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Abstract 

Deep learning models have proven to be a powerful tool for the prediction of molecular properties for applica-
tions including drug design and the development of energy storage materials. However, in order to learn accurate 
and robust structure–property mappings, these models require large amounts of data which can be a challenge 
to collect given the time and resource-intensive nature of experimental material characterization efforts. Addition-
ally, such models fail to generalize to new types of molecular structures that were not included in the model training 
data. The acceleration of material development through uncertainty-guided experimental design has the promise 
to significantly reduce the data requirements and enable faster generalization to new types of materials. To evalu-
ate the potential of such approaches for electrolyte design applications, we perform comprehensive evaluation 
of existing uncertainty quantification methods on the prediction of two relevant molecular properties - aqueous 
solubility and redox potential. We develop novel evaluation methods to probe the utility of the uncertainty estimates 
for both in-domain and out-of-domain data sets. Finally, we leverage selected uncertainty estimation methods 
for active learning to evaluate their capacity to support experimental design.
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Introduction
Quantitative structure–property relations (QSAR) mod-
els have become a central component of molecular design 
protocols across a wide range of application areas includ-
ing drug design [1] and electrolyte development [2]. The 
current pipeline for electrolyte development is time- and 
resource-intensive due to the multiple computational and 
experimental requirements needed to fully character-
ize electrolyte performance [3–5]. The ability to rapidly 
and accurately screen vast libraries of potential molecu-
lar candidates for performance-relevant properties would 

significantly accelerate the discovery of novel materials 
that will be needed to meet the next-generation energy 
storage requirements.

While deep learning models have been proven to be a 
promising tool for the prediction of molecular proper-
ties from molecular structure [6–8], the practical utility 
of such models for the screening and discovery of mol-
ecules for targeted applications is still limited in many 
respects. Such practical applications typically require the 
ability to transfer models trained on one set of molecules 
with known target properties to another set of molecules 
which may differ in significant ways from the original 
training data. Due to the known tendency of such mod-
els towards overfitting [9], such predictions are often 
unreliable, overconfident, and poorly calibrated. This is 
a particular challenge for molecular property prediction 
efforts as relevant training data sets are often biased to 
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certain subsets of molecular space due to the scale, varia-
tion, and data availability of this space.

In application towards high throughput virtual screen-
ing (HTVS), it is beneficial for the deep learning models 
to be accompanied by uncertainty quantification (UQ) 
capabilities to understand the reliability of the predic-
tions. Such estimates are also crucial for the targeted 
acquisition of new measurements or computations to 
support improved model performance on previously 
uncertain regions of molecular space to best optimize the 
use of time- and effort-intensive experimental and com-
putational resources [3–5]. Ensuring that UQ methods 
are informative for out-of-distribution (OOD) molecules 
which differ significantly from the training data is essen-
tial for the effective optimal selection of new molecules 
for characterization.

In the context of our study, we consider UQ to be pre-
dominantly arising from two sources: data uncertainty 
and model uncertainty. Data uncertainty can be due to 
a myriad of factors, including but not limited to data 
domain, data sampling bias, and data sparsity. Similarly, 
model uncertainty encompasses uncertainties arising 
from aspects such as model architecture, model param-
eters, and training methodology.

There are several challenges to generating accurate 
estimates of the uncertainty of deep learning models 
including the ability to accurately estimate uncertainty 
for both in-distribution (ID) and OOD samples. Due 
to the sensitivity of deep learning models to distribu-
tion shifts, uncertainty estimates for OOD molecules 
can suffer from inaccuracy similarly to the inaccuracies 
observed for molecular properties predictions in these 
regions of molecular structure space. Prior work [10] dis-
cusses the limitations in the data sets typically used for 
UQ studies, with most studies performed using stand-
ard data sets that are specific to particular use cases and 
few performed on real-world data. Moreover, additional 
work is needed to understand how UQ methods perform 
across different deep learning architectures [10]. In par-
ticular, there have been relatively few studies investigat-
ing UQ for graph neural network (GNN) architectures 
[11]. Other challenges of UQ for deep learning include 
method scalability to large data, adaptability to complex 
model architectures, and interpretability for non-experts 
[12].

Previous work [13] demonstrates that no single UQ 
method has been shown to consistently outperform oth-
ers across all molecular property prediction tasks. In this 
study, we expand upon this existing work in several ways. 
First, we expand the UQ evaluation to a set of larger, 
more diverse data sets with target properties that are 
relevant for energy storage applications. Secondly, while 
most UQ methods are evaluated on data sampled from 

the same data set as the training data, we specifically tar-
get our evaluation approach to probe UQ performance 
on tasks relevant to generalizing to previously unseen 
molecule types. To this end, we introduce novel evalua-
tion approaches to probe whether the UQ methods can 
identify OOD molecules and can successfully quantify 
changes in model uncertainty due to data set changes. We 
discover that many standard UQ approaches fail to per-
form well at these OOD tasks. We admit that it is indeed 
possible to adversarially construct data populations that 
pose significant challenges for extrapolation from train-
ing subsets, unless there is some a priori knowledge. 
While the identification of OOD molecules and the 
quantification of changes in model uncertainty cannot 
be directly correlated in a trivial manner, our approach 
attempts to explore these correlations within the con-
straints of our methodology. We believe this exploration 
has substantial value in progressing our understanding of 
model uncertainties in the context of OOD prediction. 
Finally, we study the relationship between UQ methods 
and the downstream performance of uncertainty-based 
active learning (AL) methods. Again, we specifically 
focus on the capabilities of these methods to accelerate 
the generalization of the models, which is crucial for the 
practical usage of these methods for material design and 
discovery pipelines.

