trained with representation A. At the same 
time, this feature is relatively often ignored, which can be 
seen in the right figure. While models for which charge is 
the only available feature besides atom type have an aver-
age present-ignored ratio equal to 0.2, for models trained 
with full representation this value increases to 0.46. Mod-
els trained with representation F-R ignore charge to the 
highest extent with average present-ignored ratio equal 
to 0.55. This is surprising because charge is a useful fea-
ture for predicting free energy. These findings suggest 
that charge is not a useful feature for graph models and 
its inclusion in the representation might be detrimental 
to the model performance. This is in line with the Wil-
coxon analysis illustrated in Fig. 4 where representation 
A+C (no. 5) is inferior (has darker rows) for all datasets 
but ESOL (random).

Inclusion in a ring and aromaticity are highly cor-
related features. In Figs.  12, 13, 14, we compare their 

Fig. 4 P-values of one-tailed Wilcoxon tests between the best models trained on each representation. The value in i-th row and j-th column 
corresponds to the alternative hypothesis saying that the median squared error of i-th representation is greater than the median of j-th 
representation (superior representations have darker columns, and inferior ones have darker rows). The darkest cells are statistically significant 
with Bonferroni correction
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distributions of the present-ignored ratios across all 
datasets in the study and show that even though they 
carry similar information, they can be used in different 
ways.

In Fig.  12, we focus on models trained on the water 
solubility task. In most cases, features encoding 
inclusion in a ring and aromaticity are utilized simi-
larly—distributions of present-ignored ratios for the 
corresponding models are alike. However, for ESOL 
(scaffold) models trained with representation  F-N rely 
on ring information to a much higher extent than on 
aromaticity. For ESOL (random) and models trained on 
full representation, the situation is somewhat similar, 
which is indicated by a long tail of the ring distribution.

In Fig.  13, we focus on the QM9 dataset. The big-
gest difference can be seen for models trained without 
charge information which seem to prefer aromaticity. 
Interestingly, when this feature is dismissed, the models 
start to strongly rely on information about rings (com-
pare distributions for representations F and F-A on the 
left plot); however, when information about rings is 
missing, the models do not necessarily replace it with 

information about aromaticity – distribution F-R in the 
right plot is widely spread.

In Fig. 14, we show distributions for metabolic stabil-
ity datasets. One can see that Human models choose 
to ignore ring information more often than aromatic-
ity, while for Rat models the differences are less empha-
sized and the preference is towards ring information.

Interestingly, even when models share the same 
architecture, representation and training data (i.e. they 
differ only by random initialization of weights before 
training), there is a diversity in how information about 
inclusion in a ring and aromaticity is used. This is pos-
sible because neural networks that differ only by weight 
initialization can represent highly diverse functions 
[59]. We illustrate the differences between such mod-
els in Fig. 15 where we show distributions over impor-
tance scores for three models trained on the Rat dataset 
with representation F-C. One can see that the model on 
the left-hand side (run-1) relies on information about 
inclusion in a ring to a higher extent than on aromatic-
ity. In the case of the model in the middle (run-2), the 
situation is reversed, although there is a larger overlap 
between these two distributions. For the model on the 
right-hand side (run-3), the feature importance scores 
for aromaticity form a bimodal distribution, which is 
not the case for the models on the left or in the middle. 
Importantly, the distributions for the remaining feature 
types (atom type, number of neighbors, and number of 
hydrogens) are more consistent – in the right-most plot 
of Fig.  15 (averaged), we present the mean and stand-
ard deviation for the distributions of each feature. The 
exact values of the present-ignored ratios averaged 
across the entire dataset for these models are given in 
Table  8 and confirm that there are differences in how 
information about inclusion in a ring and aromaticity 
is used.

Table 5 Mean node accuracy obtained for the classification of atomic features

Input features Predicted features Mean 
accuracy ↑  
(%)

Atom type
Atom type + #hydrogens
Atom type + #hydrogens + in ring
Atom type + #hydrogens + in ring + is aromatic

Number of neighbors
Number of neighbors
Number of neighbors
Number of neighbors

99.99
100
100
100

Atom type
Atom type + #neighbors
Atom type + in ring
Atom type + #neighbors + in ring
Atom type + #neighbors + in ring + is aromatic

Number of hydrogens
Number of hydrogens
Number of hydrogens
Number of hydrogens
Number of hydrogens

91.76
92.67
93.08
93.57
98.00

Atom type
Atom type + in ring

Is aromatic
Is aromatic

92.87
94.64

Table 6 Prediction accuracy of inclusion in rings for different 
numbers of graph layers in the graph neural network

Only atom types are used as input representation

Number of graph layers Mean 
accuracy 
↑ (%)

1 88.41

2 94.12

3 97.01

4 98.00

5 98.72



Page 11 of 27Wojtuch et al. Journal of Cheminformatics           (2023) 15:81  

We conclude this section by stressing that features are 
used differently depending on the end-task; however, 
some general patterns emerge. Absent features are usu-
ally ignored, and it might be profitable to remove from 
representation any features that do not appear in the 
dataset often enough. Information whether an atom is a 
carbon is vital, while for other atom types, there is greater 
variability. The exact elements that should be encoded in 
a representation can be selected based on the training 
data. Charge is often ignored even for datasets that con-
tain plenty of molecules with charge, whereas other fea-
tures that we examined are more useful and can partially 
substitute for information about the atom type. Inclusion 
in a ring and aromaticity can be utilized by models in dif-
ferent ways, even though they carry similar information.

