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Abstract 

A reliable and practical determination of a chemical species’ solubility in water continues to be examined using 
empirical observations and exhaustive experimental studies alone. Predictions of chemical solubility in water using 
data-driven algorithms can allow us to create a rationally designed, efficient, and cost-effective tool for next-gen-
eration materials and chemical formulations. We present results from two machine learning (ML) modeling studies 
to adequately predict various species’ solubility using data for over 8400 compounds. Molecular-descriptors, the most 
used method in previous studies, and Morgan fingerprint, a circular-based hash of the molecules’ structures, were 
applied to produce water solubility estimates. We trained all models on 80% of the total datasets using the Random 
Forest (RFs) technique as the regressor and tested the prediction performance using the remaining 20%, resulting 
in coefficient of determination  (R2) test values of 0.88 and 0.81 and root-mean-square deviation (RMSE) test values 
0.64 and 0.80 for the descriptors and circular fingerprint methods, respectively. We interpreted the produced ML 
models and reported the most effective features for aqueous solubility measures using the Shapley Additive exPlana-
tions (SHAP) and thermodynamic analysis. Low error, ability to investigate the molecular-level interactions, and com-
patibility with thermodynamic quantities made the fingerprint method a distinct model compared to other available 
computational tools. However, it is worth emphasizing that physicochemical descriptor model outperformed the fin-
gerprint model in achieving better predictive accuracy for the given test set.
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Introduction
Chemical compounds solubility in various solvents is 
one of the most important properties for understanding 
the physicochemical behavior of various materials and 
chemical formulations, as well as the design and synthe-
sis of the next-generation materials. Aqueous solubility 
predictions have been the subject of numerous research 
and application studies, ranging from environmental 
predictions, biochemistry, chemical process design, and 
agrochemical uses to drug development [1, 2]. Solubility 
prediction remains a critical challenge due to the lack of 
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reliable and reproducible measurements alongside the 
time and cost of experimental approaches. A machine 
learning (ML) algorithm that accurately describes behav-
ioral component compositions can be used to fulfill this 
requirement. ML techniques will allow us to test a signifi-
cant majority of materials without a physical sample and 
more efficiently determine the materials’ physical proper-
ties, such as solubility. The primary challenge when using 
ML algorithms for aqueous solubility predictions is that 
the solubility experimental data are most often unrelia-
ble, and the resultant models would be no better than the 
raw data. Nonetheless, using a large database can greatly 
improve a model’s accuracy and reliability.

Several computational models capable of predicting a 
molecule’s aqueous solubility have been reported in the 
literature. Descriptor-based [3–6], and group contribu-
tion [7–9] are two distinct data preparation approaches 
that have been used recently in various modeling meth-
ods to determine solubility measures. Parameters in 
descriptor-based models rely on physical properties such 
as molecular topological indices. Group contribution 
methods demonstrate a correlation between water solu-
bility and several functional groups by decomposing the 
molecular units into subunits and adding the estimated 
solubility of each of these subunits together. A compari-
son between notable developed models and their perfor-
mance is presented in Table 1.

Previous studies have revealed that aqueous solubility 
prediction is accessible; however, researchers new to the 
field may face difficulties in comprehending these algo-
rithms due to their complex physicochemical character-
istics. Moreover, most concerns with current studies are 
related to the validity of the correlations (since they are 

very susceptible to the variations of the conditions used 
during calibration) where they are defined ahead of time. 
Also, the effect of chemical representations and their role 
in a ML method’s performance have not been thoroughly 
investigated.

In this study, we compared the descriptor-based and 
fingerprint methods for investigating the effects of data 
preparation ahead and behind the time on the ML’s accu-
racy. The fingerprint model used in this study is similar to 
the group contribution methods addressed above, with the 
advantage that it does not obtain the chemical building 
blocks in advance. Additionally, the fingerprint model is 
derived from physicochemical insights [16], which allows 
for easier interpretation of the model, and is useful in the 
context of developing efficient Quantitative Structure–
Property Relationships (QSPRs) for the solubility [17]. 
The significance of this study lies in the practical utility of 
the developed fingerprint model, which can aid experts in 
investigating the impact of different functional groups on 
solubility predictions, which can have important implica-
tions for drug discovery and other related applications.

Materials & method
Data acquisition
The data needed for model training are vital if the model 
is to interpret many aspects, including feature selection 
effectiveness, applicability domain, and ability to handle 
the various contributions that can describe the equi-
librium between the solute’s dissolved and bulk states. 
A significant amount of data will lead to reliable data-
driven models.