In this study, we perform a comprehensive analysis of 
UQ and AL performance for the prediction of aqueous 
solubility and redox potential. These properties were 
selected due to their applicability for the design of aque-
ous organic redox flow batteries (AORFBs), which are a 
promising next-generation energy storage technology 
with the potential to address current challenges with 
implementing grid scale energy storage solutions [14]. 
However, these properties are broadly applicable across a 
range of electrolyte design applications.

The two main research questions we address in this 
study are: 

1 Which uncertainty estimation approaches for deep 
learning-based molecular property prediction gen-
eralize across target property and modeling architec-
ture considering both ID and OOD performance?

2 Can the data requirements and generalization capa-
bilities of deep learning models be improved through 
the application of uncertainty-based active learning 
approaches?

Our results reveal several key limitations of current UQ 
and active learning approaches. We find that no single 
UQ approach consistently performs well across all perfor-
mance metrics, indicating the selection of a UQ approach 
should depend on the targeted downstream application 
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of the estimated uncertainty. We find that performance 
of uncertainty estimates on OOD data is a significant 
limitation of most UQ methods, and that density-esti-
mation methods outperform other UQ approaches on 
this evaluation dimension. While the performance of 
UQ approaches are inconsistent across metrics, they are 
mostly consistent across model architectures and target 
properties, providing evidence of the broad applicabil-
ity of the conclusions regarding which methods perform 
well on which metrics. We find that active learning based 
on a density-estimation approach leads to small improve-
ments in the ability of models to generalize to new types 
of molecules more rapidly than random selection of new 
training data. However, the improvements are currently 
very modest and further development will be needed to 
substantially reduce the current data requirements for 
model training.

Data
We focus on two molecular property prediction tasks - 
aqueous solubility and redox potential. The solubility 
data set consists of 17,149 molecules with experimental 
solubility measurements collected from data sets curated 
by Gao [15], Cui [16] and Reaxys [17], which is the largest 
and most diverse collection of organic solubility measure-
ments to date [8]. The redox potential data set consists of 
77,547 molecules randomly selected from the PubChem 
database [18] with redox potential values derived from 

first-principles calculation performed by density func-
tional theory (DFT) [19]. To support structure–property 
prediction of these target properties we leverage a set of 
derived molecular descriptors to characterize the molec-
ular structure, there are 839 features for the solubility 
data set and 1094 features for the redox potential data 
set. Details on the calculation of these descriptors as well 
as other details of the data set are given in [8] and [19].

Deep learning network architectures
Researchers have had success in applying deep learning 
to QSAR models [2] in recent years. In this study, we uti-
lize the deep learning models developed in [8], namely, 
the molecular descriptor model (MDM), which is a fully-
connected neural network based on pre-derived molec-
ular fingerprints, and a graph neural network (GNN) 
model based on molecular graphs. Details of the predic-
tion performance of these model architectures on aque-
ous solubility can be found in [8], while Fig. 1 shows the 
predictive performance of the two architectures for redox 
potential.

Uncertainty estimation approaches
A broad range of uncertainty quantification (UQ) 
approaches have been developed to augment the pre-
dictive capabilities of deep learning models. These 
approaches can be broadly categorized into four primary 
groups of techniques [13]. In ensemble-based methods, 

Fig. 1 Predicted versus actual redox potential ( Vox(V) ) for the MDM (left) and GNN (right) architectures including the R2 and RMSE performance 
values
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multiple model variants are used to generate predictions 
for each input, allowing the uncertainty to be quantified 
through the observed variance. In distance-based meth-
ods, the similarity between training and testing samples 
is used to quantify uncertainty. In mean-variance esti-
mation methods, the model is tasked to predict its own 
uncertainty through the implementation of loss functions 
which supervise both the predicted mean and variance. 
Finally, union methods apply a second machine learn-
ing approach with more inherent uncertainty estimation 
capabilities in combination with the deep learning model. 
In this work, we explore the performance of at least one 
method from each category.

Baseline
Gradient boosting machine
As a baseline approach, we consider a non-deep learning 
model which is able to generate uncertainty estimates. 
Specifically, we leverage a Gradient Boosting Machine 
(GBM) model which can provide UQ when incorpo-
rated with quantile regression [20, 21]. In the quantile 
regression approach, the GBM is trained to predict cer-
tain quantiles of the data in addition to the mean predic-
tive value for the given input features. In our study, we 
used 10% and 90% as the lower and upper quantiles for 
prediction. The uncertainty is thus calculated as half of 
the range between the lower and upper bounds of the 
predictions:

Ensemble methods
Model ensemble
The ensemble approach is a straightforward approach for 
uncertainty estimation [22]. The idea is to train a number 
of structurally equivalent models and obtain the uncer-
tainty from the variance of predictions by these mod-
els. The variance is due to the randomness in the model 
building process including the random weight initiali-
zation and the shuffling of training data. However, the 
ensemble approach is time- and resource- intensive due 
to the need to train multiple individual models.

Monte Carlo Dropout
To address the significant computational requirements 
of a full ensemble approach, the Monte Carlo Dropout 
(MCDO) approach leverages a single trained model but 
introduces variance when generating predictions through 
the application of multiple random weight dropout 
masks [23]. Similar to the full ensemble approach, the 
uncertainty is also represented by the variance in the dis-
tribution of predicted values.

(1)Uncertainty = Pred90% − Pred10%

2
.