Visualization of molecules with the highest 
prediction error
In this section, we examine the molecules with the high-
est mean error depending on the representation used for 
training. To pick molecules that are especially difficult for 
models trained with a given representation, we calculate 
a margin between the mean error of models trained with 
this representation and the highest mean error of mod-
els trained with the remaining representations. To put 
it more precisely, for each compound, we calculate the 
predictions using the best model for each representation 
ŷ1, . . . , ŷ12 and compare these predictions with the true 
label y. Next, we sort the compounds by the following 
value:

where ε : R → R+ is an error function (e.g. MSE or 
MAE), and mi is the error margin of the compound for 
the i-th representation.

In Fig.  16, we present molecules with the highest 
mean error of solubility prediction for all representa-
tions jointly and for three selected ones. Using only topo-
logical graph information and no atom features besides 
atom type produces similar structures to those that are 
on average worst predicted by all representations. For 
instance, the molecule with a long aliphatic chain (mole-
cule 7) is predicted to be more soluble, probably because 
models with no additional atom features besides atom 
type cannot differentiate between saturated and unsatu-
rated chains. Similarly, the compound with a cyclohexane 
ring (molecule 15) could be predicted to be more soluble 
due to the lack of aromaticity information—the aromatic 
counterpart of cyclohexane, a benzene, is more soluble 
in water. Furthermore, we note that models trained with 
the representation without information about ring inclu-
sion (repr. F-R) often make mistakes for compounds with 
non-aromatic rings or nitrogens in rings.

Similar results for the QM9 dataset can be found 
in Fig.  17. In these selected representations, we again 
observe recurring patterns. For example, the represen-
tation without information about attached hydrogens 
results in poor predictions for compounds with nitrogen 
cations. Similarly, models trained with the representation 

(1)

mi = max











0, ε(y− ŷi)− max
j = 1, . . . , 12

i �= j

ε(y− ŷj)











,

Fig. 5 Feature importance scores for four predictions of a model trained with representation F-N on ESOL (scaffold). Importance score value (on 
y-axis) for each feature (on x-axis) is represented with a bar whose color denotes feature group and intensity denotes feature value – features 
with non-zero value for at least one atom in a molecule are shown in vibrant colors while features which are equal to zero for all atoms are shown 
in pale colors. A correlation between feature values and importance scores can be observed
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missing the number of heavy neighbors obtain the high-
est error values for branched structures with carboca-
tions or carbanions.

To confirm that some representations are more prone 
to errors when certain patterns appear in the molecu-
lar structure, in Fig. 18 we present a t-SNE map of QM9 
compounds. In the plot, each color corresponds to the 
representation with the highest prediction error.

We observe that small clusters of one color form in 
the t-SNE map. These clusters correspond to structural 
motifs that confuse models trained with a given repre-
sentation. This observation suggests that some repre-
sentations fail to predict certain structural patterns due 
to inductive biases. For example, representation  A+R 
models tend to make errors for structures with many 
branches and no rings (depicted at the bottom of Fig. 18). 
Interestingly, representation  A+C incorrectly predicts a 
group of compounds with a carbocation in a ring even 
though it contains information about the formal charge. 
A similar cluster corresponds to representation A+A that 
makes mistakes for predictions on fused bicyclic com-
pounds that are partly aromatic.

Table 7 Absent-important ratio and present-ignored ratio 
for each dataset. Absent features are scarcely ever important 
(absent-important ratio is close to zero) while present features 
are typically used by models (present-ignored ratio has low 
values)

Dataset Absent-important ratio Present-
ignored 
ratio

ESOL (random) 0.00 0.22

ESOL (scaffold) 0.01 0.18

Human 0.00 0.27

QM9 0.11 0.31

Rat 0.00 0.25

Fig. 6 Feature importance scores for predictions of models trained on QM9 dataset with representation F-N (top) or representation F-A (bottom). 
A correlation between feature values and importance scores is not observed for all models
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Discussion
In this study, we analyze the impact of atom representa-
tion on model performance and examine how selected 
features are utilized by models trained with different 
representations.

Our findings are based on experiments performed on 
datasets for different tasks and with different splits. We 
designed twelve representations that allow studying the 
impact of single atomic features in isolation and con-
ducted additional experiments with selected represen-
tations previously used in literature (presented in the 
Appendix). The main experiments are performed using 
simple graph convolutional neural networks, and further 
experiments (presented in the Appendix) use advanced 
architectures that represent both GCNs (D-MPNN) and 
Transformer-based models (MAT), which are a distinc-
tive family.

However, some limitations must be brought to light. 
First, we only explore the role of atom features and 
neglect the role of bond features, which currently are 
often used [5, 7, 49]. Second, we examine the perfor-
mance on prediction of only three molecular properties 
and all tasks that we consider are regression. We do not 
include any classification tasks (e.g. prediction of toxic-
ity [60] or bioactivity [61]) nor consider other impor-
tant tasks such as de novo generation [41, 62], molecule 
optimization [63] or docking [64, 65]. Finally, we do not 

Fig. 7 Distributions of absent-important ratios (top) 
and present-ignored ratios for each feature group (bottom). Absent 
features are consistently ignored while present features are typically 
important but show greater variability. Charge is often ignored even 
when present while the other features are used more frequently. 
Dashed lines show first quartile, median and third quartile

Fig. 8 Comparison of exploitation of atom type features 
between models trained with representation F (full) 
and representation A (only atom types). Models that have access 
to additional information ignore atom types more often

Fig. 9 Influence of enriching representation with a single 
feature. Adding information about number of neighbors (top) 
or hydrogens (bottom) allows models to rely on atom types 
to a lesser extent
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investigate multitask learning setting in which informa-
tion about one task can be used for other tasks – incorpo-
ration of this additional knowledge may have an impact 
on the role of input features. Multitask learning has been 
shown to be a promising direction in QSPR [26].