Our database is a curated collection of the aque-
ous solubilities of organic compounds from three 

Table 1 Comparison between different current models that predict water solubility

Total size in this table stands for the number of datasets used to train each of the algorithms
1 MLR: Multilinear Regression; 2RF: Random Forest; 3ANN: Artificial Neural Network; 4XGB: Gradient Boosted Trees; 5MLREM: multiple linear regression with expectation 
maximization; 6BRANNLP: Bayesian regularized artificial neural network with a Laplacian prior; 7R2: squared coefficient of determination; 8MAE: mean absolute error; 
9RMSE: root-mean-square deviation; 10SEP: standard error of prediction

Developer Data Preparation Method Total Size ML Method R2 Test  Value7 MAE8 RMSE9 SEP10 Refs

Huuskonen Descriptor-Based 1297 MLR1 0.88 – 0.71 – [10]

ANN3 0.92 – 0.60 –

Yan Descriptor-Based 1293 MLR 0.82 0.68 0.79 – [11]

ANN 0.96 0.49 0.59 –

Delaney Descriptor-Based 2874 MLR 0.71 0.68 0.87 – [12]

Hou Group Contribution 1294 MLR 0.9 0.52 0.63 – [2]

Ali Descriptor-Based 1290 MLR 0.73 0.72 0.94 – [13]

Sorkun Descriptor-Based 1290 Ensemble of ANN, 
 RF2, and  XGB4

0.93 0.397 0.53 – [14]

Le Descriptor-Based 4376 MLR 0.89 – – 0.75 [15]

MLREM5 0.88 – – 0.76

BRANNLP6 0.90 – – 0.66
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literature-based large databases: (1) Vermeire’s (11804 
datapoints) [18], (2) Boobier’s (901 datapoints) [1], and (3) 
Delaney’s (1145 datapoints) [12]. The produced dataset 
was prepared by omitting the non-unique measures and 
noisy data, consisting of more than one solubility meas-
ure for a single molecule, yielding a total of 8,438 unique 
data entries (Additional file 1). The number of C (Carbon) 
atoms in each compound ranged from 1 to 12, represent-
ing the low molecular weight organic compounds with an 
average molecular weight of 190. They are of key interest 
due to their use as lead compounds in the search for new 
pharmacological effectors [19]. The range of molecular 

weights and the number of compounds containing N 
(Nitrogen), S (Sulfur), Halogens, OH, and aromatic groups 
is illustrated in Fig. 1.

A database of 100 reliable solubility measurements pro-
vided by Llinàs et al. [20] was selected for external valida-
tion. The set of molecules was disjointed from other data 
used in this study and was never used for model training 
or internal testing.

Data preparation
We prepared the training data using the chemical and 
physical feature descriptor functions, i.e., molecular 

Fig. 1 A molecular weight distribution of the produced dataset; B number of compounds in the dataset for each of the five nominated chemical 
species
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descriptors and circular fingerprint methods. Molecular 
descriptors define fragments as related physicochemical 
properties, or a collection of relevant structural features, 
such as a molecule’s ring count [2, 21]. A Descriptor-
based model, which is considered as a standard ML 
approach, relies on a set of known descriptors [22]. We 
used Mordred package [23] to generate 1,613 two-dimen-
sional (2D) descriptors and disregarded 3D descrip-
tors to increase prediction speed and avoid repeatability 
problems regarding 3D descriptors values [24]. To prune 
the set of molecular descriptors, we initially excluded 
categorical variables, resulting in a reduced set of 811 
descriptors out of the initial 1613. Subsequently, a cor-
relation filter was applied using an optimized threshold 
of 0.1 to prune out the less relevant descriptors with low 
variance numeric, resulting in a selection of 506 descrip-
tors. The descriptors’ pair correlation matrix was then 
calculated, and highly correlated descriptors were elimi-
nated to prevent any particular mode of information 
from dominating the model’s mechanism. Furthermore, 
"FilterItLogS" feature was excluded from the descriptors 
to prevent data leakage from another ML model (FilterIt) 
that predicts solubility. This process yielded a final selec-
tion of 177 physicochemical descriptors.