Distance methods
Local fingerprint and embedding density
Density-based UQ methods are motivated by the fact 
that molecules which are similar to the molecules in the 
data used to train the model should have a higher pre-
dictive confidence than those which are dissimilar to the 
training molecules. Therefore, we leverage a simple den-
sity-based approach to quantify the similarity of a given 
molecule to the training molecules. We identify the three 
nearest neighbors in the training data for each testing 
molecule and calculate the mean distance to these neigh-
bors as the uncertainty estimation for that molecule. We 
explore two methods of calculating molecular similarity 
of the identified neighbors. First, we use cosine similar-
ity in the molecular descriptor space, utilizing the same 
molecular descriptors used to train the MDM model 
as described in the Data Section. Secondly, we leverage 
the cosine similarity of pre-trained molecular embed-
dings generated from self-supervised pre-training of the 
GROVER model [24]. In contrast to other methods that 
we study, these methods are purely data set dependent 
rather than model dependent. Any model trained on the 
same data set will generate the same uncertainty esti-
mate for the same molecule using these methods, which 
neglects any model-specific contribution to predictive 
uncertainty. Additionally, these methods provide only 
relative uncertainty estimates and do not provide cali-
brated uncertainty describing the range of likely errors 
for the molecule. Despite these limitations, as described 
in the results sections, we find that these methods have 
significant performance benefits over more expressive 
UQ methods under certain evaluation criteria.

Target value modeling
Mean‑Variance estimation
In the Mean-Variance Estimation (MVE) approach, the 
output of the neural network is the prediction of the 
mean µ(x) and variance σ 2(x) of the target property [25]. 
The model is supervised through the application of a neg-
ative log-likelihood loss:

The estimated variance is used as the uncertainty of the 
prediction.

Evidential deep learning
In the deep evidential regression [26], the neural network 
is tasked to predict the parameters of an evidential dis-
tribution of the predictive likelihood function rather than 
directly predicting the mean and variance of the target 

(2)

L
NLL
i (x, y) = 1

2
log(2π)+ 1

2
log(σ 2(x))+ (y− µ(x))2

2σ 2(x)
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property. The method applies a prior distribution on the 
likelihood parameters µ(x) and σ 2(x) and approximates 
the posterior distribution of these parameters using a 
Normal Inverse-Gamma (NIG) distribution:

The neural network is then tasked to learn the param-
eters ( γ , υ,α,β ) of the NIG distribution given a input 
datapoint. Uniquely among the methods studied in this 
paper, this method allows for the separation of aleatoric 
( E[σ 2] ) and epistemic ( Var[µ] ) sources of uncertainty:

Union approach
Union approach (MDM/GNN + GBM)
The union approach [27] combines the predictive capa-
bility of the deep neural network with the UQ capability 
of the GBM model. Features are extracted from the last 
representation layer of the deep learning models and 
used as the input variables for the GBM method. The 
uncertainty is then calculated as described in the GBM 
section above, while the output of the entire deep learn-
ing model is used as the predicted target property.

Uncertainty evaluation metrics
We utilize four metrics to evaluate the performance of 
the UQ methods. These metrics are complementary to 
each other and probe different aspects of UQ which are 
salient to different downstream tasks.

In‑Distribution metrics
We first apply two metrics to probe whether the uncer-
tainty estimates are well-calibrated and informative on 
new molecules drawn from the same distribution as the 
training data. To this end, we perform a random train-
test split of the full dataset. The models and uncertainty 
methods are trained on the training data and UQ per-
formance is measured on the test data. To probe the UQ 
performance we compare the estimated UQ values with 
empirically observed model errors under the criteria that 
high-performing UQ methods should show high corre-
spondence between estimated UQ and actual prediction 
error.

(3)

p(µ, σ 2|γ , υ,α,β)

= βα
√
υ

Ŵ(α)
√
2πσ 2

(
1

σ 2
)(α+1)exp{−2β + υ(γ − µ)2

2σ 2
}

(4)E[µ] = γ ,E[σ 2] = β

α − 1
, Var[µ] = β

υ(α − 1)
.

Expected normalized calibration error
Expected Normalized Calibration Error (ENCE) meas-
ures the uncertainty calibration for regression using a 
histogram-based approach [28] and is designed to probe 
the calibration of the uncertainty estimates by compar-
ing the estimated uncertainty with empirical error within 
uncertainty bins. If σt is the predicted uncertainty and 
the samples are divided into N bins, {Bj}Nj=1 , based on σt 
intervals, the ENCE can be calculated as:

where RMV is the root of the mean variance:

and RMSE is the root mean square error on the true ( yt ) 
and predicted ( ŷt ) molecular properties:

This equation expresses the average calibration error 
across the bins normalized by the root of the mean vari-
ance. Figure 2 shows an example of an ENCE calibration 
plot for the UQ provided by MDM + MVE for the sol-
ubility prediction. Fig.  3 is the scatter plot for the same 
method showing the relationship of the UQ and the 
absolute errors.

This metric provides an important performance meas-
ure of the calibration of the uncertainty estimates to 
probe whether the uncertainty levels are true indicators 
of the expected level of error when making property pre-
dictions for new molecules, which is crucial for down-
stream applications where the expected error values will 
need to be propagated to further calculations or perfor-
mance estimates.

Error‑UQ correlation
The Spearman’s rank correlation coefficient between the 
empirical prediction errors and the estimated uncer-
tainty values ( ρerror ) provides a probe of the relative 
uncertainties across the model predictions and can quan-
tify whether the UQ correctly estimates which samples 

(5)ENCE = 1

N

N
∑

j=1

|RMV(j)− RMSE(j)|
RMV(j)

,

(6)RMV(j) =
√

√

√

√

1

|Bj|
∑

t∈Bj
σ 2
t ,

(7)RMSE(j) =
√

√

√

√

1

|Bj|
∑

t∈Bj
(yt − ŷt)2.
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will result in higher model errors than others. For some 
downstream tasks, the relative level of uncertainty may 
be more important than the absolute calibrated value. 
For example, in the selection of samples for active learn-
ing, we seek to understand which regions of the molecu-
lar space are currently most uncertain relative to the rest. 
Therefore, ρerror provides a useful complement to ENCE 
to understand the UQ performance.

