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Abstract 

Matrix‑Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI‑MSI) spatially resolves the chemi‑
cal composition of tissues. Lipids are of particular interest, as they influence important biological processes in health 
and disease. However, the identification of lipids in MALDI‑MSI remains a challenge due to the lack of chromato‑
graphic separation or untargeted tandem mass spectrometry. Recent studies have proposed the use of MALDI 
in‑source fragmentation to infer structural information and aid identification. Here we present rMSIfragment, an open‑
source R package that exploits known adducts and fragmentation pathways to confidently annotate lipids in MALDI‑
MSI. The annotations are ranked using a novel score that demonstrates an area under the curve of 0.7 in ROC analyses 
using HPLC–MS and Target‑Decoy validations. rMSIfragment applies to multiple MALDI‑MSI sample types and experi‑
mental setups. Finally, we demonstrate that overlooking in‑source fragments increases the number of incorrect 
annotations. Annotation workflows should consider in‑source fragmentation tools such as rMSIfragment to increase 
annotation confidence and reduce the number of false positives.

Keywords In‑source fragmentation, In‑source decay, Lipids, Annotation, Mass spectrometry imaging, MALDI, 
Computation, Cheminformatics, Bioinformatics

Introduction
Matrix-Assisted Laser Desorption Ionization Mass Spec-
trometry Imaging (MALDI-MSI) is an analytical tech-
nique used in biochemical and clinical studies to reveal 

the chemical composition and spatial information of 
organic tissues [7, 25, 28, 38, 53]. It provides valuable 
information in many applications, including the under-
standing and diagnosis of complex diseases such as can-
cer [10, 13, 15, 29, 32, 35, 39], diabetes [6, 22, 33, 57], 
Alzheimer’s [27, 30, 31] and infectious diseases [36, 54]. 
In particular, the study of lipids is pivotal, as they play 
important roles in different pathways in health and dis-
ease [34].

Despite the surge of MALDI-MSI’s popularity, asso-
ciating each mass-to-charge (m/z) signal with univocal 
molecular identifications remains challenging: (1) sam-
ples include thousands of molecules; (2) each molecule is 
responsible for several MS signals (e.g. isotopes, adducts 
and, in-source fragments); and (3) isomers and isobars 
cannot be resolved using only MS1 [8].
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Traditional mass spectrometry techniques rely on 
chromatographic separation (LC–MS, GC–MS) for 
sample simplification [63]. However, MALDI-MSI does 
not include such separation steps. Alternatively, tandem 
mass spectrometry can augment the depth of the chemi-
cal analysis by providing fragmentation information on 
single molecules. Many MALDI-MSI instruments are 
equipped with tandem-MS capabilities (Bruker’s ultraf-
leXtreme, Thermo Scientific’s MALDI LTQ Orbitrap XL, 
or Waters’ MALDI SYNAPT G2-Si) but untargeted imag-
ing MS/MS is not routinely feasible due to (1) prohibi-
tive running times, (2) limited parental ion selectivity and 
intensity, and (3) increased data size and complexity. For 
all these reasons, untargeted fragmentation of all ions in 
a sample is only possible using highly specialized instru-
mental setups [18, 24].

Traditionally, In-Source Decay (ISD) or In-Source Frag-
mentation (ISF) (i.e. the natural and unavoidable genera-
tion of fragments inside the MALDI ion source) has been 
considered an undesired artifact and thus minimized 
[26]. ISD depends mainly on the chemical structure of 
the analyte and ionization conditions such as ionization 
temperature or voltage [26]. It can be problematic in the 
study of lipids, as several fragmentation pathways lead to 
isobaric lipid species. As an example, phosphatidic acid 
(PA) fragments can be produced in-source from their 
phosphatidylserine (PS) counterparts, and phosphatidyl-
choline (PC) in-source fragments are isobaric to endog-
enous phosphatidylethanolamine (PE) species [26]. These 
known lipid fragmentation pathways result in falsely low 
concentrations of lipids suffering from ISD and falsely 
high concentrations of lipids overlapping with isobaric 
in-source fragments. Additionally, if not properly anno-
tated and removed, in-source fragments can yield an 
increased number of incorrect annotations using com-
mon MALDI-MSI annotation tools such as LipoStar, 
METASPACE, and rMSIannotation [42, 49, 55].