Compared to molecular descriptors, fingerprinting 
methods provide a more dynamic representation that 
encompasses the characteristics of materials through 
their fragment features [25]. There are various types of 
molecular fingerprints, which are determined by the 
method used to convert the molecular fragment into a 
binary string [26]. Fingerprints with longer bit strings are 
more reliable for a similarity search since each significant 
bond in a molecule is defined separately as a sequence of 
binary digits (bits), and they have more stored informa-
tion regarding the molecular properties. In this study, the 
Morgan algorithm was used as the circular fingerprint-
ing method due to its exceptional performance in virtual 
screening experiments. This algorithm analyzes different 
fragments and encodes all possible molecular structure 
bonds [27]. Circular fingerprints are generated by con-
sidering the “circular” environment of each atom up to a 
given “radius” or “diameter” from the central atom [28]. 
The Morgan fingerprint, also known as extended-con-
nectivity fingerprints (ECFPs), is the most popular cir-
cular fingerprint. This fingerprint perceives the presence 
of specific circular substructures around each atom in a 
molecule [29]. ECFPs is a method that identifies identi-
cal molecules with different atom numberings by repre-
senting the number of heavy-atom neighbors, number of 
hydrogen atoms, isotopes, and ring information. ECFPs 
are categorized into different types based on the selection 
of different maximum bond lengths or diameters of the 
circular atom neighborhood, where the digit at the end 

represents the maximum diameter value used to gener-
ate the fingerprint. We used a circular fingerprint with a 
diameter of four, ECFP4.

The schematic for transforming each molecular struc-
ture into a bit for Morgan fingerprints is illustrated in 
Fig.  2, where the path for transforming each molecu-
lar structure into a bit and the hashing technique are 
depicted. Chemical structures, as the SMILES form, were 
read by a machine and then hashed into a fingerprint 
with a size of 2,048 bits for all information bit-strings. 
Each bit was nominated as a single feature that can be 
used to survey the impact of various functional groups 
and their connectivity pathways on aqueous solubility 
[30].

ML method
We randomly split our datasets into two groups: one 
for training and the other for testing the ML model 
and verifying the model’s accuracy. The training data-
sets comprised ~ 80% of our total database, representing 
approximately 6750 organic compounds. Random forest 
(RF) and Multiple Linear Regression (MLR) regressions 
were used in this study as our ML algorithms since they 
are among the most accurate general-purpose classifi-
ers and also have fast computational efficiency[31, 32]. 
The training and test dataset sizes, RF hyperparameters, 
estimators, and random states were kept constant for all 
models during the analysis to improve comparisons.

ML models are treated as black boxes, and a model’s 
learning principles remain challenging; however, inter-
pretations of a given feature’s impact on the prediction 
measures can still be obtained using SHAP (SHapley 
Additive exPlanations [33]) values. The effects of the 
most common physical quantities and characteristics of 
higher-performing features on aqueous solubility predic-
tions were examined and the most important features 
for each method were obtained by performing SHAP 
analyses for all chemical representation methods imple-
mented to structure the data into the ML model’s format. 
SHAP was chosen over other criteria, such as random 
forest feature or permutation importance, since it can be 
used to interpret complex model predictions. However, if 
a selected descriptor is a kind of a “vague” global value 
derived from the entire molecule, the interpretation 
becomes less clear. In order to overcome this limitation 
and gain a comprehensive understanding of the factors 
influencing solubility and the impact of diverse chemo-
types on solubility, a sparse MLR coefficient approach 
was also employed. SHAP is based on the magnitude of 
feature attributions and assigns each feature an impor-
tant value in comparison with permutation feature 
importance, which is based on the decrease in model 
performance. Additionally, SHAP values can be used to 
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generate feature importance plots that show how each 
feature affects the model’s output across the entire data-
set. This provides a more comprehensive understanding 
of how the model is making predictions and offers a high 
level of interpretability for a model.

The mean absolute error (MAE) and root-mean-square 
deviation (RMSE) were used to approximate the models’ 
prediction accuracy and algorithm performance. In addi-
tion, we included the coefficient of determination (R^2), 
a frequently used statistical parameter. However, R^2 is 
not regarded as a reliable measure of model predictivity 
due to its sensitivity to model complexity and the number 
of parameters fitted in the model, in contrast to the MAE 
and RMSE metrics [34, 35].