Out‑of‑Distribution metrics
The ENCE and ρerror probe the performance of UQ on 
molecules drawn from the training distribution. When 
UQ is only evaluated on molecules from training distri-
bution, it is not clear whether the uncertainty estimates 
will be correct when extrapolating to new data sets. 
We expect that molecules which are dissimilar from 
the training data should be estimated to have higher 
uncertainties compared with molecules drawn from the 
training data distribution. We develop two methods to 
evaluate the performance of the uncertainty estimation 
when applied to out-of-distribution molecules.

OOD‑UQ correlation
 The ρood metric probes the ability of the UQ methods to 
identify OOD molecules. First, we leverage the PubChem 
database to sample molecules with varying structural 
similarity to the training data sets. We randomly sample a 
subset of PubChem molecules and assign each molecule a 
similarity score given by the maximum RDKit fingerprint 
similarity between the molecule and each molecule in a 
random subset of the training data set. Then, we down-
sample the PubChem molecules to obtain a final sample 
with similarity scores uniformly distributed over [0,1]. We 
calculate the Spearman’s rank correlation coefficient ( ρood ) 
between the estimated uncertainty and the fingerprint 
similarity of these OOD molecules to the training data 
set. When the UQ is performing well, we expect that mol-
ecules which are more similar to the training set should 
have lower uncertainty. Therefore, this metric probes the 
relative molecule out-of-distribution detection ability of 
the UQ method. As with ρerror , this metric is useful for 
applications such as active learning where we aim to iden-
tify undercharacterized regions of molecular space.

�Error‑�UQ correlation The first three metrics probe 
the absolute or relative uncertainty estimates of a given 
model. However, during the process of model selection, 
uncertainty often needs to be compared between differ-
ent models to determine the relative confidence on a set 
of predictions. Therefore, we develop a novel evaluation 
approach to probe whether uncertainty estimates can 
robustly quantify the relative levels of uncertainty among 
model alternatives. First, we artificially remove molecules 
with certain properties from the training data to evaluate 
the resulting change in uncertainty when making predic-
tions on these types of molecules. Then, we calculate the 
Spearman’s rank correlation coefficient ( ρ�error ) between 
change in the RMSE and the change in the estimated 
uncertainty for the type of molecule which was removed. 
This metric measures whether observed differences in 
uncertainty between two models (e.g. one with access to 

Fig. 2 ENCE calibration example shows the correspondence 
between the actual model error (RMSE) and the expected error 
derived from the uncertainty estimate (RMV)

Fig. 3 Scatter plot of the model absolute error and the UQ 
from MDM MVE for solubility
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more data than the other) are meaningful in terms of the 
differences in the models’ errors.

In order to create the artificial OOD data needed for 
this metric, we first conduct Principal Component Anal-
ysis (PCA) on the molecular descriptors. Then for each 
of the top three principal components (PCs), we bin the 
full data set into 5 equally sized bins by PC value percen-
tiles. We then remove one bin at a time from the train-
ing and validation data sets to generate models which are 
trained on an artificially biased data set which does not 
contain molecules of a certain type. Figure  4 shows the 
2D UMAP projection [29] of the training data colored 
by the PCA bins, which shows that the removal of each 
PC bin corresponds to removing specific regions of the 
structural space.

Next, we observe how the RMSE changes for test set 
molecules within the removed bin before and after 
removing the corresponding molecules from the training 
and validation sets. In Fig. 5, we show an example for one 
model and UQ approach of how the model errors and 

Fig. 4 Scatterplot of the UMAP coordinates colored by the PCA bins 
for the top principle component

Fig. 5 (Upper Left) Test set RMSE values increase for molecules in each PC value bin when training molecules from that bin are removed 
from training (blue solid line) relative to when the full training set is used (blue dashed line). RMSE values for molecule types which are not removed 
from the training set are not affected (green lines). (Upper Right) Uncertainty estimates generated using a density approach show that changes 
in uncertainty follow a similar pattern to changes in error. (Lower) The correlation of �Error and � UQ across all PCA components and bins is 0.818
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uncertainty estimates change for molecules both within 
and outside the removed bin. A well performing UQ 
approach will show changes in uncertainty that mimic 
the patterns observed in changes in error. Specifically, 
we measure the correlation ρ�error between the change in 
RMSE and the change in the uncertainty for the removed 
bin test molecules. Performance on this metric is impor-
tant for leveraging UQ to understand improvement and 
changes in model performance.

Active learning experiment
One end goal of developing UQ methods is the use of 
the estimated uncertainty for active learning that leads 
to more efficient guidance of molecular data collection. 
Active learning utilizes the information in unlabeled sam-
ples to choose the data that helps the model perform best 
with limited resources [30]. The motivation for the applica-
tion of active learning is the time-consuming or expensive 
nature of obtaining new labeled training samples, which 
is the case for molecular research where both experimen-
tal and computational data collection is often resource, 
effort, and/or time intensive. Active learning has been 
previously used to support experimental design efforts for 
material characterization [3–5]. There are several different 
approaches which have been employed for active learning 
sample selection including uncertainty sampling [31, 32], 
query-by-committee [33, 34], expected-model-change 
[35], and density-weighted methods [36].