Nevertheless, recent studies have advocated for the 
use of well-characterized MALDI-ISD as a fast way of 
obtaining complementary fragmentation information 
to assist identification in the analysis of large molecules 
[5, 12, 37] and even lipids [58]. Some of these studies use 
automated protein ISD annotation tools like ProteinPros-
pector (Baker, P.R. and Clauser, K.R. http:// prosp ector. 
ucsf. edu) or DataAnalysis (Bruker Daltonics) but heavily 
rely on manual annotation. The use of ISD to strengthen 
identification has also been applied in MALDI-MSI in 
the field of top-down proteomics. Debois et  al. demon-
strated the use of ISD for in-situ de novo sequencing of 
several proteins on a porcine eye lens and a mouse brain 
slice [14, 64]. Similarly, Ait-Belkacem et al. [2] used ISD 
to identify several tumorigenic proteins in glioblastoma 
mouse brain tissue with MALDI-MSI. Franceschi et  al. 

proposed a semi-automated workflow for in-source frag-
mentation annotation based on initial manual annotation 
of parental metabolites followed by an Intensity Correla-
tion Analysis to find ions with a high spatial correlation 
and thus assumed to be in-source fragments. They used 
this approach to image flavonols and dihydrochalcones in 
golden apple samples [19].

Recently, Garate et al. [20], reported the MALDI-MSI 
in-source fragmentation pathways and adduct forma-
tion of the 17 main lipid classes (Additional file 1: Figure 
S1 and Table  S1-S2). Here we propose rMSIfragment, a 
software solution that exploits these known in-source 
fragmentation pathways to increase confidence in lipid 
annotations. Our novel ranking score combines the times 
a given lipid has been found in the dataset (adducts and 
in-source fragments) and their spatial correlation to fil-
ter out unlikely lipids. After validation with HPLC and 2 
different Target-Decoy approaches, rMSIfragment dem-
onstrates an Area Under the Curve (AUC) of over 0.7 on 
multiple sample types and experimental conditions. We 
also find that ISD-agnostic annotation tools like METAS-
PACE can falsely annotate in-source fragments as endog-
enous lipids.

Algorithm description
Input and output format
As input, the user should provide the ppm tolerance 
for exact mass searches against the database and an 
MSI dataset in the rMSIproc [45] peak matrix format 
([# pixels] x [# m/z] intensity matrix). Refer to the pub-
lic repository (https:// github. com/ prafo ls/ rMSIp roc) 
for instructions on how to convert profile and centroid 
mode.imZML files to the peak matrix format. The theo-
retical fragmentation pathways and adducts for each lipid 
class [20] (Additional file  1: Figure S1 and Table  S1-S2) 
are already included in rMSIfragment.

The algorithm produces a table of annotations (lipid 
annotation, number of carbons, number of double bonds, 
and molecular formula) for each of the monoisotopic 
masses found in the data set. Each annotation is associ-
ated with a likelihood score to assist manual curation. The 
resulting table can be exported as a.csv file (Additional 
file 1: Table S3). Additionally, the annotation results can 
be used to generate a molecular network graph.

Database search and likelihood score
As reported by Garate et  al. [20] ISD can produce lipid 
fragments that overlap with endogenous lipids (Fig. 1A). 
rMSIfragment estimates the likelihood of each lipid by 
computing two metrics: lipid occurrences (LO) and spa-
tial correlation (C). For each lipid in the library, rMSI-
fragment performs an exact mass search considering the 
adducts and in-source fragmentation pathways of the 

http://prospector.ucsf.edu
http://prospector.ucsf.edu
https://github.com/prafols/rMSIproc
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corresponding lipid class given by Garate et al. [20]. LO is 
the number of m/z features found. C is the mean spatial 
correlation (Pearson’s r) of all possible distinct pairs of 
m/z features found. The final ranking score is computed 
using the following equation:

Figure  1B summarizes the complete workflow. Ini-
tially, rMSIannotation [49] is used to perform deisotop-
ing (removal of m/z features considered to be isotopes). 
Later, all remaining m/z features are matched against 
LIPIDMAPS considering all theoretically feasible adducts 
and fragments. Each lipid class has a different list of theo-
retical adducts and in-source fragmentation pathways. 
The results of the annotation are stored in an R “data.
frame” that can be exported to.csv for manual inspection.

