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Abstract 

Many recently proposed structure-based virtual screening models appear to be able to accurately distinguish high 
affinity binders from non-binders. However, several recent studies have shown that they often do so by exploit-
ing ligand-specific biases in the dataset, rather than identifying favourable intermolecular interactions in the input 
protein-ligand complex. In this work we propose a novel approach for assessing the extent to which machine 
learning-based virtual screening models are able to identify the functional groups responsible for binding. To sidestep 
the difficulty in establishing the ground truth importance of each atom of a large scale set of protein-ligand com-
plexes, we propose a protocol for generating synthetic data. Each ligand in the dataset is surrounded by a randomly 
sampled point cloud of pharmacophores, and the label assigned to the synthetic protein-ligand complex is deter-
mined by a 3-dimensional deterministic binding rule. This allows us to precisely quantify the ground truth importance 
of each atom and compare it to the model generated attributions. Using our generated datasets, we demonstrate 
that a recently proposed deep learning-based virtual screening model, PointVS, identified the most important func-
tional groups with 39% more efficiency than a fingerprint-based random forest, suggesting that it would generalise 
more effectively to new examples. In addition, we found that ligand-specific biases, such as those present in widely 
used virtual screening datasets, substantially impaired the ability of all ML models to identify the most important 
functional groups. We have made our synthetic data generation framework available to facilitate the benchmarking 
of new virtual screening models. Code is available at https:// github. com/ tomha dfiel d95/ synth VS.
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Introduction
The drug discovery process is difficult and time consum-
ing, with a recent study finding that the median time to 
develop a new drug was 8.3 years, at an average cost of 
$985 million [1]. There is therefore a need to develop 

novel techniques which can help design medicines more 
quickly and cheaply.

Fueled by their successes in a broad range of domains 
(e.g. [2–4]), there has been substantial recent interest in 
the development of machine learning (ML) algorithms to 
help accelerate the drug discovery process; recent exam-
ples include highly accurate protein structure predic-
tion algorithms [4–6], generative models which propose 
target-specific libraries for compound design [7–11] and 
tools for automated synthesis planning for synthetically 
challenging molecules [12–14].
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The long-term hope for these algorithms is that it will 
one day be possible to build an end-to-end in-silico drug-
discovery platform which, following the identification of 
a target, could produce a series of high affinity binders 
without human involvement. A key component of such 
a platform would be the ability to computationally pre-
dict whether a given ligand is likely to bind to the target 
with high affinity, as this would allow the prioritisation of 
promising compounds from a large library of molecules.

Traditional virtual screening models (e.g. [15, 16]) esti-
mate the binding affinity of a protein-ligand complex 
as a weighted sum of physics-based terms (e.g. van der 
Waals contributions, hydrogen bond scores etc.), with 
solved protein-ligand complexes used to estimate the 
model weights. These methods are dependent on a set of 
hand-crafted features being fed into a model; subsequent 
approaches have sidestepped this requirement by con-
verting an input molecule to a fingerprint representation 
and using machine learning algorithms to automatically 
approximate non-linear relationships between features, 
such as random forests [17] or neural networks [18].

Inspired by the remarkable ability of deep learning 
models to capture important spatial information in other 
fields, the most recent set of virtual screening models 
(e.g. [19–21]) have tended to use deep-learning architec-
tures, representing the protein-ligand complex either as a 
graph or as a 3D image. It is hypothesized that such mod-
els are better able to identify important protein-ligand 
interactions and will be more generalizable to novel tar-
gets than fingerprint-based models or models which 
depend on a set of hand-picked features.

Despite their ability to capture important spatial infor-
mation, recent studies [20, 21] have shown that finger-
print-based models (e.g. [18]) illustrated comparable or 
better predictive performance than deep learning mod-
els, calling into question whether deep learning models 
are actually able to use their learned representations to 
identify important intermolecular interactions. Moreo-
ver, a study by Chen et al. [22] raised concerns surround-
ing the susceptibility of deep learning-based models 
to ligand-specific biases, demonstrating that removing 
all protein information from a deep learning-based vir-
tual screening model did not degrade its performance. 
Their findings indicated that the model was not captur-
ing important spatial information but rather learning to 
classify examples based on ligand-specific biases. In a 
recent study by Volkov et  al. [23], the authors trained a 
series of message passing neural networks with a variety 
of different inputs. They found that whilst the inclusion 
of protein-specific information aided the model’s pre-
dictive performance compared to a model trained solely 
on ligand-specific features, the explicit featurisation of 
protein-ligand interactions did not improve performance 

compared to the model trained on ligand-specific and 
protein-specific features. The authors argued that this 
suggested that the model was unable to learn to identify 
the underlying biophysical interactions responsible for 
binding and instead learned to classify examples based 
on distributional differences in the training data.

An approach to incentivise models to learn to use 
intermolecular interactions was described by Scantlebury 
et  al. [24]. They proposed a data augmentation strategy 
where additional decoy examples were derived by tak-
ing an active protein-ligand complex from the training 
set and randomly rotating and translating the ligand. The 
augmentation procedure forced the convolutional neu-
ral network to use the protein-specific information when 
making decisions, illustrated by the degraded perfor-
mance of the model when protein-specific information 
was removed.

To investigate the extent to which ML algorithms are 
able to accurately assign importance to individual atoms 
when making a prediction, several recent works [25–27] 
have proposed synthetic datasets which labelled ligands 
as ‘active’ if they contained a pre-defined molecular sub-
structure. Using an attribution technique, such as Inte-
grated Gradients [28], it is then possible to compare the 
model-assigned atom importances to the ground truth 
atom labels to assess whether the atoms which comprised 
the pre-defined substructure were identified as the most 
important atoms. While these studies provided valu-
able insights into the ability of ML algorithms to identify 
important functional groups, they did not assess whether 
the ML algorithms were able to capture important spatial 
information or identify intermolecular interactions.

Whilst several authors have used attribution tech-
niques on real-world data to uncover important func-
tional groups [24, 29, 30], it is often difficult to ascertain 
the precise contribution of each atom in an experimen-
tally obtained protein-ligand complex. Combined with 
the difficulty in manually curating a large-scale test set, 
it is currently infeasible to objectively assess the attribu-
tion performance of ML algorithms on real-world virtual 
screening tasks.