Results and discussion
Chemical and physical feature descriptor methods
The scatter plot in Fig.  3 demonstrates the relationship 
between the predicted LogS values derived from the 
Molecular-descriptors method and the corresponding 
measured values obtained from the RF and MLR models. 
The scatter plot encompasses data from both the train-
ing and test datasets. Significantly, the RF model demon-
strates a stronger correlation and consequently delivers 
superior predictive performance when compared to the 
MLR model. This is evident from the higher R-squared 
(R^2) values of 0.88 and 0.80, as well as the lower RMSE 
and MAE values of 0.64/0.41 and 0.82/0.62, respectively, 

obtained for the test dataset. Table 2 provides a compre-
hensive summary of the accuracies associated with each 
of them.

In order to address the presence of data outliers, we 
employed the Local Outlier Factor (LOF) technique 
to identify and thoroughly examine outliers within the 
training dataset. The LOF model operates on a local level, 
assessing the degree of isolation of an object relative to 
its immediate neighborhood. This locality-based char-
acteristic allows LOF to effectively detect outliers that 
may possess substantive significance but would remain 
undetectable using conventional approaches [36]. This 
approach ensured that only data points conforming to 
the normal distribution were retained, resulting in a 
more robust and reliable training dataset for subsequent 
analysis. The list of 177 physicochemical descriptors for 
outliers and inliers can be found in the GitHub reposi-
tory associated with this work. T-test and corresponding 
P-values conducted on the physicochemical descriptors 
for outliers and inliers, revealed variations in the variable 
represented by ATSC2Z, ATSC2se, ATSC7Z, ATSC7i, 
EState_VSA4, NaaNH, PEOE_VSA3 and SlogP_VSA3 
descriptors. Detailed information regarding the t-statistic 
and p-values for all 177 physicochemical descriptors can 
be found in Additional file 2: Table S1.

By removing outliers and recalculating the models, a 
slight improvement was observed in the MAE and RMSE 
values for test data in both the RF and MLR methods 

Fig. 2 Molecular structure hashing to a list of bits using Morgan fingerprinting method
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Fig. 3 Estimated linear and Random Forest regressions for aqueous solubility predictions in the Molecular-descriptors method: A and C for training 
data; B and D for test data

Table 2 Estimated linear and Random Forest model evaluation for aqueous solubility predictions in the Molecular-descriptors method

Training set Test set

R2 RMSE MAE R2 RMSE MAE

RF 0.98 0.25 0.16 0.88 0.64 0.41

MLR 0.80 0.82 0.61 0.80 0.82 0.62
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where the results can be found in Additional file  2: 
Table  S2. Given that the predictions of the test set for 
models with and without outliers yielded essentially iden-
tical results, we present our analysis based on the com-
plete data set, encompassing both outlier and non-outlier 
instances.

Figure  4 illustrates the results of the SHAP analysis 
for the RF model trained on chemical descriptors and 
compares the impacts of top eleven chemical and physi-
cal descriptors, based on their average SHAP values, on 
the aqueous solubility outputs. In Fig. 4A, the blue bars 
depict the descriptors with the highest degree of impact, 
while Fig. 4B demonstrates the individual impact of each 
descriptor on the model’s predictions. The feature values 
in the positive SHAP value range indicate a positive effect 
on solubility, while feature values in the negative SHAP 
value range indicate a negative effect. The density of the 
points represents the feature distribution. Red denotes a 
higher feature value, and blue denotes lower values.

An MLR coefficient method was also utilized to iden-
tify the globally important chemical features, rather than 
the SHAP values, which exhibit local sensitivity. The MLR 
coefficient magnitudes corresponding to each of the top 
descriptors were incorporated into the Fig. 4, represented 
by the orange bars. Notably, the descriptors Slogp_VSA2, 
NsOH, NHBDon, and GATS1p, which exhibit positive 
SHAP values impact to the model’s output, are charac-
terized by higher MLR coefficient. As elucidated in Sect. 
“Fingerprinting methods”, feature importance in non-
linear models is a local rather than global property that 
depends on the location on the response surface where it 
is measured. Figure 5 illustrates the top ten physiochemi-
cal descriptors with high MLR coefficient obtained from 
the MLR model trained on chemical descriptors. Fur-
thermore, Additional file 2: Table S1 provides a compre-
hensive list of all physiochemical descriptors along with 
their corresponding regression coefficients.