During validation, rMSIfragment uses two alterna-
tive decoy libraries (Fig.  1C) to estimate the False Dis-
covery Rate (FDR) and performance (ROC AUC) of the 

S = LO · (1+ C)

annotation. The first decoy library is formed by generat-
ing highly unlikely adducts and fragmentation pathways. 
The second decoy library replaces LIPIDMAPS with a list 
of compounds found in non-animal specimens and thus 
highly unlikely to be found in animals. Both approaches 
will be described more in detail in Sect.  "rMSIfragment 
shows high performance in a target-decoy validation".

Although by default, LIPIDMAPS [40] is used to per-
form database searches, the user can adjust the soft-
ware to use any publicly available database (e.g. HMDB, 
MoNA, METLIN or, NIST) or an in-house made com-
pound database.

Results
rMSIfragment matches HPLC–MS annotations in human 
nevi samples.
As initial validation, we challenged rMSIfragment with 
the annotation of human nevi samples G1-G15. In a pre-
vious study [20], extracts from the same tissue were ana-
lyzed by HPLC–MS, producing a list of identified lipids 

Fig. 1 Main algorithmic foundations for the annotation of in‑source fragments. A ISD can generate in‑source fragments that overlap 
with endogenous lipids. The use of Lipid Occurrences (LO) and Spatial Correlation (C) allows rMSIfragment to rank the likelihood of isobaric lipid 
annotations. B General rMSIfragment flux diagram. C Two alternative decoy libraries based on highly unlikely adducts and fragmentation pathways 
(top) and non‑animal/xenobiotic compounds (bottom)
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in positive-ion and negative-ion polarities (Garate et  al. 
Additional file 1: Table S2 and S3). We use these lists to 
estimate the performance of our automatic annotation 
tool.

Figure 2 shows the estimated performance of rMSIfrag-
ment when comparing its automatic annotations (based 
only on MSI data) to the list of HPLC–MS-identified 
lipids. To control the number of rMSIfragment annota-
tions we propose retaining the top N annotations with 
the highest S score for each m/z feature.

In the samples acquired in negative-ion polarity (G9-
G15) (Fig.  2A) rMSIfragment retrieves 91.81% of the 
HPLC-validated annotations reported in the original 
publication. To retrieve at least 50% of the HPLC anno-
tations we need to retain the top 9 hits with the high-
est S score in each m/z feature. When only keeping the 
top 5 annotations rMSIfragment returns 35.92% of the 
HPLC-validated annotations. Figure  2B shows that the 
HPLC-validated annotations obtain a significantly higher 
S score than the annotations not validated by HPLC 
(p-value < 0.01, t-test). Additionally, Fig.  2C shows an 
ROC area under the curve (AUC) of 0.7 when using the 
HPLC annotations as validation.

In positive-ion polarity (G1-G8) (Fig.  2D) rMSIfrag-
ment retrieves 56.18% of all the HPLC-validated annota-
tions. Despite the lower performance when compared to 
the negative-ion polarity samples, rMSIfragment is still 
capable of retrieving 18.56% of the annotations when 
focusing on the top 5 annotations for each MS feature. 
HPLC-validated annotations still report a significantly 
higher S score (p-value < 0.01, t-test) (Fig. 2E) but present 
a slightly worse performance at 0.63 AUC.

An alternative representation of the same results is 
shown in Additional file  1: Figure S2. Instead of select-
ing the top N annotations per m/z feature, we set a global 
likelihood score (S) threshold. A complete list of rMSI-
fragment annotations is provided in Additional file  2: 
Tables S5 and Additional file 3: Table S6.