Despite these limitations, we provide a comprehensive 
study on the impact of atomic features on the predictive 
power of models trained for molecular property predic-
tion. We confirm that the choice of atomic representa-
tion influences model performance and recognize the 
necessity of taking it into consideration when comparing 
different models or creating benchmarks. Furthermore, 
we show that charge, which is a commonly used atom 
feature, might, in fact, be detrimental to model perfor-
mance. Moreover, we reveal the correlation between fea-
ture values and their importance scores, which can serve 
as a rule of thumb for selecting atomic features for new 
tasks. Visualization of molecules with the highest predic-
tion error indicates that mistakes committed by models 
trained with inadequate representations can be attrib-
uted to inductive biases present in these models. Finally, 
we expose dangers associated with an extensive search 
over atomic features (results presented in the Appendix).

Conclusions
In this study, we establish that the careful selection of 
atom features used in the representation has a significant 
impact on the performance of graph models, including 
both standard graph convolutional neural networks and 
more advanced architectures (Appendix: Section  Sup-
plementary experiments using advanced graph models). 
Even though the optimal set of features is task-depend-
ent, representations that have almost all the atomic 
features are generally comparable. Having said that, 
excluding features related to aromaticity, inclusion in a 
ring, and formal charges can improve model quality. On 
the other hand, including information about heavy neigh-
bors or hydrogens gives the biggest performance boost 
across all datasets. Furthermore, we show that GCNs 
can accurately predict the number of heavy neighbors, 
hydrogens, inclusion in a ring, and whether an atom is 
aromatic, given only information about connectivity of 
atoms and their type. However, explicitly including these 

Fig. 10 Influence of enriching representation with a single feature. 
Adding information whether atom is in a ring (top) or an aromatic 
ring (bottom) allows models to rely on atom types to a lesser extent

Fig. 11 Exploitation of charge for QM9 models. Influence of enriching representation with information about charge (left) and exploitation 
of charge for models trained with different representations (right). Regardless of the representation, a high fraction of models ignores charge 
relatively often
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seemingly redundant features in the model can enhance 
performance.

In general, there seems to be a correlation between 
importance of features and their distribution in the data-
set which can serve as a rule of thumb when selecting 
atomic features for new tasks. Absent features are usually 
ignored, and it might be profitable to exclude any features 
that do not appear in the dataset often enough. Informa-
tion whether atom is a carbon is vital, while for other 
atom types, there is greater variability. The exact ele-
ments that should be encoded in a representation can be 
selected based on the training data. Importantly, in Sec-
tion How to find the optimal representation?, we demon-
strate that an extensive grid search over atomic features 
leads to poor generalization and that fixing the repre-
sentation and performing only an architecture search is 
a very strong baseline. Finally, the results of experiments 
on D-MPNN indicate that rich bond representation can 
substitute for additional atomic features.

To the best of our knowledge, to date this is the most 
extensive study that focuses on the relevance of atom 
representation to the predictive performance of graph 
neural networks.

Methods
In this section, we provide details of our experiments.

Datasets
For evaluation, we chose four datasets that represent a 
range of molecular property prediction tasks. In the case 
of the ESOL dataset, we use two different methods of 
splitting the data, random split and scaffold split [66], to 
examine whether the choice of splitting method affects 
the performance of models trained with different repre-
sentations. The datasets used in our experiments are:

Human and rat
Human and Rat are datasets for metabolic stability pre-
diction from Podlewska & Kafel [24]. We use only records 
with the source being ’Liver’, ’Liver microsome’, or ’Liver 
microsomes’ resulting in 3578 (Human) and 1819 sam-
ples (Rat). In the case of multiple measurements for the 
same molecule, the median of the measurements is used. 
The stability values are expressed in hours and log scaled. 
10% of the data is left out for testing, and the remaining 
samples are divided into 5 cross-validation folds using 
random stratified split.

QM9
QM9 is a dataset for predicting quantum properties 
[57]. We randomly sample 5K molecules for training, 
1K molecules for validation, and 10% of the dataset (13K 

Fig. 12 Exploitation of information about inclusion in a ring and aromaticity by ESOL models. These two features carry a similar information but are 
utilized differently
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molecules) for the test set. The models are trained to pre-
dict g298 [free energy at 298.15 K (unit: eV)].

ESOL
ESOL is a water solubility prediction dataset consisting 
of 1128 samples [56]. We report results on both random 
split (from Maziarka  et al. [17]) and scaffold split with 
train:validation:test ratio 80:10:10.

Model
Graph convolutional neural networks (GCNs) are widely 
used models for predicting molecular properties. As 
input, they use molecular graphs in which vertices rep-
resent atoms and edges represent chemical bonds. To put 
it more precisely, a molecule with N atoms is represented 
as an undirected graph G = (X ,A) , where X ∈ R

N×D is 
the atomic representation matrix, A ∈ R

N×N is the graph 
adjacency matrix, and D is the number of atomic fea-
tures. This input is processed by specialized layers, called 

Fig. 13 Exploitation of information about inclusion in a ring and aromaticity by QM9 models. These two features carry a similar information but are 
utilized differently

Fig. 14 Exploitation of information about inclusion in a ring and aromaticity by models trained on metabolic stability datasets. Models trained 
on the same task (metabolic stability) may utilize these features to a different extent
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graph convolutional layers, which are suitable for han-
dling graph-structured data. After several graph convo-
lutional layers, there is a pooling layer which transforms 
the latent representation of the input graph to a vector 
representation which is processed by several dense layers.

Each vertex in a molecular graph is annotated with 
atom features while the edges can be annotated with 
bond features; however, this information is optional and 
is not used by GCNs in our experiments. A more detailed 
description of the features used in molecular graphs is 
given in Section Atomic and bond features.

In this work, we use the formulation of graph convolu-
tional layers given by Kipf and Welling [67], namely:

where H (l) is the node representation matrix in the l-th 
layer, Â = A+ I is the graph adjacency matrix including 
self-loops, Dii =

∑

j Âij , and W (l) is a trainable weight 
matrix in the l-th layer. The node representation at the 
input to the first layer is the atomic representation matrix 
( H (0) = X).