To address this, we propose a protocol for generat-
ing a synthetic dataset which mimics the mechanics of 
protein-ligand binding. Each ligand in the dataset is sur-
rounded by a randomly sampled point cloud of pharma-
cophores, “synthetic residues”, which together comprise 
a “synthetic protein”. Just as in real-world protein-ligand 
binding, where for a ligand to bind to a protein it must 
interact with a number of pharmacophores in the bind-
ing site, we define two simple deterministic binding rules, 
which decide whether a ligand “binds” to a synthetic pro-
tein based upon the relative position of ligand pharmaco-
phores and synthetic residues with complementary types.
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As the label of each example is determined by a 
known deterministic binding rule, we can precisely 
specify which functional groups, if any, in the ligand 
are responsible for binding. Although our deterministic 
binding rule is considerably simpler than the mechan-
ics of real-world protein-ligand recognition, it allows us 
to assess whether an ML algorithm is able to capture 
important spatial information and use it when making 
predictions.

Using our synthetic dataset, we first quantified the 
ability of a fingerprint-based virtual screening model 
to correctly identify important functional groups, 
and investigated the effect of changing the model’s 
parameters on its attribution performance. We then 
investigated the effect of ligand-specific biases on the 
fingerprint-based models, both in terms of predictive 
accuracy and attribution performance. Finally we com-
pared the performance of the fingerprint-based models 
to a recently proposed Equivariant graph neural net-
work, PointVS [30].

We found that although all models were able to accu-
rately predict binding in the presence of ligand-specific 
biases, their ability to attribute binding to the correct 
functional groups was substantially degraded, indicating 
they were less able to generalise than models which were 
not susceptible to ligand-specific biases. We also found 
that the attribution performance of the fingerprint-based 
models was heavily dependent on the parameters used 
to define the fingerprint, and that they were less able to 
identify the most important functional groups compared 
to the EGNN method, PointVS. These findings illustrate 
the importance of investigating the reasons behind high 
predictive performance and the utility of our synthetic 
approach as a benchmark for model generalisability.

Methods
It is not easily possible to precisely experimentally quan-
tify the extent to which an intermolecular interaction 
contributes to protein-ligand binding on a large scale 
on real-world data. Therefore we propose two protocols 
for generating synthetic data where the contribution of 
any atom can be computed exactly. Whilst the synthetic 
data we generate gives only a coarse-grained approxima-
tion of real-world protein-ligand binding, it nevertheless 
allows us to assess the ability of virtual screening models 
to utilise important spatial information. We are also able 
to ensure that our synthetic datasets are free of ligand-
specific bias and other extraneous factors which may 
inflate a model’s predictive performance on a test set 
while degrading its generalizability to novel targets. This 
allows us to quantify the effect of such real-world factors 
on model generalizability.

Generating a synthetic protein‑ligand complex
We defined a “synthetic protein” to be the set 
{(xi, yi, zi, ti)|i = 1, ...,m} , where each element, which 
we call a “synthetic residue”, comprises 3D coordinates 
(xi, yi, zi) and an associated type, ti . After specifying a 
ligand with a 3D conformation, we constructed a syn-
thetic protein as follows:

• We first defined a box around the ligand. To obtain 
the x-axis of the box we identified the minimum and 
maximum x-coordinates , xmin and xmax , over all 
ligand atoms and defined the x-axis as [xmin − 5 Å, 
xmax + 5 Å ]. The y-axis and z-axis were obtained in 
the same way.

• We then sampled a number of coordinates uniformly 
within the box, such that the density of points was 
invariant of the box volume. That is, we sampled m 
points, where m = acoef × b for box volume b.

• For each set of coordinates, we randomly sampled an 
associated type to create a synthetic residue.

• If any synthetic residue was within 2 Å of a ligand 
atom, it was deleted.

• The synthetic residues were filtered further so that no 
two synthetic residues are within 3 Å of each other.

• To reduce the risk of inducing ligand-specific bias 
dependent on the number of functional groups pre-
sent in a ligand, we sampled the number of synthetic 
residues, nres , as nres = floor(nops/nlig ) , where nops 
is a constant (50 for all experiments in this paper) 
and nlig was the number of ligand functional groups 
which can interact with a protein (which varies 
according to the generative process used to generate 
the synthetic protein, see below).

Polar generative process: the type of each synthetic resi-
due determines which ligand functional groups it is able 
to interact with. In the Polar dataset we restrict the syn-
thetic residue types to “Hydrogen Bond Acceptor” (HBA) 
and “Hydrogen Bond Donor” (HBD). We used RDKit [31] 
to determine whether each ligand atom was a Hydrogen 
bond donor or acceptor and we define a ligand donor or 
acceptor to interact with a synthetic residue if:

• Their types match: e.g. the synthetic residue has type 
HBD and the ligand atom is a Hydrogen Bond Accep-
tor, and

• The distance between the synthetic residue and 
ligand atom is below a specified threshold. For all 
experiments this was set at 4 Å.

For a given synthetic protein-ligand complex, if any 
ligand atom interacts with a synthetic residue, we say the 
complex is active, otherwise it is inactive. An example of 
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a synthetic protein-ligand complex generated using the 
Polar generative process is shown in Fig. 1.

Contribution‑based generative process
While the synthetic protein-ligand complexes gener-
ated by the Polar generative process only require a single 

interaction to be classified as active, in practice a ligand 
typically needs to make several different interactions in 
order to bind with high affinity. We therefore propose a 
second binding rule which assigns a score to each syn-
thetic residue-ligand atom pair and classifies the complex 
depending on the cumulative score. In the Contribu-
tion dataset we extend the synthetic protein to include 
“Hydrophobic” synthetic residues as well as the HBA 
and HBD synthetic residues present in the Polar data-
set. The synthetic protein is generated in the same way 
as when using the Polar generative process, with each 
synthetic residue type sampled at uniform from the set 
{HBA,HBD,Hydrophobic}.