The current validation assumes that all HPLC-validated 
lipids should be found in the samples and the rest should 
not. HPLC-MSI and MALDI-MSI are fundamentally dif-
ferent analytical techniques [6] and some lipids found 
with one technique could not be found with the other. 
We consider that HPLC annotations can accurately esti-
mate the number of true positives (present and matched 
by rMSIfragment) and false negatives (present but not 
matched by rMSIfragment), but they may fail to estimate 
true negatives (not present and not matched by rMSI-
fragment) and false positives (not present but matched 
by rMSIfragment). Figure 3 highlights some of these dif-
ferences in the annotation of three different phosphati-
dylcholines. PC 34:1 was found by both HPLC–MS and 
MALDI-MSI, PC 33:1 showed a similarly high S score 
but was not found by HPLC–MS, and PC 38:3 was found 
by HPLC–MS but shows a low S score.

Performances of 0.7 AUC might be considered mod-
est in other fields. For instance, scores above 0.85 AUC 
are common in chest X-ray classification [50, 60]. How-
ever, performance depends on task complexity [51]. 
As rMSIfragment is the first tool addressing in-source 
fragmentation in MALDI-MSI, a direct benchmark 
against comparable tools is not possible. When com-
pared to top MSI annotation tools like MSM [42] and 

Fig. 2 Validation of rMSIfragment against HPLC validated annotations 
reported by Garate et al. A Percentage of HPLC matches, B S score 
distribution, and C ROC curve for the negative polarity datasets 
(G9‑G15). D Percentage of HPLC matches, E S score distribution, and F 
ROC curve for the positive polarity datasets (G1‑G8)
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METASPACE-ML [56], our 0.7 AUC performance ranks 
in the top quartile [56]. While not directly comparable 
due to their different focus, these performances offer a 
reliable estimate of the state of MALDI-MSI molecular 
annotation. Overall, rMSIfragment demonstrates con-
fident annotation of lipid in-source fragments, attaining 
performances that approach the theoretical upper limit 
of current MSI annotation tools.

rMSIfragment shows high performance in a target‑decoy 
validation
In an attempt to gauge and overcome the limitations of 
the HPLC validation, we propose a second validation 
based on a target-decoy search strategy, a commonly 
used approach in MSI [21, 42]. This strategy runs rMSI-
fragment on the same MSI data using our target library 
(LIPIDMAPS) and a decoy library containing compounds 
that should not be found in the sample. The decoy library 
matches the size and distribution of masses of the tar-
get library, to ensure that randomly generated masses 
are equally likely to hit either of the two databases. The 
rate of matches in the decoy can then be used to estimate 
measures such as true positives, true negatives, false 
positives, false negatives, and False Discovery Rate (FDR) 
[17].

Figure  4 shows the results of the target-decoy vali-
dation on the human nevi datasets (G1-G15) using a 
decoy library composed of highly unlikely adducts and 
fragmentation pathways, an approach adapted from 
pySM [42]. The classification performance obtained a 

value of 0.72 AUC for the negative-ion polarity datasets 
(Fig. 4A) and 0.6 AUC for the positive-ion polarity data-
sets (Fig. 4C). These results are consistent with the per-
formances obtained in HPLC validation. When retaining 
the top 10 matches for each MS feature the FDR is esti-
mated to be 14.93% in negative-ion polarity (Fig. 4B) and 
34.24% in positive-ion polarity (Fig. 4D). Similarly, when 
only retaining the top 5 matches per MS feature the FDR 
is 4.5% and 17.95% respectively.

As extra validation, we created a second decoy library, 
a subset of ChEBI [23] containing only metabolites found 
in non-animal specimens (plants, algae, fungi, and bac-
teria) and xenobiotics. The results are summarized in 
Additional file  1: Figure S3. The performance on the 
negative-ion polarity samples is consistent with the one 
estimated in previous approaches (0.73 AUC). In the pos-
itive-ion polarity samples, the performance is estimated 
to be higher than in previous validations (0.75 AUC). In 
both cases, the FDR is estimated to be under 10% when 
retaining the top 10 matches.