In each convolutional layer, a new latent representation 
of the atom features is calculated and the final latent rep-
resentation H (L) is transformed by a pooling layer. Here, 
we use mean global pooling:

where h(L)n  is the latent representation of n-th atom after 
L-th convolutional layer.

In GCNs, a pooling layer has two main functions: (1) to 
collect information from all atoms and use it to calcu-
late a representation for the whole molecule, and (2)  to 

(2)H (l+1) = D− 1
2 ÂD− 1

2H (l)W (l),

(3)r =
1

N

N
∑

n=1

h(L)n ,

transform graph-structured representation to a  vector 
representation suitable for dense layers.

Model selection
We find the best performing architectures using a ran-
dom search. All neural networks consist of graph convo-
lutional layers followed by dense layers and vary by: the 
number of convolutional layers, the number of channels 
in each convolutional layer, the number of dense lay-
ers and their size, parameters of dropout [68], presence 
of BatchNorm [69], the values of learning rate, batch 
size, and parameters of the learning rate scheduler. The 
number of channels in convolutional layers and the 
size of hidden layers are equal in all models. A detailed 
description of the hyperparameter space can be found in 
Table 9. All models are trained for 750 epochs using the 
Adam optimizer [70] and the MSE loss. During training, 
we monitor the validation loss and the final model uses 
weights for which this value is minimal.

We use the same set of 100 randomly sampled hyper-
parameter configurations for all datasets. Each architec-
ture is trained three times to accommodate the variance 
resulting from random initialization. The best perform-
ing architecture is chosen based on average MSE on vali-
dation data.

Baseline
We compare the performance of graph-based and fin-
gerprint-based models using as a baseline various tree 
ensembles trained with ECFP [19]. The length of the 
fingerprint representation is equal to 128 and compa-
rable in size with the latent representation of the GCNs 
(see Table 9). As models, we use XGBoost [71] (XGBoost 
baseline) and other tree ensembles (tree-based baseline). 

Fig. 15 Distributions of feature importance scores for three GCN models trained on Rat dataset with representation F-C which differ only by weight 
initialization (run-1 - run-3). For each feature type, the mean of the corresponding distributions and the standard deviation is shown on the right 
(averaged). Models which differ only by initial weight values may show differences in their exploitation of information about inclusion in a ring 
and aromaticity while for other features the variability between models is lower
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When tuning hyperparameters of the tree-based base-
line, one option is to choose an ensemble type, which can 
be a single decision tree, a  random forest, or extremely 
random trees. The hyperparameters are optimized using 
a genetic algorithm that performs search for 24 h using 5 
parallel threads. The final model is retrained on train and 
validation data and evaluated on test data. We use imple-
mentation from Wojtuch et al. [72] available in a GitHub 
repository (http:// github. com/ gmum/ metst ab- shap) 
where the detailed information about hyperparameter 
space and optimization procedure can be found.

Statistical methods
To compare atom features, we pick three best perform-
ing architectures found in random search for each rep-
resentation. We perform one- and two-tailed Wilcoxon 
tests with Bonferroni correction to analyze the differ-
ences between representations that use different fea-
tures. A single model can overfit its hyperparameters to 
the validation set, resulting in noisy testing set predic-
tions. Therefore, multiple models are retrieved to reduce 
the influence of random weight initialization and model 
hyperparameters. For each compound of the test set, we 
calculate the median prediction of the best performing 
models. For the Rat and Human, the median is calculated 

also for all folds as these models were tuned using cross-
validation. Based on these predictions, we calculate 
squared errors for all compounds and compare these val-
ues between representations in one-tailed Wilcoxon tests 
with Bonferroni correction. The alternative hypothesis is 
that one representation obtains lower squared prediction 
errors more often than the other representation.

Feature prediction
To predict atomic features, we use a graph convolutional 
neural network similar to those used in other experi-
ments. It consists of 3 graph convolutional layers (unless 
indicated otherwise) and for node classification we 
replace global average pooling and the following dense 
layers with 2 dense layers attached to each node (node-
wise transformations). The graph layers have a hidden 
dimension set to 128 and dropout of 20% (probability 
of values being dropped). We use the Adam optimizer 
with learning rate 10−3 and batch size 64. The models 
are trained for 100 epochs. We repeat each training 5 
times to reduce the impact of random initialization of the 
weights.

The compounds used in this experiment are randomly 
sampled from the ZINC database to cover a broad spec-
trum of feasible organic compounds. We use a random 
subset of 50  000 compounds which we randomly split 
into train and test sets using the 4:1 ratio.

Explanations
GNNExplainer [58] is a post-hoc method to explain the 
predictions of graph convolutional neural networks. Expla-
nations are given by a proxy model trained to minimize a 
mutual information objective. Given an input graph, the 
proxy model returns an edge mask and a feature mask, 
which are applied to the adjacency matrix and the feature 

Table 8 Mean present-ignored ratios for two features and test 
MSE calculated for Rat models trained on representation F-C 
which differ only by weight initialization

Run Is aromatic Is in a ring Test MSE

Run-1 0.13 0.02 0.172

Run-2 0.05 0.08 0.192

Run-3 0.37 0.03 0.188

Fig. 16 ESOL (scaffold) molecules for which prediction is particularly difficult for models trained with selected representations. Plots show 
compounds with the highest MSE in all representations (a), and MSE higher than in other representations (b–d); ŷ is the average predicted value, 
and y is the true value (standardized)

http://github.com/gmum/metstab-shap
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matrix of the input graph forming a new input that maxi-
mizes the probability of a class predicted by the GCN. This 
new input is the explanation, and the values from the fea-
ture masks serve as feature importance scores. Note that 
by formulation of GNNExplainer, a single feature mask 
is calculated for an entire graph – as a result, the set of 
important features is the same for all nodes (atoms).