To label a synthetic protein-ligand complex, we con-
sider synthetic residue-ligand functional group pairs 
where the ligand functional group has type “Acceptor”, 
“Donor” or “Hydrophobe”, assigned by RDKit [31]. If 
the synthetic residue and ligand functional group do not 
have matching types, we define their interaction score as 
0, otherwise their interaction score is calculated as a non-
linear function of the interaction type and the euclid-
ean distance between the synthetic residue and ligand 
atom (Fig.  2). For Hydrophobic interactions, we define 
the non-linear function as 3× f (d) , where d is the dis-
tance between the ligand atom and synthetic residue, 
and f is the probability density function of the Gamma(4, 
1) distribution. For Hydrogen Bond interactions, the 
non-linear function is defined as 10× f (d) , meaning 
that Hydrogen Bonds are “stronger” than Hydrophobic 

Fig. 1 Example of synthetic protein-ligand complex. Green ligand 
atoms represent Carbons, red atoms denote Oxygens and blue 
atoms denote Nitrogens. The blue spheres represent synthetic 
residues with type ‘Hydrogen Bond Acceptor’ (HBA), whilst the red 
spheres represent synthetic residues with type ‘Hydrogen Bond 
Donor’ (HBD). The amine group is 2.8 Å away from a synthetic 
residue with type HBA; as the distance is less than the 4 Å specified 
by the deterministic binding rule, we consider this example to be 
active. While the carbonyl is 4.5 Å away from the nearest synthetic 
residue of with type HBD (and therefore does not interact with it), 
under the Polar generative process only a single interaction is needed 
for binding

Fig. 2 Non-linear functions used to determine the interaction score of a synthetic residue-ligand atom interaction; both functions are proportional 
to the Probability Density Function of a Gamma (4, 1) distribution. Separate functions are used for Polar interactions and Hydrophobic interactions, 
making it more difficult for the model to learn the deterministic binding rule
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interactions. The sum of all pairwise interaction scores 
is calculated, and we label the example as “active” if the 
summed interaction score exceeds a pre-specified thresh-
old. For all experiments in this work, we used a score 
threshold of 4.

Machine learning algorithms
We used two different ML algorithms to classify exam-
ples as active or inactive. The first model was a random 
forest (RF), which took either Morgan fingerprints [32] 
or Protein-Ligand Extended Connectivity fingerprints 
(PLECs) [33] as input. We were able to represent our 
synthetic protein-ligand complexes as PLECs without 
needing to modify the Open Drug Discovery Toolkit [34] 
(oddt) codebase.

Morgan fingerprints: Morgan fingerprints are a vector 
representation of a molecule, calculated in an iterative 
fashion by first assigning an identifier to each atom and 
then updating the identifier to incorporate information 
from the identifiers of the atom’s neighbours. This updat-
ing process is repeated a number of times so that infor-
mation about atoms which are not immediate neighbours 
of an atom can be included in its identifier; in this work, 
all Morgan fingerprints are calculated using the RDKit 
[31] implementation with a radius of 2.

Morgan fingerprints, by design, do not incorporate 
any spatial information or any information about the 
target. In this work, the models trained using Mor-
gan fingerprints serve as a baseline to assess whether a 
model can attain strong predictive accuracy using solely 
ligand-based features. Predictive performance that was 
substantially better than random would suggest that sig-
nificant ligand-specific biases were present in the dataset, 
whereas close-to-random predictive performance would 
indicate that the active and inactive ligand sets were 
drawn from approximately the same population.

This allows us to quantify the extent to which a model 
might be susceptible to ligand-specific biases, as we 
would not expect models without access to information 
concerning the protein to be able to learn the determin-
istic binding rules and therefore better-than-random 
predictive accuracy would likely be due to biases in the 
training set.

PLEC fingerprints:  PLEC fingerprints encode impor-
tant spatial information as follows: First, all ligand atom-
protein atom pairs which are closer together than a 
specified cutoff are identified, and integer radii, rlig and 
rprot , are specified for the ligand and protein respectively. 
(which need not be the same length). For each qualifying 
ligand atom-protein atom pair, substructures contain-
ing atoms which are up to rlig or rprot atoms away from 
the ligand or protein atom are identified and encoded 
in the fingerprint using a hashing algorithm. All PLEC 

fingerprints were computed using the oddt [34] imple-
mentation with a ligand radius of 3 and a protein radius 
of 0 (as the synthetic residues are represented as a single, 
unconnected atom).

As ligand atom-protein atom pairs which are within a 
specified threshold are explicitly encoded within the fin-
gerprint, we would expect models trained using PLECs 
to perform strongly on the Polar tasks when the PLEC 
distance cutoff closely matches the distance specified by 
the deterministic binding rule. However, as PLEC doesn’t 
encode any more detailed spatial information, we would 
expect that it would be unable to learn the non-linear 
function of distance which calculates the contribution of 
a synthetic residue-ligand atom pair used by the Contri-
bution generative process.

Model naming:  we refer to models trained using a 
Morgan fingerprint as RF_Morgan. Models trained 
using PLEC fingerprints are referred to RF_PLEC. RF_
PLEC_n, where n is a positive real number, refers to an 
RF model trained with a specific PLEC distance cutoff.

Equivariant graph neural network (EGNN)
We compared the performance of the RF_PLEC mod-
els to a recently proposed deep learning-based approach 
[30], “PointVS”. PointVS is based on the E(n)-Equivariant 
Graph Neural Networks proposed by Satorras et al. [35]. 
In contrast to the fingerprint-based RF_PLEC models, 
PointVS takes as input the 3D coordinates of protein and 
ligand atoms, in addition to a one-hot encoding of the 
atom type. When constructing the input graph, where 
each node is an atom, two nodes are connected by an 
edge according to the following rules:

• Two ligand atoms are connected by an edge if they 
are within 2 Å of each other.

• Two protein atoms are connected by an edge if they 
are within 2 Å of each other.

• A protein atom and a ligand atom are connected by 
an edge if they are within 10 Å of each other.

For intra-molecular edges, the 2 Å cutoff connects atoms 
which are covalently bonded, whilst the inter-molecular 
edges connect atoms which might potentially interact. 
Scantlebury et  al. [30] also applied a further distance 
cutoff, where any receptor atom which was not within 
6 Å of any ligand atom was ignored; this reduced the 
dimensionality of the input graph by ignoring residues 
which were not part of the binding pocket. As we con-
strained each synthetic protein to be within a box defined 
as [xmin − 5, xmax + 5] × [ymin − 5, ymax + 5] × [zmin − 5, zmax + 5] , 
where xmin was the smallest ligand atom x-coordinate 
and the other values were defined similarly, the vast 
majority of synthetic residues would be within 6 Å of at 
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least one ligand atom and so this cutoff should have mini-
mal impact on the performance of PointVS.