The two decoy libraries provided comparable esti-
mations of performance and FDR. Nevertheless, the 
definition of a decoy library based on non-animal/
xenobiotic compounds (Additional file  1: Figure S3) is 
sample-dependent. The use of highly unlikely adducts 
and fragments, on the other hand, has already been dis-
cussed [42] and can be assumed to be much more sam-
ple-independent. Additionally, its performance estimates 
are more conservative and closely match the results 
obtained in the HPLC validation. For all these reasons, 

Fig. 3 Example annotations by rMSIfragment. PC 34:1 reports a high S score and was also found by HPLC–MS in the lipid extracts. PC 33:1 shows 
a similarly high S score (with worse spatial correlation) but was not found by HPLC–MS. PC 38:3 was found by HPLC–MS but shows a low S score
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further validations use a decoy library composed of 
highly unlikely adducts and fragments.

These results further confirm that rMSIfragment can 
confidently annotate lipids and their fragments.

rMSIfragment can be used under multiple experimental 
conditions
To determine its applicability to other experimental con-
ditions we challenged rMSIfragment with the annotation 
of 12 different publicly available datasets from METAS-
PACE (Datasets M1-M12) [4]. Since the real lipid com-
position of these datasets is unknown, we use the target 

and decoy approach based on highly unlikely adducts and 
fragments to estimate the performance of rMSIfragment 
in each dataset. Figure  5 summarizes the results. The 
performances ranged between 0.65 AUC and 0.84 AUC 
(μ = 0.74 AUC, σ = 7.5%) (Fig.  5A). These performances 
are comparable to the performance on human nevi sam-
ples validated with HPLC.

Additionally, when grouping the datasets according 
to different experimental parameters (ionization polar-
ity, matrix, tissue, analyzer, specimen, or mass range) 
the differences in performance were not found to be 
significant (p-value > 0.1, f-test). This demonstrates that 

Fig. 4 Performance estimation of the ranking scores proposed using a target‑decoy validation approach. The decoy database is composed 
of adducts and fragmentation pathways highly unlikely to be found in the lipid classes considered. Lipid occurrences (LO): number of times a 
given lipid is found (including parental adducts and in‑source fragments); Spatial correlation (C): The weighted mean Pearson’s correlation of all m/z 
features annotated as the same lipid. Final ranking score (S): LO * C. A ROC curve and B FDR estimation for the negative polarity datasets (G9‑G15) C 
ROC curve and D FDR estimation for the positive polarity datasets (G1‑G8)



Page 7 of 14Baquer et al. Journal of Cheminformatics           (2023) 15:80  

Fig. 5 Target and decoy validation on 12 datasets publicly available on METASPACE [4]. A ROC curves and Area Under the Curve (AUC) for each 
dataset M1‑M12. B Statistical significance tests of performance (AUC) differences across different biological (tissue and specimen), sample 
preparation (matrix), and instrumental (ion polarity, analyzer, m/z range) parameters
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rMSIfragment applies to a wide range of experimental 
conditions.

Annotation software must take into account in‑source 
fragmentation
Major automatic annotation tools such as pySM [42], 
LipostarMSI [55] or rMSIannotation [49] completely 
overlook in-source fragmentation and almost exclusively 
focus on protonated and alkali ions. Ignoring in-source 
fragmentation during annotation could potentially lead 
to false annotations [8]. This is a particular concern in 
lipidomics where several lipids fragment in-source and 
become isobaric to other lipids [20].

To assess the impact of in-source fragmentation on 
lipid annotation we annotate datasets M1-M12 with 
METASPACE [4], only considering traditional MALDI 
adducts ([M +  H]+, [M +  Na]+, [M +  K]+ in positive-ion 
polarity and [M-H]−, [M +  Cl]− in negative polarity). We 
then annotate the same datasets using rMSIfragment, 
considering all adducts and fragmentation pathways 
specified in Additional file  1: Fig.  S1 and Table  S1. The 
same version of LIPIDMAPS is used with both tools.

Figure 6A summarizes the overall comparison of anno-
tations between the 2 tools. On average, 48.6% of the 
annotations returned by METASPACE are also found 
with rMSIfragment. Interestingly, crossing the annota-
tions also allows us to determine that, on average, 54.21% 
of METASPACE annotations are overlapped with at 
least one in-source fragment found by rMSIfragment. 
Additional file 1: Figure S4 shows the same results color-
coded based on the different sample and experimental 
parameters.