In this study, we probe the utility of several selected 
UQ algorithms from the previous section for active 
learning leveraging a query strategy which upweights 
more uncertain molecules. Such upweighting is linear, 
which means a molecule with twice as much uncertainty 
is twice as likely to be sampled. We aim to evaluate the 
ability of the UQ methods in selecting the best molecules 
for boosting the deep learning model prediction capabil-
ity relative to the random sampling of new data points. 
Additionally, we focus on the potential of active learning 
methods to boost the generalization capabilities of deep 
learning models to adapt and generalize faster to new 
types of molecules with limited data availability.

We follow a similar approach to the ρ�error calculation 
to understand how quickly the model can generalize to an 
artificially held out type of molecular structure. We first 
generate five bins of molecules for each of the top three 
principle components. To generate an initial training set 
for the molecules, we remove the molecules from a given 
bin from the data and sample the training data from the 
remainder of the molecules to create an artificial lack 
of representation for a specific group of molecules. We 
then train a model on this sampled training data and use 
the UQ methods to calculate the uncertainty for all the 

remaining molecules, which include those from the miss-
ing group. These uncertainty values are used to perform a 
weighted sampling from the remaining data. We add this 
active learning sample to the training data and repeat the 
model training procedure. This procedure is illustrated in 
Fig. 6. In this study, we performed one iteration of active 
learning. Our choice for a single iteration was intended to 
evaluate the immediate ability of the various active learn-
ing methods to identify OOD molecules, following the 
removal of a specific group from the training data.

The aim is to test the ability of the UQ methods to 
preferentially select OOD molecules and evaluate how 
the selection improves model performance relative to 
randomly sampling the same number of molecules. We 
perform evaluation on three subsets of the test set - mol-
ecules within the OOD bin, molecules in the other bins 
which were not removed from training, and the full test 
set. To measure the utility of the active learning approach 
we take the percentage improvement in RMSE when add-
ing an active learning selected batch relative to a ran-
domly selected batch.

We explore several dimensions which may affect the 
active learning results, including the size of the initial 
training set and the number of new molecules sampled 
using the UQ-guided active learning in the second step. 
For most models we perform experiments with 5%, 10%, 
20%, and 40% initial training samples. For the redox 
potential prediction with the GBM model, which is the 
most time-intensive model to train, we rely on smaller 
samples (1%, 2.5%, 5%) to make the computation tracta-
ble. In terms of the number of molecules to sample dur-
ing active learning, we experiment with 25, 50, 100, 250, 
500, and 1000 additional molecules. We perform thirty 
repetitions with each parameter setting to increase the 
robustness of the measured performance results.

With four starting training percentages and six differ-
ent number of added molecules, we generated a total of 
24 unique combinations. Each of these combinations 
was subject to top three principle components binning, 
with each principle component further divided into five 
bins for OOD data simulation. This results in 15 distinct 
experiments for each OOD active learning scenario. 
Considering the combinations, there are 360 experiments 
in total. Furthermore, each of these OOD experiments 
was performed 30 times to provide a robust representa-
tion of the active learning outcomes.

Uncertainty estimation results
We show the full set of UQ performance results across 
the four metrics for solubility in Table  1 and for redox 
potential in Table  4. Please note that a smaller number 
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in ENCE indicates better performance while for the 
other three metrics a larger number is preferable. Given 
the computational constraints, we focused our robust-
ness checks on the top-performing methods for each 
respective metric. These results, which demonstrate the 
reliability of our findings, are presented with associated 
error bars. Regarding the density-based methodologies, 
they follow a deterministic process; hence, no error bars 
are associated with their results. We find that no single 
UQ approach consistently performs well across all four 
metrics. For example, the MVE uncertainty estimates are 

well calibrated according  to the ENCE metric but per-
form poorly on generalizing to previously unseen data 
according  to the ρood and ρ�error metrics. In fact, we 
find that the majority of the UQ approaches struggle to 
achieve good results on these two generalization metrics. 
The exceptions are the density-based approaches which 
achieve relatively strong performance on these metrics 
as well as the ρerror metric. Figure  7 shows the scatter 
plots of delta UQ vs. delta RMSE for the fingerprint den-
sity approach, which corresponds to its performance for 
the ρood metric. However, the density-based approaches 

Fig. 6 Toy example of the active learning sampling evaluation approach, illustrating the usage an artificially OOD region of molecular structure 
space to test the generalization performance of the sampling. The full distribution of PCA component values (Upper Left) is binned and one 
bin is removed from the model training data (Upper Right). The remaining data (Middle Left) is sampled to augment the initial training set, 
either randomly (Middle Right) or based on UQ estimates (Lower)
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are only able to generate relative uncertainty estimates, 
rather than calibrated values of the expected error, mean-
ing that ENCE is not applicable to these approaches.

To illustrate this inconsistent performance, Fig.  8 
shows a heatmap of correlations between UQ metrics of 
the same UQ approach on the same model and data set 
across different pairs of metrics. We find overall low lev-
els of correlation between performance on one metric and 
performance on another indicating that the selection of 
an effective UQ approach will be strongly dependent on 
the ultimate downstream use case of the UQ values. For 
example, when the purpose is to identify the highest confi-
dence predictions of the model then the ρerror metric may 
be most relevant, motivating the selection of the GBM 
uncertainty estimates. If the estimated uncertainty will 
be further propagated into an estimate of the utility of the 
molecule for a given application that depends on the target 
property, the best calibrated UQ method will be more rel-
evant, favoring the selection of the MVE approach.