"ZINC" dataset
Before exploring the effect of ligand-specific bias on 
model attribution performance, we constructed a base-
line dataset to assess the ability of different ML algo-
rithms to learn the deterministic binding rules outlined 
above. We obtained a set of 10k ligands from ZINC [36] 
and used the Polar and Contribution generative pro-
cesses to generate two synthetic datasets (“Polar_ZINC” 
and “Contribution_ZINC”). The distribution of the num-
ber of Hydrogen Bond Acceptors/Donors in each ligand 
atom across the actives and decoys in the Polar_ZINC set 
are shown in Fig. 3.

We sampled 500 examples from each dataset to serve 
as a test set, and used the remaining examples to train 
each model. We trained 8 different RF_PLEC models, 
varying the PLEC distance cutoff by 0.5 Å from 2.5 Å to 
6 Å. To train PointVS, we used the default hyperparam-
eters outlined by Scantlebury et al. [30].

Inducing ligand‑specific bias
As mentioned above, Chen et  al. [22] showed that the 
presence of ligand-specific biases allowed virtual screen-
ing models to disregard the provided protein-specific 
information and still achieve strong predictive accu-
racy. The models were able to do this by constructing a 

decision rule which classified examples based on 2D 
ligand features rather than intermolecular interactions. 
We hypothesized that a dependence on ligand-specific 
biases would severely degrade the ability of a virtual 
screening model to identify important functional groups.

To explore the effect of ligand-specific bias on attribu-
tion performance, we constructed a set of synthetic pro-
tein-ligand complexes where each ligand was taken from 
the Directory of Useful Decoys—Enhanced (DUD-E) 
[37]. Sieg et al. [38] showed that ML algorithms were able 
to exploit distributional differences between the actives 
and inactives in DUD-E to achieve inflated predictive 
accuracy. We selected the five DUD-E targets contain-
ing the most ligands and used the ligands to construct 
five synthetic datasets. For each ligand, we extracted its 
true label from DUD-E and generated a synthetic protein 
using the Polar generation process outlined above. If the 
synthetic protein-ligand complex had a different label 
than the true label assigned to the ligand, we generated 
a new synthetic protein and recalculated the label until 
the true label and the label of the synthetic protein-ligand 
complex matched. If, after generating 100 synthetic pro-
teins we were unable to attain the true label, we discarded 
the ligand. We used the same approach to derive an addi-
tional five synthetic datasets from the five LIT-PCBA [39] 
targets with the most ligands.

By constructing the synthetic virtual screening 
datasets in this way, an ML algorithm would be able 

Fig. 3 The distribution of the number of Hydrogen Bond Acceptor/Donors in each ligand atom for the Polar_ZINC dataset, across the set of actives 
and decoys. The actives and decoys have almost identical distributions, suggesting that a virtual screening model would not be able to use 
the number of ligand pharmacophores to predict “binding”
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to classify examples by using the spatial information 
in the synthetic protein-ligand complexes and/or by 
learning ligand-specific biases, mimicking the choice 
offered to an algorithm trained on the real DUD-E and 
LIT-PCBA datasets.

“PDBBind” dataset
We used ligands from the PDBBind set [40] (v. 2019) 
to construct two external test sets, one using the Polar 
generative process and one using the Contribution 
generative process. To reduce the risk of inflated per-
formance due to overfitting, any ligand with a Tani-
moto similarity of more than 0.8 to any ligand in any 
of the above training sets was discarded and we also 
discarded any very small molecules (fewer than 15 
heavy atoms). Of the remaining ligands, we randomly 
selected 500 and generated a synthetic protein-ligand 
complex from each. As the purpose of the test set was 
to assess the ability of the models to identify func-
tional groups which were responsible for binding, we 
ensured that each example was “active” by resampling 
the synthetic protein for each ligand until it was active 
according to the deterministic binding rule. Figure  4 
shows the distribution of the atomic scores contrib-
uted by each atom in the PDBBind_Contribution 
dataset.

Ranking the importance of ligand atoms.
Following Hochuli et  al. [29], we used atom masking to 
rank the importance assigned to a ligand atom by a par-
ticular model. For the ith  atom in a molecule, m, we cal-
culate the masking score as si = score(m)− score(m\i) , 
where score(m) is the prediction given by the model for 
m and m\i denotes the molecule m where the ith  atom 
has been deleted. For the RF_PLEC models, we delete an 
atom by replacing it with a dummy atom, and for PointVS 
we delete the corresponding node from the input graph. 
As higher scoring molecules are classified as active exam-
ples, masking assigns a high level of importance to atoms 
whose omission drastically reduces the model’s confi-
dence that an example has an active label. Whilst Scantle-
bury et al. [30] used an attention mechanism to score the 
relative importance of different atomic interactions, we 
used masking for the experiments in this paper as it can 
be used to generate attributions for any predictive model, 
allowing a closer comparison between different models.

Evaluation metrics
For datasets generated using the Polar process, where 
each atom either contributes to binding or is not involved 
at all, we would hope that an attribution method would 
give the highest rank to atoms involved in binding, allow-
ing users to identify the most important atoms by their 
attribution scores. We propose an ‘Attribution AUC’, 

Fig. 4 The distribution of non-zero atomic contributions in the PDBBind test set. Atoms with a contribution of zero are not included to improve 
scaling; 7935 (62%) of the atoms in the test set have a ground-truth contribution of zero. a Distribution of atomic contribution scores. b Proportion 
of atoms with an above-threshold contribution. Approximately 9.5% of atoms have a score of more than 1 and 3.7% of atoms have a score of more 
than 2
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where a ranking of atoms which places all binding ligand 
atoms at the top receives a score of 1, a ranking which 
places all binding ligand atoms at the bottom receives a 
score of 0, and all other rankings receive a score accord-
ing to the following heuristic:

We define a ‘change’ to be the transposition of two 
adjacent rows in a dataframe sorted by the model attri-
butions. We calculate the number of changes required to 
rank the ligand atoms correctly (all binding atoms ranked 
at the top), and the number of changes required to rank 
the ligand atoms correctly in the worst case scenario (all 
binding atoms ranked at the bottom).