For each dataset and representation, we calculate 
graph-level explanations of predictions given by a single 
best-performing architecture, which gives 3 models for 
ESOL (scaffold), ESOL (random) and QM9, and 15 (3 
runs × 5 cross-validation splits) models for Human and 
Rat datasets. We explain predictions for all molecules 
in each dataset, that is, we do not discard any molecules 
based on their origin (training or testing data) or any pre-
dictions based on their accuracy. In our analyzes, we only 
use feature masks – for each feature we obtain a  single 
scalar value, which is the importance score.

In our experiments, we use the formulation of GNNEx-
plainer adapted for regression implemented in PyTorch 
Geometric [73]. GNNExplainer is trained for 200 epochs, 
and other parameters have default values.

Chemical space visualization using t-SNE
To construct a t-SNE map, we select at most 500 com-
pounds for each representation with the highest error 
margin over other representations in the test set. Addi-
tionally, the error margin is averaged over top  5 models 
for each representation to make the resulting map less 
dependent on the weight initialization. Next, we calculate 
ECFP fingerprints to encode the chemical structure of 
the molecules. This representation is used as input to the 
t-SNE algorithm [74] along with the Tanimoto metric used 
to calculate distances in the fingerprint space. To find com-
pound clusters, we use the DBSCAN clustering algorithm 

[75] with ǫ = 4 . In Fig. 18, we show 5 out of 27 found clus-
ters along with 4 compounds sampled from each of them.

Appendix
Supplementary experiments using advanced graph 
models
To study whether our results generalize to other archi-
tectures as well, we repeat the experiments from Section 
Quantitative analysis using two advanced graph models: 
D-MPNN [76] which is a graph convolutional neural net-
work capable of using molecular graphs with directed 
edges, and MAT [17] which is a neural network based 
on Transformer [14] and adapted for molecular graphs. 
Both models use additional information besides atomic 
features – MAT uses pairwise distances between atoms 
whereas D-MPNN uses bond features.

The test set performance of the best architectures is 
shown in Table  10 (D-MPNN) and Table  11 (MAT). 
Again, we omit variance because it is very low for all 
datasets but QM9. Comparing these results with those in 
Table 4 reveals that D-MPNN outperforms other models 
on three datasets – Human, QM9, and ESOL (random) 
– and gets close to the best model on ESOL (scaffold) 
which is GCN. GCNs also achieve the lowest error on the 
Rat dataset. Relatively poor performance of MAT might 
be attributed to a much smaller grid space during archi-
tecture search and possibly to a shorter training time – 
maximal number of epochs was equal to 100 instead of 
750.1

Fig. 17 QM9 molecules for which prediction is particularly difficult for models trained with selected representations. Plots show compounds 
with the highest MAE in all representations (a) and MAE higher than in other representations (b-d); ŷ is the average predicted value, and y is the true 
value (standardized)

1 We doubled the maximal number of epochs and rerun the experiments 
on ESOL (scaffold) to study the influence of the training time but the results 
were inconclusive and are not reported.
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If we focus on Table 10, we might be surprised to find 
that all best performing models are trained with repre-
sentations that only have one additional feature besides 
atom type. The additional feature is the inclusion in a 
ring for both metabolic stability datasets, the number of 
hydrogens in the case of QM9 and ESOL (scaffold), and 
the formal charge for ESOL (random). We attribute these 
results to the informativeness of the bond features avail-
able to the model. The performance of models trained 
with representations rich in information does not fall far 
behind the performance of models trained with informa-
tion-deprived representations and in the case of ESOL 
(scaffold), models trained with representation with-
out the number of hydrogens achieve error close to the 
best-performing model. We speculate that bond features 
along with atom types and one additional feature might 
be informative enough to ensure good performance on 
these datasets and that adding even more features might 
lead to poor generalization and overfitting, which is not 
unlikely because of the moderate size of the training data.

The results for MAT (Table  11) differ substantially 
from those for D-MPNN. Here, the best performance is 
typically achieved by models trained on representations 
with more features; however, in the case of Human, the 
best performance is achieved by models trained with 
repr.  A+H. It is likely that the relative positions of the 
atoms are not useful information and that more atom fea-
tures are required to ensure good performance.

If we examine the change in performance due to adding 
a single feature, we see that information about neighbors 
proves to be the most relevant in only one case, informa-
tion about hydrogens in four cases, formal charge only 
in one case and information about rings in three cases. 
Adding information about aromatic rings gives the big-
gest increase in performance in one case and remov-
ing it results in the second largest performance drop for 
D-MPNN on Rat. Removing information about rings is 
the most detrimental in four cases, removing information 
about the number of hydrogens in two cases and finally, 
removing information about heavy neighbors in as many 

Fig. 18 t-SNE map of QM9 compounds colored by the representation with the highest prediction error (MAE). The algorithm uses ECFP fingerprints 
and Tanimoto distance
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as five cases. This confirms the status of the number of 
heavy neighbors and hydrogens as useful features, which 
is indicated by experiments performed on GCNs and 
draws attention to information about rings.

In Fig. 19, we present the results of pairwise represen-
tation comparisons with Wilcoxon tests for D-MPNN 
(top) and MAT (bottom). Compared to GCN, MAT 
exhibits stronger differences between representations, 
while D-MPNN seems to be less dependent on the input 
representation, which can be observed based on the heat-
map density. The patterns visible in the figures confirm 
that representations A (no. 2), A+C (no. 5), A+R (no. 6), 
A+A (no. 7) usually lead to poorer results. The full repre-
sentation (no. 1) is oftentimes a good default choice, with 
only a few exceptions where removing selected features 
(representations no. 8–12) improves model performance. 
Interestingly, the full representation is one of the worst 
choices for the D-MPNN model on the ESOL dataset, 
where simple representations are preferable. For MAT, 
the representation excluding aromaticity (no.  12) seems 
to be at least as efficient as the full representation across 
all datasets.