While the UQ approach performance is not consist-
ent across different metrics, we do see some consist-
ency of performance across different model architectures 
and target properties. Table  5 shows that for different 

modeling architectures, given the same target property, 
the same UQ approaches perform well relative to oth-
ers for both MDM and GNN architectures for most UQ 
metrics. The exception is ρerror where UQ methods that 
perform well for the MDM seem to perform poorly for 
the GNN. For example, MVE performs strongly for the 
MDM model and poorly for the GNN. Table 5 also shows 
that for different target properties, given the same model 
architecture, the same UQ approaches perform well 
relative to others for both solubility and redox potential 
prediction. Overall, for these selected models and target 
values, UQ performance is strongly dependent on the 
selected metric, somewhat dependent on the underlying 
model architecture, and relatively unaffected by the tar-
get property.

Table 1 Solubility uncertainty estimation evaluation

The uncertainty approach with best mean performance across models for each metric is shown in bold. For the density method, FP refers to fingerprint-based 
similarity and EB refers to embedding-based similarity

UQ type Method Model ENCE ρerror ρood ρ�error

Baseline GBM GBM 0.098 0.293± 0.002 −0.191 0.386

Ensemble MCDO MDM 1.585 0.180 −0.219 0.404

GNN 1.951 0.109 −0.091 0.111

Ensemble MDM 2.349 0.296 −0.099 −0.142

GNN 2.830   −0.010 −0.145 0.264

Target value Evidential MDM 1.147 0.381 0.103 −0.404

GNN 0.457 0.145 0.207 0.142

MVE MDM 0.278± 0.034 0.378 −0.037 −0.261

GNN 0.112± 0.026 0.041 0.035 −0.314

Union GBM MDM 0.366 0.111 −0.371 −0.618

GNN 0.126 0.278 −0.352 0.179

Distance Data density (FP) MDM – 0.151 0.965 0.857
GNN – 0.143 0.965 0.693
GBM – 0.124 0.965 0.546

Data density (EB) MDM – 0.183 0.500 0.818

GNN – 0.178 0.500 0.679

GBM – 0.142 0.500 0.539

Consensus GBM, MCDO, MVE MDM 0.230 0.313 – –

Table 2 ρ�error comparison using a different clustering method

UQ Type Method Model ρ�error (PCA Bins) ρ�error 
(Butina 
Clustering)

Distance Data density (FP) MDM 0.857 0.600

GNN 0.693 0.400

GBM 0.546 0.300
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For ρood , in addition to our PCA-based grouping, we 
included the results from Butina clustering as a point 
of comparison. Butina clustering is a popular technique 
used in chemoinformatics to group molecules based 
on structural similarity [37]. By adjusting the distance 
threshold, we generated several sizable clusters using 
Butina clustering. The top five clusters comprised 5025, 
748, 826, 524, and 535 molecules, respectively. We then 
used these clusters as our artificial OOD dataset, exclud-
ing them individually from the training, validation, and 
testing sets. Based on this split, we calculated the ρood 
for Butina clustering, and the results are presented in 
Table 2. Interestingly, both methods demonstrated simi-
lar relative patterns in performance.

To further compare these two grouping methods, 
we calculated the mean distance between OOD vs. ID 
groups for both the PCA and Butina methods using fin-
gerprint similarity. These findings are shown in Table 3, 
where we also included the out-of-distribution mean 
distance as a reference point. The mean distance ranges 
from 0 to 2, with 2 being the most distanced. The PCA 
method was more effective in distinguishing between 
OOD and ID molecules compared to the Butina 
method.

We also tested a consensus method which com-
bined the predictions and UQs from GBM (baseline), 
MCDO (ensemble), and MVE (target value modeling). 
We took the average of the predictions and UQs from 
these three methods. The results of this consensus 
method are shown in Table 1. The results show that the 
consensus method resulted in a better average ENCE, 
indicating the predictions were better calibrated. It 
also improved the correlation with the true errors. This 
indicates that the consensus method has the potential 
to create a better balance between the different metrics.

Active learning results
Next, we aim to probe the performance of the uncertainty 
estimates for application to active learning. We focus on 
the MDM and GBM models and perform uncertainty-
based AL sampling using MCDO and embedding-based 
density UQ methods for each model. Table 6 shows the 
mean percentage and the associated p-value of a paired 

Table 3 Mean distance by fingerprint similarity between 
molecular groups

Larger number implies greater distance. Within OOD is the mean distance 
between all pairs of OOD molecules

Group PCA, within OOD PCA, OOD vs. ID Butina, 
within 
OOD

Butina, 
OOD vs. 
ID

Group 1 0.502 1.045 0.943 0.992

Group 2 0.784 0.994 0.921 0.995

Group 3 0.959 0.987 0.801 0.988

Group 4 0.924 1.039 0.774 0.961

Group 5 0.701 1.141 0.819 0.975

Table 4 Redox potential uncertainty estimation evaluation

The uncertainty approach with best mean performance across models for each metric is shown in bold. For the density method, EB refers to embedding-based 
similarity

UQ Type Method Model ENCE ρerror ρood ρ�error

Baseline GBM GBM 0.524 0.283± 0.001 0.296 0.679

Ensemble MCDO MDM 1.742 0.246 0.329 0.814

GNN 1.428 0.112 0.346 −0.461

Ensemble MDM 1.730 0.265 0.407 0.225

GNN 2.417 0.028 0.405 0.229

Target value Evidential MDM 7.441 0.386 0.103 −0.125

GNN 2.718 0.013 0.389 0.054

MVE MDM 0.273± 0.066 0.384 0.278 0.300

GNN 0.074± 0.006 0.034 0.230 −0.118

Union GBM MDM 0.455 0.191 0.165 −0.296

GNN 0.466 0.195 −0.118 −0.071

Distance Density (EB) MDM – 0.199 0.578 0.743
GNN – 0.162 0.578 0.743
GBM – 0.119 0.578 0.693
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t-test by which AL improves on random sampling for 
both predictive tasks, the selected modeling approaches, 
and the selected UQ approaches. These results are 