For datasets generated using the Contribution process, 
we calculated the Spearman’s Rank Correlation Coef-
ficient between the true ligand atom contributions and 
the model attributions for each example. To assess the 
extent to which the models were able to identify the most 
important atoms, we introduce two metrics:

• Mean Above-Threshold Ranking (MATR): for a 
specified score threshold, t, we compute the average 
rank (assigned by the model attributions) of all atoms 
whose true contribution was greater than t. A low 
MATR implies that a model can successfully identify 
important atoms; we compute the MATR for score 
thresholds between 0 and 3.

• Relative Efficiency of Ranking (RER): we compare the 
atomic rankings derived from the model attributions 
to the “perfect” ranking derived from the ground 
truth atomic contributions. We define: 

 where, for all experiments in this work, MATR (a) is 
the MATR score attained by the model a, and MATR 
(b) is the MATR score attained by the ground-truth 
atomic contributions. For the RER score we set the 
MATR score threshold to consider the ten percent of 
atoms with the highest score (i.e. t = 0.96)

In addition to the above metrics which assess the abil-
ity of a model to correctly identify which atoms were 
responsible for binding, we also computed the accuracy 
and area under the Precision-Recall curve (AU PRC) 
attained by the models on the held out test sets.

Results and discussion
In order to quantify the extent to which different ML 
algorithms were able to accurately identify important 
intermolecular interactions, we tested the algorithms on 

1−
# changes needed

worst case # changes

RER(a, b) =
MATR(a)

MATR(b)

synthetic datasets using deterministic binding rules (see 
"Methods" section).

Ligand‑only model performance
In line with previous work [22, 24], we trained several 
models where no synthetic protein-specific information 
was provided to the model (RF_Morgan, see "Methods" 
section). The performance of these models allowed us 
to assess whether a dataset exhibited any ligand-specific 
biases, as the deterministic binding rule was dependent 
on both ligand and synthetic-protein.

All RF_Morgan models trained on DUD-E datasets 
attained substantially better-than-random predictive 
accuracy (Table 1). This was also true for all LIT-PCBA 
ligands if balanced numbers of actives and decoys were 
used (Table 1), although the balanced accuracy attained 
by the LIT-PCBA models was considerably lower than 
that obtained by the DUD-E models, suggesting that the 
LIT-PCBA ligands contained lower levels of ligand-spe-
cific bias. This suggests that RF_Morgan models trained 
on DUD-E or LIT-PCBA datasets were able to exploit 
ligand-specific information to make accurate predictions. 
By contrast, when trained on the Polar_ZINC dataset, 
the RF_Morgan model attained a predictive accuracy of 
0.52, indicating that without target-specific information a 
Random Forest using only ligand information was unable 
to accurately classify the examples (Table 2).

Table 1 Performance of the RF_Morgan model on different 
datasets

Predictive accuracy substantially better than random suggests that the datasets 
may suffer from ligand-specific bias

Accuracy denotes the proportion of correctly classified examples, whereas 
Random Accuracy denotes the accuracy that would have been obtained by 
assigning all examples the most common label (= max(% actives, % inactives) . 
AU-PRC denotes the area under the Precision-Recall curve. Balanced Accuracy 
and Balanced AU-PRC denote the respective accuracy and area under the 
Precision-Recall curve when the model was trained using an equivalent number 
of actives and inactives

Dataset Random 
Accuracy

Accuracy AU‑PRC Balanced 
Accuracy

Balanced 
AU‑PRC

ZINC 0.504 0.52 0.53 N/A N/A

DUDE-AA2AR 0.93 1.0 1.0 0.984 0.996

DUDE-DRD3 0.972 0.998 1.0 0.978 0.995

DUDE-FA10 0.97 1.0 1.0 0.992 1.0

DUDE-MK14 0.976 0.998 1.0 0.994 1.0

DUDE-VGFR2 0.984 1.0 1.0 0.99 0.999

LIT-ALDH1 0.613 0.76 0.809 0.768 0.806

LIT-FEN1 0.956 0.958 0.584 0.778 0.883

LIT-MAPK1 0.964 0.964 0.292 0.692 0.797

LIT-PKM2 0.944 0.952 0.755 79 0.901

LIT-VDR 0.928 0.942 0.6 0.772 0.87
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Performance of RF_PLEC models (ligand + protein 
fingerprints) on Polar_ZINC dataset
Having validated that our Polar_ZINC dataset did not 
contain trivial ligand-specific biases, we built RF_PLEC 
models that include the synthetic proteins in the train-
ing process (see "Methods" section). To assess how sen-
sitive the RF_PLEC models were to the choice of PLEC 
distance cutoff, we trained eight distinct RF_PLEC 
models, incrementing the PLEC distance cutoff by 0.5 
Å between 2.5 Å and 6 Å. We found that all RF_PLEC 
models attained a substantially better predictive accu-
racy than the RF_Morgan model on the Polar_ZINC 
dataset (Table  2), indicating that the inclusion of pro-
tein information into the model enabled the random 
forest to better approximate the deterministic binding 
rule. Unsurprisingly, the RF_PLEC_4 (the same cutoff 
as the deterministic binding rule) model obtained the 
highest predictive accuracy (Table 2).

The RF_PLEC models exhibited a similar trend in 
terms of Attribution AUC (which assesses the ability 
of a model to assign high ranks to active ligand atoms), 
with the RF_PLEC_4 model most often correctly iden-
tifying the atoms responsible for binding (Table 2). We 
observed that performance degraded substantially as 
the PLEC distance cutoff diverged from 4 Å, suggest-
ing that the RF_PLEC models were highly dependent 
on the precise specification of the PLEC distance cutoff.