To exemplify this overlap we highlight the annota-
tion of m/z 887.57 from a human lung cancer biopsy 
prepared with NEDC and analyzed in negative polarity 
with an FTICR (Dataset M5) (Fig. 6B). Both tools reliably 
annotate this m/z feature as PI 38:3 (M-H)−. In the same 
dataset, rMSIfragment also finds 3 adducts ( [M − OH ]
−, [M − CH3]

−, [ M + Na− 2H]−) and 3 in-source 
fragments ([M − CH3 − NH2]−, [ M −H − C4H10O5

]−, [ M − 2H2O − NH2]−) with high spatial correla-
tion to the parental ion. Two of these in-source frag-
ments ([M −H − C4H10O5]−, [ M − 2H2O − NH2]−) 
are overlapped with 2 METASPACE annotations ([PA 
40:5 M-H]−, [PS 40:5 M-H]−).

These results are not a comparison between tools but 
rather a quantification of the negative impact that in-
source fragmentation has on automatic annotation tools. 
Annotation tools in MSI need to take into account in-
source fragmentation. Due to the fundamental limita-
tions of MS1, software tools are unable to resolve an 
endogenous PA from an isobaric PA originating from the 
in-source fragmentation of its PS counterpart. However, 

rMSIfragment mitigates the issue by (1) making the user 
aware of the potential overlap and (2) giving a higher 
score to the lipid found forming other adducts and in-
source fragments.

rMSIfragment provides a molecular network to visually 
interpret the results
Figure 7 shows an example exploration of the annotation 
results using the rMSIfragment GUI. The top 3 annota-
tions for m/z 744.55 are shown as individual molecular 
networks including adducts (purple) and in-source frag-
ments (yellow) (Fig.  7A). The number of lipid occur-
rences (LO) and spatial correlation (C) are shown as the 
main metrics to filter out unlikely lipids. When selecting 
the desired molecular network the user can view the spa-
tial distribution of all adducts and in-source fragments.

Discussion and conclusions
We have demonstrated the performance of rMSIfrag-
ment on 15 human nevi datasets with two orthogonal 
approaches: (1) matching its annotations to HPLC and 
(2) using a target-decoy approach. Both approaches yield 
similar performance estimates (0.7 AUC and 0.6 AUC 
for the samples acquired in negative and positive polar-
ity). rMSIfragment is the first tool addressing in-source 
fragmentation and cannot be directly benchmarked. 
However, our results rank in the upper quartile of perfor-
mances reported by leading tools in metabolite annota-
tion [42, 56], a closely related task.

We also annotated 12 publicly available datasets cov-
ering a wide combination of samples and experimental 
setups. The performances obtained are comparable and 
often better than the ones obtained on the human nevi 
datasets. Additionally, rMSIfragment shows a high lipi-
dome coverage overlap comparable to available annota-
tion tools like METASPACE [4]. These findings suggest 
that rMSIfragment can consistently annotate lipids and 
their in-source fragments under different experimental 
conditions.

One key highlight of our study is the importance of 
considering in-source fragmentation pathways when 
performing molecular annotation. We have found that 
overlooking ISD pathways can lead to up to 75% of the 
reported lipid annotations to be overlapped with at least 
one in-source fragment. rMSIfragment mitigates this 
issue through two mechanisms: (1) unlikely lipids with 
low occurrences (number of adducts and in-source frag-
ments) and poor spatial correlation are filtered out, and 
(2) the user is aware of the overlap, allowing them to 
be cautious with their interpretation of the automated 
annotations.

We propose three avenues to increase the perfor-
mance of the future generation of MALDI-MSI in-source 
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fragmentation annotation tools: (1) leveraging known 
ion suppression effects between different lipid classes, (2) 
compiling MALDI-ISD or MALDI-MS/MS libraries and, 

(3) deploying Machine Learning (ML) and Deep Learn-
ing (DL) models.