Fig. 7 Scatter plot of the delta UQ versus delta RMSE for the fingerprint density approach on solubility

Fig. 8 Heatmap of correlations between UQ metrics given the same 
UQ approach, model architecture, and target property

Table 5 Correlation of UQ metrics across model architectures or 
target properties

Metric Dimension 1 Dimension 2 Correlation

ENCE MDM GNN 0.93

ρerror MDM GNN -0.66

ρood MDM GNN 0.90

ρ�error MDM GNN 0.27

ENCE Solubility Redox 0.67

ρerror Solubility Redox 0.91

ρood Solubility Redox 0.51

ρ�error Solubility Redox 0.80
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averaged across the different starting training data sizes 
and sample sizes. We show results for both the standard 
active learning setup where the query set is drawn from 
the same distribution as the training data and for the 
generalization-probing setup where a set of molecules is 
artificially removed from the initial training set as OOD 
molecules. For the second case, we observe whether 
active learning is beneficial relative to random sampling 
for improving performance on the OOD molecules, the 
in-distribution (ID) molecules, and the full test set con-
sisting of both OOD and ID molecules. Additionally, we 
compare the UQ-driven AL approaches to a sampling 
approach which directly samples only molecules from 
the OOD bin. This is not possible in real applications as 

we are using our prior knowledge of which molecules 
were artificially removed. However, this provides a use-
ful upper bound on the possible improvement rate for the 
OOD molecules.

The primary result is that under most conditions 
uncertainty-based active learning leads to improved per-
formance compared to random sampling. Even though 
the magnitude of the improvement is generally small, the 
difference in performance is statistically significant for 
many instances, particularly for performance on OOD 
data. It is important to note that our study only experi-
ments with a single iteration, and the quantity of mol-
ecules being incorporated is limited. Despite the small 
magnitude, such statistically significant improvements 

Table 6 Active learning results

For the density method, EB refers to embedding-based similarity. Shown here are the percentage decrease in RMSE compared to random sampling. Shown below are 
the p-values of corresponding paired t-tests with the alternative hypothesis of AL performing better than random sampling. Significant test results are bold

Target Model Sampling Standard Generalization

Whole OOD Data Bin Whole ID Bins

Solubility MDM Data Density (EB) 0.14% 0.25% 0.08% 0.03%

p = 0.015 p = 0.013 p = 0.146 p = 0.326

Diversity (EB) 0.00% 0.13% −0.03% −0.07%

p = 0.483 p = 0.098 p = 0.674 p = 0.793

MCDO 0.13% 0.08% 0.10% 0.11%

p = 0.032 p = 0.204 p = 0.036 p = 0.024

OOD Only – 1.93% 0.18% −0.28%

– p < 0.001 p = 0.007 p = 0.992

Solubility GBM Data density (EB) −0.01% 0.24% 0.04% −0.03%

p = 0.714 p < 0.001 p = 0.084 p = 0.868

GBM 0.06% 0.11% 0.05% 0.03%

p = 0.002 p = 0.012 p = 0.045 p = 0.203

OOD only – 1.82% 0.14% −0.31%

– p < 0.001 p = 0.009 p = 0.996

Redox MDM Data density (EB) −0.09% 0.42% 0.06% −0.05%

p = 0.986 p < 0.001 p = 0.055 p = 0.900

MCDO 0.01% 0.18% 0.05% 0.01%

p = 0.377 p = 0.001 p = 0.102 p = 0.487

OOD only – 2.09% 0.41% −0.10%

– p < 0.001 p < 0.001 p = 0.977

Redox GBM Data density (EB) 0.02% 0.21% 0.06% 0.01%

p = 0.168 p < 0.001 p = 0.003 p = 0.265

GBM 0.02% 0.12% 0.05% 0.02%

p = 0.123 p = 0.007 p = 0.013 p = 0.076

OOD only - 1.60% 0.11% −0.29%

- p < 0.001 p = 0.025 p = 0.994
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over multiple iterations could compound, potentially 
leading to substantial differences in performance over 
time. Overall, the results are similar across the differ-
ent target properties (solubility and redox potential) 
and models (MDM and GBM). When performing active 
learning in a standard setup, AL shows mixed but some-
what beneficial performance relative to random sam-
pling. For solubility prediction, AL provides the most 
benefit for the MDM model with both UQ approaches 
performing equally well. For redox potential prediction, 
the results are more mixed, with the GBM model and the 
embedding-based density method showing the strongest 
benefit.

When performing AL in the generalization-probing 
setup, the best performing UQ approaches show larger 
benefits than for applying AL in the standard setup. In 
particular, the embedding-based data density method 
consistently shows a larger improvement for the OOD 
molecules than is achieved in the standard setup. This 
shows that AL can provide a boost to the rate at which 
a model can generalize to previously unseen regions 
of molecular structure space. However, in this setup 
the improvement levels for the test set as a whole are 
smaller than OOD while performance on the ID mol-
ecules is not accelerated relative to random sampling. 
Our primary focus is on the performance with OOD 
data. Generally, AL exhibits superior results for both 
OOD and the whole test set. While there is some trade-
off in ID performance, the compromise is not as drastic 
as in the OOD-only approach. Therefore, the balance 
achieved by AL, with significant improvement on OOD 
and whole test set data and reasonable performance on 
ID data, affirms its value in balancing between acceler-
ated generalization and maintaining ID performance.