Fingerprinting methods
To identify the most relevant features among the 2048 
considered in the Morgan Fingerprint model, a fea-
ture selection technique using the LASSO model was 
employed. A range of alpha values, specifically 0.00001, 
0.0001, 0.001, 0.01, 0.1, 1.0, and 10.0, were considered for 
optimization purposes. Subsequently, an alpha value of 
0.001 was selected, resulting in the identification of 631 
features from the original set. The performance of the 
pruned data was compared to the model with the 2048 
features, as presented in Table  3. The findings indicate 
that when employing the RF model, the pruned data 
exhibited higher RMSE and MAE values. Conversely, for 
the MLR model, the pruned data demonstrated improved 
RMSE, MAE, and R^2 metrics. The improved results for 

MLR can be attributed to the inherent nature of LASSO, 
which acts as a regularization technique that performs 
variable selection and regularization by imposing a pen-
alty on the absolute values of the regression coefficients. 
Figure 6 depicts the performance evaluation of the Mor-
gan Fingerprint model with 2048 features using the RF 
and MLR algorithms.

The Morgan fingerprints are binary representations 
that capture the presence or absence of specific structural 
features in molecules. In the context of Morgan finger-
prints, which represent a sequence of bits rather than 
continuous variables, we utilized the Local Outlier Factor 
(LOF) technique to identify and scrutinize data outliers 
within the binary data. The LOF technique is applicable 
even with binary or categorical data, allowing us to detect 
and analyze potential outliers in the context of Morgan 
fingerprints’ binary representations.

The RF and MLR models exhibited improved predic-
tive performance upon excluding large outliers, although 
they demonstrated higher Absolute Calculation Error 
when applied to the blind dataset in Sect. “Blind test” 
(Additional file  2: Table  S3). In order to investigate the 
nature of these outliers, an analysis was conducted on the 
frequency counts of each feature within the entire data-
set. The findings revealed that some features appeared 
less than 100  times while some features appeared more 
than 3000  times. The ratio of “the number of features 
in an outlier’s fingerprint with less than 100 counts” to 
“the total number of features in outlier’s fingerprint” was 
calculated for all SMILES in each dataset. The results 
revealed that outliers exhibited a slightly higher mean 
ratio compared to inliers, with values of 0.31 and 0.29 
respectively. This indicates that the frequency of each fea-
ture has a significant impact on the model’s performance. 
Taking into account that removing outliers would result 
in a reduction in the occurrence of repeated features and 
considering the outcomes of the blind test, we made the 
decision to keep the model as-is without removing outli-
ers. The complete list of outliers, inliers, and the afore-
mentioned ratio has been uploaded to the associated 
GitHub repository for reference.

Figure  7 displays the top twelve important chemical 
substructures for predicting aqueous solubility based on 
their average SHAP values where the Morgan fingerprint 
was applied. Features 807, 222, 650, and 1171 are frag-
ments consisting of the  sp2 hybridized Carbon, hydroxyl 
group, carboxyl group and amine group respectively, con-
tributed to increased solubility measures with enhanced 
amounts, and the rest negatively affected aqueous solu-
bility. Solubility is a question of equilibria; therefore, to 
interpret the results we should frame the important fea-
tures in terms of the energetics of the states as opposed 
to the dynamics that would transition between states. 



Page 8 of 16Tayyebi et al. Journal of Cheminformatics           (2023) 15:99 

PEOE_VSA6

ABC

nC

ATS0Z

nHBAcc

SlogP_VSA2

AATS0d

NsOH

Xch-7d

nHBDon

GATS1p

-0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

MLR Coefs

mean SHAP value

Average impact on the model output magnitude

A

B

Fig. 4 SHAP analysis of the RF model trained on the molecular descriptors: A average SHAP values and MLR Coefficients of each descriptor, and B 
impact of each descriptor on solubility output
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The energetics of a compounds in water can be estimated 
through a statistical thermodynamical-like approach [38, 
39]. Gibbs energy, enthalpy or entropy as thermodynamic 
analysis of solubility with the purpose of contributing 
to the understanding of the possible molecular interac-
tions can be used for interpretation of data [16]. Calcu-
lated Gibbs energy, as a thermodynamic paradigm, was 

adopted in this study to indicate a better mastery of the 
chemistry involved and improve the clarity of the dis-
cussion. Lower Gibbs energy measures indicate greater 
solubility in water, and a higher positive Gibbs energy 
specifies lower solubility in water. Table 4 illustrates the 
Gibbs energies for the top important features calculated 
by Perlovich’s equation (Eq. 1) [40].