Ion suppression effects strongly favor certain classes 
of lipids, difficulting the analysis of suppressed species 

Fig. 6 Comparison of annotation results between rMSIfragment and METASPACE A Bulk comparison using 12 datasets publicly available 
in METASPACE. The horizontal axis shows the percentage of METASPACE annotations that are matched by rMSIfragment. The vertical axis indicates 
the percentage of METASPACE annotations that are overlapped with at least one in‑source fragment annotated by rMSIfragment. The standard FDR 
threshold of 0.2 was used for METASPACE annotations. rMSIfragment annotations without any threshold (red) and retaining the top 5 annotations 
per MS feature (blue). B Example comparison for a human lung biopsy (Dataset M5) where m/z 887.57 is annotated by both tools as PI 38:3 (M + H) 
(C47H85O13P). In the same dataset, rMSIfragment also finds 3 adducts and 3 in‑source fragments with high spatial correlation to the parental ion. 
Two of these in‑source fragments are overlapped with 2 METASPACE annotations ([PA 40:5 M‑H]−, [PS 40:5 M‑H]−)



Page 10 of 14Baquer et al. Journal of Cheminformatics           (2023) 15:80 

[11]. In positive polarity, PC species display stronger 
signals than other lipids (PE, PS, PG, or PI). In nega-
tive polarity, the effect is reversed and PC species show 
lower signals than other lipids. These interactions 
have been characterized in the past [11] and could be 

leveraged to define a new ranking score to filter out 
unlikely lipid annotations.

Previous LC–MS studies [61] induce increased ESI 
in-source fragmentation to yield fragmentation pat-
terns similar to those present in MS/MS libraries like 

Fig. 7 Example application and interpretation of rMSIfragment results on Dataset G9. A Top 3 annotations for m/z 744.55. Each parental annotation 
(green) is the center of a network including all adducts (purple) and in‑source fragments (yellow) annotated in the sample. B Spatial representation 
of the top annotation (PC 34:1 [M‑CH3])
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METLIN [52] to aid in molecular identification. In a 
preliminary exploration, we concluded that public MS/
MS libraries were not directly applicable to MALDI-
MSI for two reasons: (1) MALDI and ESI are not 
always directly comparable, and (2) the fragmentation 
of common MALDI adducts such as [M + Na] + and 
[M + K] + are underrepresented in MS/MS librar-
ies (< 10%). The compilation of MALDI-ISD libraries 
could overcome these limitations. This community-
wide effort would help better characterize MALDI-
ISD in a wide range of biomolecules. Alternatively, a 
MALDI-MS/MS library, which may be a more urgent 
interest of the MALDI community, could already pro-
vide enough information. These two libraries would be 
invaluable tools to foster the development of the next 
generation of ISD annotation algorithms and models in 
MALDI-MSI.

Finally, in spite of their success in MALDI-MSI tasks 
like tumor classification [9], clustering [62], and image 
registration [44], ML and DL models have yet to be 
consistently deployed for molecular annotation [3, 8]. 
The performance of rMSIfragment could potentially be 
improved l,leveraging ML to suggest optimal functions of 
our predefined metrics (LO and C to compute the final 
score (S, following the strategy proposed by METAS-
PACE-ML [56]. Taking a step further, new metrics could 
be defined to better capture spectral and spatial simi-
larities of in-source fragments. However, DL has only 
attained modest improvements in MS image colocali-
zation [41]. From our perspective, creating DL models 
for MALDI in-source fragmentation holds the greatest 
promise for enhancing annotation performance, build-
ing upon the achievements of in-silico MS/MS fragmen-
tation tools like Metfrag [47], CFM-ID (F. [57, 59], and 
Sirius [16].

In conclusion, neglecting in-source fragmentation 
leads to an increased number of false lipid annotations. 
rMSIfragment mitigates this effect by prioritizing anno-
tations of lipids found forming multiple adducts and in-
source fragments.

Materials and methods
A total of 27 different datasets were used to validate this 
study. Human nevi samples acquired in positive (G1-G8) 
and negative (G9-G15) ion polarity from a previous study 
[20] were used to perform HPLC validation and deter-
mine the best target-decoy strategy for further validation. 
Publically available METASPACE [4] datasets M1-M12 
were used to demonstrate the applicability of rMSIfrag-
ment to different sample types and experimental condi-
tions. Additional file  1: Table  S4 summarizes the main 
processing parameters for each of the 27 datasets.