We also included additional baseline utilizing a model-
free, purely diversity-based selection method for the 
solubility task using the MDM model. This technique 
essentially gives a higher likelihood of selection to mol-
ecules in the training set that are further apart from the 
rest. The similarity measurement here is based on the 
embedding approach. The results obtained using this 
diversity-based method are shown in Table 6. It is worth 
noting that this diversity-driven method did not yield sig-
nificantly different results from random sampling when 
applied to the traditional active learning task. It did out-
perform random sampling in the context of OOD mole-
cules. However, it underperformed in relation to both the 
entire test set and the ID set.

Since sampling only OOD molecules provides a signifi-
cantly larger boost to performance, we might expect that 
AL methods which more successfully sample larger por-
tions of OOD molecules will see a larger boost in per-
formance. In Fig.  9, we explore the relationship between 

the percentage of AL selected molecules belonging to 
the missing bin and the resulting performance improve-
ment relative to random sampling. We find that almost 
all AL sampling methods result in more OOD molecules 
being sampled than the random strategy. However, we 
find a very weak dependence of the resulting performance 
improvement on this factor. The significant variability 
in the observed improvement given the same number 
of sampled OOD molecules indicates that performance 

Fig. 9 The impact of the proportion of OOD molecules sampled 
on the improvement in OOD RMSE relative to a random sampling 
strategy for the UQ-based AL (top) and with the OOD-only 
benchmark results included (bottom)
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improvements are not purely driven by sampling mole-
cules from the missing bin but by specifically which mol-
ecules are being sampled. Although the dependence is 

weak, we do observe a linear increasing trend when the 
results from the OOD-only sampling method are added 
to the plot (lower plot of Fig. 9). The vertical lines on the 

Fig. 10 Dependence of active learning performance improvement on data size factors including the percentage of data used for the initial training 
step and the sample size of new datapoint selected using AL
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right side of the lower plot correspond to the four start-
ing percentages of training data, and the OOD-only points 
largely align with these lines. However, the exact position 
of each point can deviate slightly because it is impacted by 
the degree of randomness inherent in the random sam-
pling method because what is shown here is the difference 
between the OOD-only methods and random sampling.

We explore whether data set size properties affect the 
impact of AL on model performance. In Fig. 10, we show 
the mean AL performance improvement as a function of 
the starting percentages of training data or the number of 
molecules to add during active learning. Each data point is 
the average result of 30 active learning experimental runs. 
We find that performance tends to improve slightly for 
larger amounts of data being sampled during the AL step. 
It also appears that very low initial amounts of training data 
may inhibit the benefit of AL, possibly due to the  inaccu-
racies of the UQ estimation with limited data availability. 
These trends are both clearer for the solubility prediction 
task than for the redox potential prediction task. These 
conclusions demonstrate that it would be a challenge to 
apply these methods in real practical applications where it 
is likely infeasible to collect data sets of the required sizes 
(e.g. AL samples of greater than 250 molecules).

Finally, we studied the relationship between the perfor-
mance of the uncertainty estimation performance of each 
UQ method and its performance on the downstream AL 
task. The correlations between active learning results and 
UQ metrics are shown in Table 7. We find that UQ meth-
ods that perform well according to the OOD UQ metrics 
( ρood and ρ�error ) also show improved performance on 
the AL generalization task while showing reduced perfor-
mance on the ID AL task. In contrast UQ methods which 
are well-calibrated (ENCE) and show good error correla-
tion ( ρerror ) show stronger performance on the standard 
AL task and the ID AL task. This shows that inaccura-
cies in OOD uncertainty estimates likely limit the utility 
of uncertainty-driven AL sampling when the molecular 
library contains structurally dissimilar molecules from 
the original training set.

Conclusions
In this study, we demonstrate significant limitations of 
current UQ and AL methods in application to practical 
molecular property prediction tasks relevant to material 
design for energy storage and other applications. We find 
that existing UQ methods fail to achieve strong perfor-
mance across different evaluation dimensions meaning 
that individual UQ methods are specialized to specific 
use cases. However, we do find that UQ approaches per-
form consistently across different target properties and 
mostly consistently for different modeling architectures 
leading to generalizable conclusions about UQ perfor-
mance. In particular, we find that most commonly used 
UQ methods perform poorly at evaluation metrics that 
probe performance on OOD molecules. Instead, simple 
nearest neighbor-based density estimates outperform 
the UQ techniques on this evaluation dimension. This 
UQ performance results translate into downstream AL 
performance, as data density-based methods show more 
effective selection of under-sampled molecule types to 
support accelerated model generalization.

Crucially, we demonstrate the AL performance strongly 
depends on whether the method is being applied to purely 
in-distribution data or is being applied to novel types of 
molecules that were not observed during training. The 
second is likely to be the case in many practical applica-
tions, where experimenters are seeking to fill in existing 
gaps in available training data to support broader applica-
bility of property prediction models. Common evaluation 
techniques which rely on random samples of the currently 
available training data fail to capture much of the behavior 
of both UQ and AL methods in this scenario.

Our work has identified several key research gaps and 
future directions. The first is the development of UQ 
methods that are effective at estimating uncertainties 
for both in-domain and out-of-domain molecules and at 
providing both relative and calibrated information about 
expected errors. Additionally, we find that UQ-guided 
active learning provides statistically significant but mag-
nitude-wise modest improvement in model performance 
relative to random sampling and might not be able to 
currently address the challenges of limited resource 
experimental efforts due to the dependence of AL success 
on having sufficiently sized data samples. Further work is 
needed to improve the learning ability of models in the 
low-data regime and accelerate the ability to generalize 
from small amounts of targeted data collection.
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