The results in this section demonstrate that conclu-
sions drawn based on experiments on simple graph con-
volutional neural networks generalize to more advanced 
graph models. The importance of the number of heavy 
neighbors and hydrogens is confirmed, while charge and 
aromaticity seem superfluous. Moreover, ring informa-
tion proves to be beneficial for advanced graph models. 
Finally, the results on D-MPNN indicate that rich bond 
representation can substitute for additional atomic fea-
tures. On the other hand, relative positions of atoms are 
not useful information.

Supplementary experiments using literature 
representations
The goal of this section is to put our analysis in a wider 
context by comparing different representations present 
in the literature. To this end, we repeat experiments from 
Section Quantitative analysis with four additional rep-
resentations, which are summarized in Table  12. More-
over, we note that representation F (full) was used in 
Coley  et al. [5]. All of these representations include the 
atom type and information whether it is in an aromatic 
system. However, the number of encoded atomic types 
ranges from 10 in representation F to 100 in representa-
tion Yang. All representations use an extra bit reserved 
for atoms that are of different type from the encoded 
ones. Additionally, most of the representations include 
information about atom’s (heavy) neighbors and formal 
charge.

The averaged mean square errors are presented in 
Table 13. Overall, the difference in performance between 
the best models trained with different literature represen-
tations is usually not big. We presume that all these rep-
resentations were carefully designed and are capable of 
achieving good performance on various tasks. However, 
some dissimilarities can be observed.

• Representation  F outperforms all other literature 
representations on all datasets, but ESOL (random), 
even though it has the smallest size. On the contrary, 
representation Liu has the worst performance on all 
datasets but Rat.

• The differences on QM9 dataset are quite high in val-
ues which can be attributed to the range of the pre-
dicted values – QM9 models are expected to predict 
values in the range (−620,−40) , while for other data-
sets it is (−4, 2.2).

• The differences in performance are more emphasized 
on ESOL (scaffold) than on ESOL (random), even 
though the only difference between these datasets is 
their split. Additionally, models perform better on 
randomly split data. This is not surprising, as there is 
a greater variability between molecules with different 
scaffolds than between molecules that share the same 
scaffold. Since there is more interest in molecules 
from new scaffolds than from existing ones [78], 
the generalization capabilities become particularly 
important.

We conclude that a single representation can consist-
ently outperform others on multiple tasks. Even though 
the differences are usually not strongly emphasized, these 
results indicate that comparing graph models trained 
with different representations is a bad practice and 
should be discouraged. We do not observe a correlation 
between representation size and model performance.

How to find the optimal representation?
In previous sections, we demonstrated that the opti-
mal set of features is task-specific. Here, we perform an 
additional analysis to answer how an optimal represen-
tation can be found – should representations be treated 
as another hyperparameter or maybe any representation 
with enough features is good enough?

We use the results of our previous experiments with 
GCNs and select the optimal model according to four 
scenarios, which vary in the amount of computational 
resources that they require:

• Scenario I—an architecture search is performed 
with a single predefined representation, in total 
n_architectures models are tested;
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• Scenario II—first an architecture search with a pre-
defined representation is performed to select a sin-
gle best performing architecture, then this archi-
tecture is used in a representation search, in total 
n_architectures + (n_representations − 1) models 
are tested;

• Scenario III—just as in scenario II an archi-
tecture search with a predefined represen-
tation is performed first, but here, five best 
performing architectures are selected and a repre-
sentation search is performed for all of them, in total 
n_architectures + 5× (n_representations − 1) mod-
els are tested;

• Scenario IV—representation is treated as 
another hyperparameter, that is, a single 
hyperparameter search over both architec-
tures and representations is performed, in total 
n_architectures × n_representations are tested. We 
will call the model selected with this scenario an 
optimal solution.

In all experiments in this section, we choose the start-
ing representation to be representation F (full) because it 
performs well in the previous sections and does not dis-
card any features.

In Table 14, we show results of performing the repre-
sentation search only on representations 1–12. In the 
case of ESOL (random), Human and Rat datasets, sce-
nario II, which requires training only several more mod-
els than scenario I, finds the optimal solution (i.e. the 
same model as scenario IV). This means that scenario I, 
which requires testing the smallest number of models, 
selects the optimal architecture, but a better representa-
tion can be found. In the case of Human, increasing the 
number of tested models results in decreasing errors on 

both validation and test sets; however, for Rat and ESOL 
(random), the errors on test set increase, which sug-
gests that models selected with more advanced scenarios 
might overfit. In the case of ESOL (scaffold) and QM9, 
the optimal solution is selected with scenario III, which 
means that the architecture selected by scenario I was not 
optimal but was among the top five. In the case of ESOL 
(scaffold), one can see that scenarios which test a higher 
number of models allow for a slight decrease in validation 
error but result in a high increase of test error—by over 
30% (from 0.166 to 0.221). In the case of QM9, scenario II 
selects a model that outperforms the model selected with 
scenario I on both validation and test sets; however, the 
model selected with scenarios III and IV might be overfit-
ting because the test error slightly increases (from 9.193 
in scenario I to 9.698) while the validation error drops by 
almost 40% (from 4.531 to 2.667). In all cases, scenario I 
selects a model that performs similarly or better in terms 
of test error compared to the optimal model.

It is worth noting that in the case of Rat, all scenarios 
that perform a representation search select a representa-
tion that contains only information about the atom type 
and the number of hydrogens. For the other datasets, 
the chosen representations are almost full—missing only 
information about formal charge or aromaticity. Interest-
ingly, representation A+H is one of two representations 
that are significantly inferior according to the Wilcoxon 
analysis in Section Quantitative analysis (Fig. 4).