(1)�G
298

= (−0.5± 1.6)− (1.37± 0.06)α + (3.84 ± 0.25)
∑

Ca − (2.97± 0.26)
∑

Cd

Fig. 5 Top ten physiochemical descriptors with high MLR coefficient obtained from the MLR model trained on chemical descriptors. nF number 
of F atoms, nCl number of Cl atoms, nBr number of Br atoms, nO number of O atoms, nN number of N atoms, ATSC1se centered Moreau-Broto 
autocorrelation of lag 1 weighted by sanderson EN, NsCH3 number of sCH3, NssCH2 number of ssCH2, NssssC number of ssssC, NsssCH number 
of sssCH [37]

Table 3 Estimated linear and Random Forest model evaluation for aqueous solubility predictions- Morgan-Fingerprint method

Training set Test set

R2 RMSE MAE R2 RMSE MAE

2048 features RF 0.96 0.35 0.23 0.81 0.80 0.55

MLR 0.83 0.74 0.55 0.66 1.10 0.80

631 features RF 0.96 0.35 0.23 0.81 0.84 0.57

MLR 0.77 0.88 0.66 0.75 0.94 0.69
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where α is molecular polarizability, ƩCa is the sum of all 
H-bond acceptor factors in a molecule, and ƩCd is the 
sum of H-bond donor factors. Three described variables 
for each feature were calculated by descriptors-based 
method described in Sect. "Chemical and physical fea-
ture descriptor methods".

Features 807, 222, 650, and 1171, as the features with 
positive effects, have low Gibbs energies and are ther-
modynamically favorable; they have lower Gibbs ener-
gies compared to Features 1380, 561, 1143, 1750, 114 and 
591 with negative effects. The thermodynamic results 
are intuitive and agree with expectations arising from 

Fig. 6 Performance of linear and Random Forest regressions for aqueous solubility predictions (A), (C) training data, and (B) and (D) test data; 
Morgan-Fingerprint method with 2048 features
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SHAP’s analysis. The agreement between the impactful 
features and the thermodynamic quantities can separated 
the fingerprint method from other computational tools 
to predict the physico-chemical properties [41].

Blue represents the central atom, yellow depicts the aro-
matic atoms, and the aliphatic ring atoms are highlighted 
in dark gray in the substructure drawings illustrated in 
Table  4. Light gray also indicates atom/bond structures 

that influence the atom’s connectivity invariants but are 
not directly part of the fingerprint. A schematic of extract-
ing features 561 and 807 from their molecular structure is 
provided in Fig. 8 to illustrate the concept of hashing each 
structure.

To have a robust illustration of the factors driving 
solubility and the role of diverse chemotype on solubil-
ity, a sparse MLR coefficient approach was also utilized. 

 

Feature 1380

Feature 807

Feature 561

Feature 222

Feature 650

Feature 1143

Feature 1750

Feature 1171

Feature 1873

Feature 294

Feature 114

Feature 591

-1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

MLR Coefs

mean SHAP value

Average impact on the model output magnitude

A

B

Fig. 7 SHAP analysis of the ML model trained on the Morgan fingerprint A impact of each feature on solubility output, B average SHAP values 
and MLR Coefficients for the top twelve features
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Feature importance in nonlinear models is a local 
rather than global property that depends on the loca-
tion on the response surface where it is measured. This 
is evident in the SHAP graphs that span ranges from 
negative to positive influences on the model rather 

than having a single value. Given that the MLR model 
has a better RMSE than the RF model, the regression 
coefficients of the MLR model were analyzed to gain 
insight into how different features modulate solubility 
in linear model. The last column of Table 4 summarizes 