Sample preparation
Human nevi tissue sections G1-G15 were already used 
in a previous study [20]. The Euskadi Ethics Committee 
approved the study protocol and it conformed to the Hel-
sinki Declaration. The biopsies were embedded in OCT 
and sectioned at 16 μm thickness. The sections were cov-
ered with MALDI matrices 2-Mercaptobenzothiazole 
(MBT) and 1,5-Diaminonaphthalene (DAN) for positive 
and negative-ion modes respectively. Both matrices were 
sublimated onto the sample using an Ace Glass 8023 
Glass Sublimator.

MALDI‑MSI acquisition
Mass spectra were acquired using an LTQ-Orbitrap XL 
mass spectrometer (ThermoFisher, MA, USA), equipped 
with a custom MALDI source with an N2 laser [20]. Low 
laser energy was used to prevent excessive fragmenta-
tion. The spectrum at each pixel is the result of averaging 
two micro-scans of 10 shots. Positive-ion polarity experi-
ments had an m/z range of 480 − 1100 Da while negative-
ion polarity experiments had a range of 550 − 1200  Da. 
The mass resolving power was set to 30 000 at m/z 400. 
The step size was 25 μm.

MSI data processing
Datasets G1-G15, originally in.RAW format (Thermo 
Fischer), were exported to.mzML using ProteoWizard 
msConvert [1], and later converted to.imzML [48] using 
imzMLConverter [43]. The software rMSIproc [45] was 
used to process the data and generate a peak matrix in 
centroid mode. The default processing parameters were 
used. The Signal-to-Noise Ratio (SNR) threshold was set 
to 5 and the Savitzky– Golay smoothing had a kernel size 
of 7. Peaks appearing in less than 5% of the pixels were 
filtered out. Peaks within a window of 6 data points or 
scans were binned together as the same mass peak.

Datasets M1-M12, already in centroid mode.imZML, 
were imported using rMSIproc [45].

Deisotoping was performed using rMSIannotation 
[49]. No data normalization was performed. Data were 
visualized and explored using rMSI [46].

Statistical significance is tested using a t-test or an 
f-test for the comparison of 2 and 3 + groups respectively.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 023‑ 00756‑2.

Additional file 1: Figure S1. Lipid fragmentation pathways. Reproduced 
with the permission of Garate et al. 2020. Figure S2. Automatic annota‑
tion with rMSIfragment validated with HPLC in human nevi samples 
(Garate et al. 2020).  Percentage of HPLC validated matches (Garate et al. 
2020) against increasing ranking score (S) threshold (blue). (A) Samples 
G9‑G15 (negative‑ion polarity). (B) Samples G1‑G8 (positive‑ion polarity). 
Figure S3. Performance estimation of the Ranking scores proposed using 
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a Target Decoy Validation approach. The Decoy database is composed 
of metabolites and lipids unlikely to be found in non‑animal specimens 
(plants, algae, fungi, and bacteria) and xenobiotics. (A) ROC and (B) FDR 
estimation on samples G9‑G15 (negative‑ion polarity). (C) ROC and (D) 
FDR estimation on samples G1‑G8 (positive‑ion polarity). Figure S4. 
METASPACE annotations overlapped with in‑source fragments vs METAS‑
PACE annotations matched by rMSIfragment color‑coded based on: (A) 
Ion polarity (B) MALDI matrix (C) Tissue type (D) Analyzer (E) Mean m/z. 
Table S1. Lipid adduct formation in positive‑ion polarity. Reproduced 
with the permission of Garate et al. 2020. Table S2. Lipid adduct forma‑
tion in negative‑ion polarity. Reproduced with the permission of Garate 
et al. 2020. Table S3. Example rMSIfragment output. Table S4. List of the 
27  MALDI MSI datasets used for validation. Sample type, sample prepara‑
tion, and MALDI‑MSI acquisition parameters.

Additional file 2: Table S5: Complete list of annotations using rMSIfrag‑
ment (Samples G1‑G8).

Additional file 3: Table S6: Complete list of annotations using rMSIfrag‑
ment (Samples G9‑G15).
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