Sensitivity of RF_PLEC models to distance cutoff
To better understand the relationship between the 
PLEC distance cutoff and attribution performance, we 

consider a synthetic protein-ligand complex in detail. 
The original complex (shown in Fig.  5a) is labelled as 
active and has a single synthetic residue-ligand atom 
pair with complementary type and a distance below the 
deterministic binding threshold. We perturbed the syn-
thetic residue to take a range of locations between 1.5 Å 
and 10 Å away from the matching ligand atom (Fig. 5b). 
We featurized each protein-ligand complex using PLEC 
and used masking to determine the importance of each 
ligand atom and calculated the rank of the ligand atom 
involved in binding. Figure  5c shows the relationship 
between synthetic residue-ligand atom distance and 
the rank assigned to the binding ligand atom by the 
highest performing RF_PLEC models (RF_PLEC_4, 

Table 2 Performance of different RF_PLEC models when 
trained on the Polar_ZINC dataset

Accuracy denotes the proportion of correctly classified examples on the 
Polar_ZINC test set, AU-PRC denotes the area under the Precision-Recall 
curve on the Polar_ZINC test set, and Attribution AUC reflects the ability of a 
model to correctly identify the ligand atoms responsible for binding on the 
PDBBind test set (see "Methods" section)

The best performing model was RF_PLEC_4, which uses the same distance 
cutoff as the Polar deterministic binding rule

Model Accuracy AU‑PRC Attribution 
AUC 

RF_Morgan 0.52 0.53 0.47

RF_PLEC_2.5 0.62 0.66 0.57

RF_PLEC_3 0.70 0.78 0.65

RF_PLEC_3.5 0.79 0.89 0.77

RF_PLEC_4 0.95 0.99 0.89

RF_PLEC_4.5 0.81 0.86 0.86

RF_PLEC_5 0.79 0.80 0.78

RF_PLEC_5.5 0.75 0.79 0.73

RF_PLEC_6 0.72 0.77 0.70

PointVS 0.89 0.95 0.85

Fig. 5 Case study illustrating the effect of changing the PLEC 
distance cutoff on model attributions. a The original synthetic 
protein-ligand complex generating using the Polar generative 
process, labelled as active as a result of the circled interaction. b 
Perturbed examples. We generated 50 synthetic protein-ligand 
complexes, which were all identical apart from the HBA synthetic 
residue contained in the circle, whose position was perturbed 
in relation to the ligand HBD with which it interacts. The 5 
spheres within the circle illustrate 5 of the 50 positions occupied 
by the interacting residue. c Illustration of how the relative 
importance of the key ligand atom changes as the distance 
between it and the perturbed synthetic residue changes. Despite 
the synthetic residue and ligand atom no longer interacting 
when the distance between them is greater than 4 Å, the RF_
PLEC_4.5 and RF_PLEC_5 models continued to rank the ligand 
atom highly until the synthetic residue-ligand atom distance 
was greater than the respective PLEC distance cutoff
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RF_PLEC_4.5 & RF_PLEC_5). Figure 5c shows that 
the RF_PLEC models assign a high level of importance 
to the key ligand atom when the synthetic residue-
ligand atom distance is less than the respective PLEC 
distance cutoff, and assigns a reduced level of impor-
tance when the distance is greater than the PLEC dis-
tance cutoff. In particular, when using a PLEC cutoff 
threshold of 4.5 or 5 Å, the ligand atom is assigned a 
high rank when the synthetic residue-ligand atom dis-
tance is greater than the true binding threshold but less 
than the PLEC distance cutoff. This demonstrates the 
sensitivity of the RF_PLEC models to the exact speci-
fication of its distance cutoff; it is not able to encode a 
precise level of spatial information. This suggests that 
models trained using PLEC or based on distance-based 
cutoffs are unable to retain fine-grained spatial infor-
mation, which may limit their usefulness for work with 
real-world protein-ligand complexes where different 
interactions can take place at different distances.

Performance of RF_PLEC models on contribution dataset
We next examined the performance of the RF_PLEC 
models on our Contribution_ZINC dataset. The Con-
tribution generative process more closely approximates 
real-world protein-ligand binding, as the strength of a 
synthetic residue-ligand atom interaction is a continuous 
function of the euclidean distance between them, and 
typically several high scoring interactions are required 
in order for a synthetic protein-ligand complex to be 
deemed active. This is significantly more challenging to 
learn than the Polar deterministic binding rule, which 
used a simple distance cutoff and only required a single 
synthetic residue-ligand atom pair to be ‘active’ for the 
complex to be active.

As with the dataset generated by the Polar generative 
process, we first fit an RF_Morgan model on the Con-
tribution_ZINC dataset to assess whether the models 
were susceptible to ligand-specific bias. The RF_Mor-
gan model attained an accuracy of 0.47, suggesting that 
the structure-based models would have to use the pro-
tein to achieve strong predictive performance. All of the 
RF_PLEC models attained a low Spearman’s Rank Cor-
relation Coefficient between the model assigned atom 
ranks and the ground truth atom ranks, ranging from 
0.006 (RF_PLEC_2.5) to 0.093 ((RF_PLEC_6)). These 
values suggest that the RF_PLEC models were unable to 
learn the deterministic binding rule. We next assessed 
whether the models were able to correctly assign a high 
rank to the most important functional groups. To do 
this, we computed the Relative Efficiency of Ranking 
(RER) attained by each RF_PLEC model when com-
pared to the “perfect” rankings obtained by ranking the 
atoms in a molecule by their ground truth contribution 

(see "Methods" section). The RER attained by the random 
baseline was 7.38, and the optimal attainable value for a 
model is 1.00. The RER scores attained by the RF_PLEC 
models ranged between 4.66 (RF_PLEC_5) and 6.68 
(RF_PLEC_2.5), suggesting that the models struggled 
to identify the most important functional groups when 
making predictions. The close-to-random performance 
of some of the RF_PLEC models is also illustrated by 
Fig. 6, which shows the Mean Above Threshold Ranking 
(MATR) score (see "Methods" section) attained by each 
model for a variety of thresholds.

Our results suggest that whilst the PLEC fingerprints 
were often able to encode a sufficiently detailed level of 
spatial information for the simplistic Polar tasks, its rep-
resentation of spatial information is inadequate to learn 
the more complicated Contribution binding rule. As the 
Contribution binding rule is itself considerably simpler 
than the rules which govern real-world protein-ligand 
binding, it is likely that PLEC (and other fingerprint-
based methods which are based on a binary distance cut-
off) are ill-equipped to ascertain which functional groups 
make a key contribution towards binding.