In Table 15, the representation search includes the lit-
erature representations. In the case of ESOL (random), 
each scenario selects a different model. Scenarios II and 
III select models that slightly increase the test error while 
scenario IV selects a model that outperforms all others in 
terms of the test error. In the case of QM9, the optimal 
model is selected with scenario  III; however, each time 
the validation error drops, there is a significant increase 
in the test error.

The results presented in this section demonstrate that 
treating representation as an additional hyperparameter 
can lead to overfitting. The basic scenario of fixing the rep-
resentation and performing only an architecture search is 
a very strong baseline that in most cases gives results simi-
lar or better than when representation search is performed 
and several times more models are tested.

Methods
D‑MPNN
Directed Message Passing Neural Networks (D-MPNNs) 
[7] are an extension of Message Passing Neural Networks 
[6], which are graph convolutional neural networks, but 
their formulation is given from a perspective of messages 
sent between each pair of connected nodes and not, as 
is the case with GCNs, in terms of convolutional filters. 

Table 9 Hyperparameters considered in the random search and 
their values

Hyperparameter Values

Number of conv. layers 1, 3, 5

Number of channels in conv. layers 16, 64, 256

Number of dense layers 1, 3

Size of dense layers 16, 64, 256

Dropout 0.0, 0.2

BatchNorm True, false

Batch size 8, 32, 128

Learning rate 0.01, 0.001, 0.0001, 0.00001, 
0.000001

Scheduler No scheduler, decrease after 50% 
of epochs, decrease after 80% 
of epochs
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In this section, we first describe Message Passing Neural 
Networks and then introduce D-MPNNs.

MPNNs, just as GCNs, accept as input a (molecular) 
graph. The initial layers of the network are responsi-
ble for calculating hidden representations of each node 
(atom) which is done in two phases: 

1 message-passing – node v receives a message from 
each of its neighbors N (v) and aggregates all mes-
sages into a single message mt+1

v ,
2 message-aggregation – message mt+1

v  is used to 
update hidden representation of node v.

Message mt+1
v  is calculated using the current hidden rep-

resentation of the node, htv , hidden representations of all 
its neighbors and representations of the edges that con-
nect the node to its neighbors:

where evw is an edge that connects node v with node w, 
and Mt is a message function.

A new hidden representation for node v is calculated 
using an update function Ut:

In the case of GCNs, these two steps are achieved using 
graph convolution (Eq. 2).

D-MPNNs use messages associated with directed edges 
(bonds) rather than messages associated with nodes 
(atoms), as is the case for MPNNs. The equation for mes-
sage-passing is reformulated as follows:

(4)mt+1
v =

∑

w∈N (v)

Mt(h
t
v , h

t
w , evw),

(5)ht+1
v = Ut(h

t
v ,m

t+1
v ).

(6)mt+1
vw =

∑

k∈{N (v)\w}

Mt(xv , xk , h
t
kv),

where mvw is the aggregated message for edge evw , 
N (v)\w is the set of all neighbors of the starting node of 
edge evw except for its ending node, which is w, xv is the 
representation of node v and htkv is a hidden representa-
tion of edge ekv at time t. Note that htvw is distinct from 
htwv because the edges are directed.

In our experiments, we use the implementation of 
D-MPNNs from https:// github. com/ chemp rop/ chemp 
rop. We decided to closely follow the experimental setup 
that was used for training GCNs. We train the same 
number of models and use the same architectures, with 
one exception: the implementation of D-MPNNs, which 
we use, does not support BatchNorm, but introduces 
another important parameter, aggregation. This param-
eter controls the aggregation scheme, which corresponds 
to pooling in GCNs (Eq.  3), and can take two values in 
our experiments: ’sum’ or ’mean’. Since both BatchNorm 
and the aggregation parameter allow exactly two possibil-
ities, we reuse the existing configuration files for GCNs 
and control the aggregation in D-MPNNs by the param-
eter that is responsible for BatchNorm in GCNs.

Importantly, all D-MPNN models additionally use 
bond features. First, a representation of each bond is 
calculated using the following features: the existence of 
a bond, its order, whether it is in a ring, in an aromatic 
ring, if it is conjugated, and 7 stereo features. Then, this 
representation is concatenated with the representation of 
a connected atom – since each bond connects two atoms, 
each bond has two representations, which are associated 
with its direction.

MAT
Molecule Attention Transformer (MAT) [17] is a neu-
ral network based on Transformer [14] that is adapted 
for molecular graphs, using their bond connectivity and 
3D conformations. The main building block of MAT is 
its molecular attention mechanism that comprises three 

Table 10 Average test set MSE of the best-performing D-MPNN models for each representation and dataset

Best results are in bold

Representation Rat ↓ Human ↓ QM9 ↓ ESOL (random) ↓ ESOL (scaffold) ↓

F
A

0.192
0.187

0.204
0.220

0.022
1892.635

0.113
0.117

0.181
0.193

A + N
A + H
A + C
A + R
A + A

0.189
0.191
0.193
0.184
0.198

0.208
0.200
0.218
0.197
0.214

356.488
0.017
0.030

1828.198
0.040

0.112
0.111
0.100
0.107
0.130

0.177
0.168
0.177
0.169
0.215

F-N
F-H
F-C
F-R
F-A

0.187
0.197
0.192
0.187
0.196

0.212
0.207
0.203
0.201
0.202

5.667
0.023
0.023
0.022
0.025

0.120
0.112
0.114
0.111
0.116

0.194
0.169
0.197
0.200
0.174

https://github.com/chemprop/chemprop
https://github.com/chemprop/chemprop
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views of a molecule: molecular graph topology processed 
analogously to other graph neural networks, interatomic 
distances computed from the provided molecular confor-
mation, and long-range interatomic dependencies mod-
eled with the attention mechanism. Molecular attention 
is computed using the following formula:

where Qi , Ki , and Vi are the attention queries, keys, and 
values calculated using input atom representations and 
dk is a normalization factor (defined as in Transformer 

(7)A(i) =

(

�aρ

(

QiK
T
i

√

dk

)

+ �dg(D)+ �gA

)

Vi,

[14]). D is the interatomic distance matrix and A is the 
adjacency matrix, ρ is the softmax function, and g is a 
distance matrix transformation defined as either row-
wise softmax or element-wise operation: g(x) = e−x . 
�a , �d , and �g are model hyperparameters such that 
�a + �d + �g = 1.