Table 4 Gibbs energies and MLR Coefficients for the top twelve features

Substructure Substructure drawings Molecular 
polarizability

H-bond 
acceptor

H-bond 
Donor

∆G298 MLR. coefficients

Feature 1380 12.01 0 0 14.46 −0.93

Feature 807 1.47 0 1 0.29 0.91

Feature 561 10.52 0 0 12.42 −0.54

Feature 222 4.47 1 1 −2.99 0.81

Feature 650 0.80 0 0 −0.90 0.39

Feature 1143 15.02 0 0 18.57 −1.10

Feature 1750 16.69 0 0 20.86 0.01

Feature 1171 2.43 0 0 1.33 0.41

Feature 1873 9.01 0 0 10.34 0.10

Feature 294 17.10 4 0 7.14 −0.013

Feature 114 16.35 0 0 20.40 −0.54

Feature 591 12.68 0 0 15.37 −0.51
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the regression coefficient corresponding to each of the 
twelve important features. Additionally, the MLR coef-
ficients magnitudes for each important feature were 
added to Fig.  7 as the orange bars to facilitate a com-
parison between the nonlinear feature importances 
obtained from SHAP (blue bars) and the linear MLR 
coefficients. Notably, high measures of the regression 
coefficient for features 807, 222, 650, and 1171, as well 
as the low measures for features 1380, 561, 1143, 1750, 
114 and 591, align with the expectations arising from 
SHAP’s analysis for the RF model and Gibbs energy 
results. Additional file 2: Table S4 provides a list of the 
top 50 features with positive regression coefficients, 
further elucidating the role of different features in mod-
ulating solubility.

Blind test
We performed a blind test on a database that was never 
used in our model to verify performance and compare 
the two models. The database consists of 32 low molecu-
lar weight organic molecules with the number of C atoms 
ranging from 1 to 12, extracted from the dataset of 100 
druglike molecules at 25  °C from the Llinàs et  al. [20] 
study. It is worth mentioning that identifying a reliable 
benchmark reference for solubility can be challenging 
due to the multiple definitions that exist, and ambiguity 
in reported values. Furthermore, the medium used for 
measurements, such as distilled or pH-buffered water, 
can yield significantly different results. We selected this 
dataset as the benchmark reference since it reports the 
intrinsic solubility. This parameter refers to the solubility 
of a compound in its free acid or free base form, which 
is independent of the medium’s pH and it is rather more 
reproducible than other measures. Thus, the selection of 
intrinsic solubility as our benchmark reference allows for 
a more standardized and reliable comparison of solubil-
ity values, and contribute to the accuracy and precision 
of our research findings.

Table  5 displays the performance of the random for-
est (RF) model in predicting the aqueous solubility of the 
benchmark dataset using two distinct methods, namely 
the Morgan fingerprint (MF) and physicochemical 
descriptors. The results show MF model outperformed 
the physicochemical model in predicting the blind set, 
whereas the latter achieved higher accuracy on the test 
set (RMSE 0.80 versus 0.64). To address this anomalous 
discrepancy, it should be noted that the performance of 
an ML model on a test set may not necessarily predict its 
performance on a blind set. The test set and the blind set 
may differ in ways that affect the predictive accuracy of 
the models, such as the types of compounds, the chemi-
cal properties, and the experimental conditions. To fur-
ther assess the robustness of the models, we tested our 
models using a different dataset comprised of also 32 
compounds that were listed in the “Solubility Challenge” 
section of the Llinàs study [20]. The results of this chal-
lenge test are summarized in Additional file 2: Table S5. 
The mean averages of the estimated error are 0.64 and 
1.12 logS for MF and MD models, respectively. The per-
formance of the MF model reflects its potential useful-
ness in predicting the solubility of drug-like molecules. 
Interestingly, our MF model was trained on low molec-
ular weight molecules (an average molecular weight 
around 190) with the number of C atoms ranging from 
1 to 12, whereas the 32 drug-like molecules in this chal-
lenge had a significantly higher molecular weight and 
more carbon atoms (an average of 296 molecular weight 
and 19 carbon atoms).

The results in Table 5 and Additional file 2: Table S5 
indicate an acceptable difference since the average 
uncertainty in measured aqueous solubility for organic 
molecules typically ranges from ∼0.6 to one order of 
magnitude, as reported in previous studies [20, 42–44]. 
The reason behind this can be attributed to the fact 
that the reported solubility values were gathered from 
various published works under varied experimen-
tal conditions. Furthermore, differences in solubility 

Fig. 8 Illustrations of the structure positions of the three selected features extracted by Morgan fingerprint
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between different polymorphs of a given substance can 
also contribute to the mean average error of the mod-
els. Additionally, there may be confusion in identifying 
the type of solubility reported, as intrinsic solubilities 
can be mistakenly assumed to be thermodynamic val-
ues or kinetic measures. It is important to differentiate 
between these concepts: kinetic solubility refers to the 
dissolution rate of a substance, while thermodynamic 
solubility represents the equilibrium concentration of 
the solute in the solvent. In contrast, intrinsic solubility 
pertains to the solubility of a compound in its free acid 

or free base form. The kinetic solubility cannot be used 
as a reliable guide to the intrinsic or thermodynamic 
solubility of a compound, given its strong dependence 
on time and experimental parameters [45]. Stuart et al. 
highlighted a significant difference between the kinetic 
approximation of solubility and the intrinsic solubil-
ity of some compounds [45]. For instance, diclofenac 
exhibited precipitation levels that surpassed 50  times 
its intrinsic solubility. Similarly, Saal et al. investigated 
the differences between thermodynamic and kinetic 
solubility [46]. They reported mean differences of 0.22 