Quantification of ligand‑specific bias on attribution 
performance
Although the above results suggest that fingerprint-based 
models struggle to learn complex binding rules, several 
previous studies (e.g. [21, 41]) have reported that fin-
gerprint-based methods have attained strong predictive 
accuracy on real-world virtual screening datasets such as 
DUD-E [37]. However, recent studies (e.g. [22, 38]) have 
illustrated that virtual screening models are able to attain 
inflated performance by learning ligand-specific biases, 
with Sieg et al. [38] reporting that highly simplistic mod-
els (e.g. a model with the number of Hydrogen Bond 
Acceptors in a ligand as the only feature) served as highly 
accurate classifiers for certain DUD-E targets. Therefore, 
it is of interest to assess the extent to which real-world 
factors such as ligand-specific biases and labelling errors 
degrade the ability of virtual screening models to identify 
important ligand functional groups.

Although we found that the models trained on DUD-E 
and LIT-PCBA datasets attained strong predictive 
accuracy on their respective test sets (Table  3), overall 
we found that training the models on a dataset which 
exhibited ligand-specific bias degraded their attribu-
tion performance. Table  4 shows the Attribution AUC 
values attained by the best performing RF_PLEC mod-
els when trained on a variety of different datasets and 
tested on the external PDBBind set, generated using the 
Polar generative process. When training on the DUD-E 
datasets, each of the RF_PLEC_4 models attained an 
attribution AUC value marginally below that obtained 
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by the corresponding model trained on the ZINC data-
set. However, we observed a considerably larger differ-
ence between the attribution AUC values obtained by 
the RF_PLEC_4.5 and RF_PLEC_5 models trained 
using the DUD-E datasets and the corresponding mod-
els trained using the ZINC ligands. Indeed, two of the 
RF_PLEC_5 models attained an Attribution AUC (FA10: 

0.555, VGFR2: 0.559) which was only marginally higher 
than the random baseline (0.503). We observed a similar 
trend for the RF_PLEC models trained using LIT-PCBA 
ligands.

Fig. 6 The average rank assigned to all ligand atoms attaining a score above a specified threshold. Perfect is the curve attained when ranking 
atoms by the true atomic contribution, whilst random is the curve obtained when the atoms are ranked completely at random

Table 3 Performance of the RF_PLEC_4 model on different 
datasets

Accuracy denotes the proportion of correctly classified examples, whereas 
Random Accuracy denotes the accuracy that would have been obtained by 
assigning all examples the most common label (= max(% actives, % inactives)

AU-PRC denotes the area under the Precision-Recall curve

Balanced Accuracy and Balanced AU-PRC denote the respective accuracy and 
area under the Precision-Recall curve when the model was trained using an 
equivalent number of actives and inactives

Dataset Random 
accuracy

Accuracy AU‑PRC Balanced 
accuracy

Balanced 
AU‑PRC

ZINC 0.504 0.948 0.988 N/A N/A

DUDE-AA2AR 0.93 0.992 0.987 0.942 0.992

DUDE-DRD3 0.972 0.992 0.974 0.904 0.981

DUDE-FA10 0.97 0.992 0.971 0.934 0.993

DUDE-MK14 0.976 0.99 0.994 0.928 0.985

DUDE-VGFR2 0.984 0.992 0.92 0.926 0.987

LIT-ALDH1 0.613 0.948 0.987 0.946 0.988

LIT-FEN1 0.956 0.968 0.839 0.858 0.948

LIT-MAPK1 0.964 0.972 0.672 0.822 0.923

LIT-PKM2 0.944 0.974 0.976 0.916 0.984

LIT-VDR 0.928 0.98 0.931 0.928 0.979

Table 4 Attribution AUC obtained by the different RF_PLEC 
models and PointVS on the different Polar datasets

The best performing dataset for each model is highlighted in bold

The RF_PLEC models trained on the unbiased ZINC_Polar dataset consistently 
attained a larger Attribution AUC than those trained on datasets susceptible to 
ligand-specific bias, suggesting that if a model learns to classify examples based 
on ligand-specific features, its ability to learn the true binding rule is impaired

By contrast, the highest Attribution AUC attained by PointVS was when training 
on the LIT-ALDH1 dataset, potentially illustrating that in some instances it was 
able to learn the deterministic binding rule in the presence of ligand-specific 
bias

Dataset RF_PLEC_4 RF_
PLEC_4.5

RF_PLEC_5 PointVS

ZINC 0.89 0.86 0.78 0.85

DUDE-AA2AR 0.86 0.76 0.73 0.84

DUDE-DRD3 0.83 0.68 0.63 0.69

DUDE-FA10 0.86 0.67 0.56 0.82

DUDE-MK14 0.82 0.63 0.61 0.73

DUDE-VGFR2 0.77 0.62 0.56 0.61

LIT-ALDH1 0.86 0.81 0.73 0.93
LIT-FEN1 0.83 0.69 0.62 0.87

LIT-MAPK1 0.81 0.61 0.59 0.70

LIT-PKM2 0.81 0.73 0.67 0.82

LIT-VDR 0.85 0.71 0.65 0.88

Random 0.503 0.503 0.503 0.503
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In contrast to the attribution performance attained 
on the Polar datasets, where the RF_PLEC_4 models 
were relatively robust to the introduction of ligand spe-
cific bias, the attribution performance attained on the 
Contribution datasets was substantially degraded in the 
presence of ligand-specific bias. Figure  7 compares the 
attribution performance of the RF_PLEC_4 model when 
trained on the Contribution_ZINC dataset to the models 
trained on the DUD-E and LIT-PCBA datasets. Train-
ing on DUD-E or LIT-PCBA ligands degraded the attri-
bution performance, with the average rank assigned to 
important ligand atoms decreasing substantially.

Performance of PointVS
We next examined the performance of an EGNN-based 
[35] method, PointVS (see "Methods" section). When 
trained using the Polar_ZINC dataset, the PointVS 
attained an accuracy of 0.886, a AU-PRC of 0.948 and 
an Attribution AUC of 0.851 (Table  2). Whilst PointVS 
performed slightly worse than the RF_PLEC_4 and RF_
PLEC_4.5 models, those models were able to exploit the 
fact that the PLEC featurisation explicitly encoded infor-
mation about which synthetic residue-ligand atom pairs 
were near- or below the deterministic binding threshold. 
By contrast, PointVS was only provided with the unpro-
cessed atomic coordinates, making it more challenging to 
learn the deterministic binding rule.