In our experiments, we follow the suggestion of the 
authors and only optimize learning rate across 7 val-
ues (0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 
0.000001). All models are trained for 100 epochs with 
Adam optimizer and batch size equal to 32. All MAT 
models use an additional feature, which is pairwise dis-
tances between all atoms.

Table 11 Average test set MSE of the best performing MAT models for each representation and dataset

Best results are in bold

Representation Rat ↓ Human ↓ QM9 ↓ ESOL (random) ↓ ESOL (scaffold) ↓

F
A

0.205
0.325

0.241
0.260

501.171
582.430

0.135
0.246

0.214
0.483

A + N
A + H
A + C
A + R
A + A

0.235
0.231
0.317
0.233
0.237

0.258
0.231
0.269
0.255
0.253

569.508
559.458
583.693
517.893
570.120

0.184
0.269
0.233
0.203
0.242

0.309
0.290
0.415
0.351
0.287

F-N
F-H
F-C
F-R
F-A

0.216
0.201
0.204
0.202
0.207

0.240
0.254
0.240
0.241
0.239

497.775
486.866
497.051
544.970
488.815

0.201
0.161
0.128
0.200
0.136

0.207
0.243
0.221
0.371
0.229

Fig. 19 P-values of one-tailed Wilcoxon tests between the best models trained on each representation. Results for D-MPNN (top) and MAT 
(bottom)
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Table 12 Different featurization methods used in literature

Liu [54]

Size Feature

23 Atom type

2 vdW radius and covalent radius

6 Is in a ring of size 3-8

1 Is in aromatic system

1 Electrostatic charge

Duvenaud [1]

Size Feature

44 Atom type

6 Number of neighbors

5 Number of hydrogen atoms

6 Implicit valence

1 Is in aromatic system

Li [77]

Size Feature

13 Atom type

6 Number of neighbors

5 Number of hydrogen atoms

6 Implicit valence

1 Is in aromatic system

1 Number of radical electrons

5 Hybridization type

1 Formal charge

1 Gasteiger partial charge

Yang [7]

Size Feature

101 Atom type

7 Number of bonds

6 Formal charge

5 Chirality

6 Number of hydrogen atoms

6 Hybridization type

1 Is in aromatic system

1 Atomic mass

Table 13 Average test set MSE of the best-performing GCN models trained with the literature representations

Best results are in bold

Representation Rat ↓ Human ↓ QM9 ↓ ESOL (random) ↓ ESOL (scaffold) ↓

F 0.182 0.218 9.193 0.118 0.166
Liu 0.191 0.228 80.107 0.148 0.285

Li 0.223 0.223 25.155 0.107 0.201

Yang 0.189 0.226 24.953 0.129 0.223

Duvenaud 0.195 0.224 11.053 0.129 0.196

Table 14 Mean square errors on validation and test data of 
models selected with different scenarios

For each model we include information about which representation (repr.) and 
architecture (arch.) is selected. The representation search is performed over 
representations 1–12. Each change in architecture or representation when 
choosing a more expensive scenario is underlined

Dataset Scenario I II III IV

ESOL (random) arch.
repr.
val. ↓
test ↓

2095
F
0.086
0.118

2095
F− A
0.083
0.120

2095
F−A
0.083
0.120

2095
F−A
0.083
0.120

ESOL (scaffold) arch.
repr.
val. ↓
test ↓

3180
F
0.107
0.166

3180
F
0.107
0.166

1990
F− A
0.106
0.221

1990
F−A
0.106
0.221

Rat arch.
repr.
val. ↓
test ↓

996
F
0.152
0.182

996
A+H
0.147
0.196

996
A + H
0.147
0.196

996
A + H
0.147
0.196

Human arch.
repr.
val. ↓
test ↓

2095
F
0.143
0.218

2095
F− C
0.141
0.213

2095
F−C
0.141
0.213

2095
F−C
0.141
0.213

QM9 arch.
repr.
val. ↓
test ↓

914
F
4.531
9.193

914
F− C
3.073
6.757

917
F−C
2.667
9.698

917
F−C
2.667
9.698

Table 15 Mean square errors on validation and test data of 
models selected with different scenarios

The representation search is performed over representations 1–12 and literature 
representations. Results for ESOL (scaffold), Rat and Human datasets are 
identical as in Table 14

Dataset Scenario I II III IV

ESOL (random) arch.
repr.
val. ↓
test ↓

2095
F
0.086
0.118

2095
F− A
0.083
0.120

996
Li
0.078
0.126

1743
Li
0.078
0.107

QM9 arch.
repr.
val. ↓
test ↓

914
F
4.531
9.193

914
Yang
2.711
14.732

917
Yang
2.659
24.953

917
Yang
2.659
24.953
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D-MPNN  Directed message passing neural networks
GCN  Graph convolutional neural network
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MAT  Molecule attention transformer
MPNN  Message passing neural networks
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QSPR  Quantitative structure–property relationship
t-SNE  t-Distributed stochastic neighbor embedding
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