Table 5 Empirical and predicted solubility for selected druglike molecules using different chemical representation methods

Name logS(mol/L): 
Intrinsic 
Solubility

logS(mol/L): Molecular 
Descriptor Method

Molecular Descriptor Method 
-Absolute Calculation Error

logS(mol/L): 
 MF1 Method

MF Method-
Absolute 
Calculation Error

Hexobarbital −2.67 −1.69 0.98 −2.40 0.27

Nalidixic_acid −3.61 −1.54 2.07 −3.43 0.18

Phenanthroline −1.61 −1.93 0.32 −1.80 0.19

Phenobarbital −2.29 −2.14 0.15 −2.33 0.04

Sulfamethazine −2.73 −1.56 1.17 −2.38 0.35

Bromogramine −4.05 −1.68 2.37 −3.92 0.13

Phenazopyridine −4.19 −2.08 2.11 −4.02 0.17

Amantadine −1.85 −1.89 0.04 −2.12 0.27

Benzylimidazole −2.25 −1.66 0.59 −1.51 0.75

Chlorpropamide −3.24 −1.67 1.57 −2.89 0.35

Cimetidine −1.69 −1.86 0.17 −1.49 0.20

Thymol −2.18 −1.90 0.28 −2.26 0.08

Tryptamine −3.29 −1.90 1.39 −2.91 0.39

Azathioprine −3.2 −1.76 1.44 −2.84 0.36

Sulfathiazole −2.68 −1.41 1.27 −2.55 0.13

Acetaminophen −1.06 −1.50 0.44 −1.19 0.13

Diazoxide −3.36 −1.88 1.48 −3.28 0.09

Famotidine −2.64 −1.77 0.87 −2.58 0.06

Hydroflumethiazide −2.96 −1.93 1.03 −2.33 0.63

Nitrofurantoin −3.23 −1.96 1.27 −3.42 0.19

Phthalic_acid_form_I −1.49 −1.86 0.37 −0.93 0.56

Sulfacetamide −1.51 −1.64 0.13 −1.42 0.09

Trichloromethiazide_
Form_I

−3.18 −2.11 1.07 −2.78 0.40

2_amino_5_
Bromobenzoic_acid

−3.07 −1.57 1.50 −2.80 0.27

5_bromo_2_4_
Dihydroxybenzoic_acid

−2.62 −2.74 0.12 −2.20 0.42

Chlorzoxazone −2.65 −2.07 0.58 −2.89 0.24

5_hydroxybenzoic_acid −1.46 −1.31 0.15 −1.69 0.23

4_iodophenol −1.71 −1.70 0.01 −2.00 0.29

Metronidazole −1.22 −1.55 0.33 −1.35 0.13

Guanine −4.42 −1.92 2.50 −4.08 0.34

Acetazolamide −2.43 −1.69 0.74 −2.34 0.09

1_naphthol −1.98 −1.89 0.09 −2.27 0.29
1Morgan Fingerprint Mean = 0.89 Mean = 0.25
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log units and maximum differences of 1.96 log units for 
compounds where the residue of the thermodynamic 
assay exhibited a crystalline nature. Conversely, for 
compounds with an amorphous residue, the mean dif-
ferences were 0.04 log units, with maximum differences 
reaching 0.89 log units.

Conclusions
We compared two supervised machine learning imple-
mentations to predict the aqueous solubility of various 
components using two distinct cheminformatics meth-
ods. We used molecular descriptors and fingerprints as 
the chemical representation methods. Our results were 
compared to a blind, low molecular database with speci-
fied aqueous solubility experiments, revealing that using 
a fingerprint method has a lower average absolute cal-
culation error, which is comparable to other group con-
tribution methods currently available. We also gained 
insight into how important features impact an ML’s out-
put using SHAP analysis and calculated Gibbs energies 
for these features to investigate their thermodynamic 
favorability. Compare to the fingerprint model, the phys-
icochemical descriptor model has demonstrated better 
predictive accuracy for the given test set and can incor-
porate more complex information.
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