When trained and tested on datasets using the Con-
tribution generative process we found that PointVS 
comfortably outperformed all of the RF_PLEC models. 
Whilst the Spearman’s rank correlation (0.18) obtained 
by PointVS was not particularly strong, it was higher 
than any correlation attained by the RF_PLEC models 
(max: RF_PLEC_6, 0.09). As with the RF_PLEC models, 
we computed the RER score (see "Methods" and "Evalu-
ation metrics" section)  to compare PointVS with the 
ground truth attributions. PointVS attained an RER score 
of 2.86, considerably better than the top-performing RF_
PLEC model (RF_PLEC_5, 4.66). Fig.  6 illustrates the 
Mean Above Threshold Ranking (MATR) score attained 
by each model for a variety of thresholds, and shows that 
PointVS uniformly outperformed all RF_PLEC models 
for all thresholds. These results are perhaps not surpris-
ing, as the RF_PLEC models do not capture a precise 
encoding of each atom’s position, only recording whether 
the distance between two atoms is below a pre-specified 
threshold, making it difficult for the RF_PLEC models to 
approximate the non-linear deterministic binding rule. 
By contrast, PointVS is not constrained by a particular 
featurization and can learn the deterministic binding rule 
from the data.

When trained on the DUD-E or LIT-PCBA datasets, 
PointVS demonstrated a degree of robustness to ligand-
specific bias under the Polar generative process (Table 4), 

Fig. 7 The average rank assigned to all ligand atoms attaining a score above a specified threshold on the PDBBind test set. Each line corresponds 
to the performance obtained by an RF_PLEC_4 model trained on a different training set. The model trained on the unbiased ZINC dataset 
outperforms the models trained on the real-world DUD-E and LIT-PCBA datasets, illustrating that ligand-specific biases hamper the ability of virtual 
screening models to identify the most important functional groups
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although in several cases the Attribution was substan-
tially lower than the value obtained for the Polar_ZINC 
data. Under the Contribution generative process, con-
sistent with the results obtained using the RF_PLEC_4 
model, PointVS’ attribution performance was consider-
ably worse when trained with the DUD-E or LIT-PCBA 
datasets compared to the Contribution_ZINC dataset 
(Fig.  8). As both the PointVS and RF_PLEC_4 models 
struggle to learn complex binding rules in the presence 
of ligand-specific bias, it is likely that the models would 
be unable to identify the functional groups responsible 
for binding on real-world datasets if similar biases were 
present.

Conclusion
We have proposed a framework for assessing the abil-
ity of different ML algorithms to attribute binding at the 
atomic level. By simulating synthetic datasets we are able 
to define a ground truth for which atoms in a synthetic 
protein-ligand complex are responsible for binding, 
something which is not currently possible with real-
world data. Despite several recent studies suggesting that 
fingerprint-based machine learning algorithms achieve 
comparable performance with current deep learning 
methods, we found that a deep learning-based EGNN 
was better able to elucidate which atoms were respon-
sible for ‘binding’ when the training datasets were not 

susceptible to ligand-specific biases. This suggests that 
deep learning methods should have a greater ability to 
generalize to novel targets.

When we trained our models on datasets contain-
ing ligand-specific bias, we found that a model’s ability 
to accurately assign atomic importance was diminished, 
consistent with the notion that dataset-specific bias 
degrades model generalisability.

However, for the Polar datasets, we found that the drop 
in attribution performance attained by PointVS was far 
smaller than the corresponding drop in performance 
observed for the RF_PLEC_4.5 and RF_PLEC_5 mod-
els and similar to that observed for the RF_PLEC_4 
model, suggesting that models which can more eas-
ily learn the true binding rule are less susceptible to the 
effects of bias. The development of models which are 
able to capture and apply important spatial information 
should therefore continue to be a priority.

Our analysis has a number of limitations. The deter-
ministic binding rules used in both the Polar and 
Contribution generative processes are significantly 
simplified compared to real-world protein-ligand bind-
ing. However, our objective was to assess the extent to 
which different ML algorithms were able to capture and 
apply relevant spatial information and our relatively 
simple generative processes were sufficient to highlight 
the difficulties of explicitly encoding a precise level of 

Fig. 8 The average rank assigned to all ligand atoms attaining a score above a specified threshold on the PDBBind test set. Each line corresponds 
to the performance obtained by a PointVS model trained on a different training set. The model trained on the unbiased ZINC dataset outperforms 
the models trained on the real-world DUD-E and LIT-PCBA datasets, illustrating that ligand-specific biases hamper the ability of virtual screening 
models to identify the most important functional groups
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3D information into a fingerprint which uses a binary 
distance cutoff to summarise information about the 
binding site. An interesting avenue for further work 
would be to benchmark the performance of a wider 
variety of virtual screening models than the two pre-
sented in this paper, including fingerprints such as 
NNScore [18], which incorporate distance-based terms 
from the scoring function of Autodock Vina [15] into 
their fingerprint, and convolutional neural networks 
(e.g. [20, 21]).

Whilst there is significant interest in developing 
models which can predict protein-ligand binding with 
high accuracy, there is a strong need for models which 
can identify the functional groups which contribute 
most heavily towards binding; the identification of key 
functional groups would allow easier iterative optimisa-
tion of lead compounds. Moreover, models which dem-
onstrated an understanding of biophysical rules would 
be more likely to be accepted by human experts. In 
addition to the development of machine learning archi-
tectures which can better capture and apply impor-
tant spatial information, avenues of research which 
might better enable models to identify important func-
tion groups include data augmentation and multi-task 
learning. An alternative strategy which can improve the 
quality of virtual screening models is the incorporation 
of experimentally verified misses into the training data 
[42].

We hope that our synthetic framework will prove 
useful to researchers seeking to benchmark the abil-
ity of different virtual screening models to capture and 
apply important spatial information. We have made the 
datasets used in this study available, alongside the code 
to generate synthetic protein-ligand complexes from a 
set of ligands.
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