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Abstract 

We developed a new seriation merit function for enhancing the visual information of data matrices. A local similar-
ity matrix is calculated, where the average similarity of neighbouring objects is calculated in a limited variable space 
and a global function is constructed to maximize the local similarities and cluster them into patches by simple row 
and column ordering. The method identifies data clusters in a powerful way, if the similarity of objects is caused 
by some variables and these variables differ for the distinct clusters. The method can be used in the presence of miss-
ing data and also on more than two-dimensional data arrays. We show the feasibility of the method on different data 
sets: on QSAR, chemical, material science, food science, cheminformatics and environmental data in two- and three-
dimensional cases. The method can be used during the development and the interpretation of artificial neural 
network models by seriating different features of the models. It helps to identify interpretable models by elucidating 
clusters of objects, variables and hidden layer neurons.
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Introduction
Seriation? Most scientists are involved in it without 
knowing the term. If one knows its practical definition, 
namely, how to do row and/or column permutations to 
enhance visual perception of a table or heatmap, it is 
clear for scientists that they faced the problem. Its first 
application goes back to the nineteenth century [1], when 
it was an explanatory technique to order objects in a way 
to reveal patterns and regular features easily. Later it 
spread to all fields of science and the ordering often con-
cern two sequences to be reordered [2–5]. There are, e.g., 
possibilities to order objects along two axes or one object 
and one variable sequences in a table. The first applica-
tions were connected to fields, where visualization or 
chronological sequence were natural (archaeology, car-
tography, history, operation research, sociology). Later, 
especially when information technology was present, dif-
ferent methods and applications appeared in many other 
fields (anthropology, graphics, information visualization, 
sociometry, psychology, psychometry, ecology, biology, 
bioinformatics, etc…). The common feature in the meth-
ods is that they are not common for all fields of science. 
There is a rather small communication among the fields. 
The most general review was written by Liiv [5], where a 
historical overview of seriation is detailed including the 
milestones at several application fields. Instead of enu-
merating here the methods and provide a deficient and 
scanty list of applications, we forward the reader to the 
review of Liiv [5].

Seriation is applied in a latent way in chemistry [6–9], 
and it is seldom termed. It is often used in many scien-
tific software as a default setting, that, e.g., hierarchical 
clustering is applied on objects and a visually accept-
able sequence is generated using a seriated dendogram 
[10–13]. The importance of seriation related methods 
in bioinformatics has led to an increase in the number 
of special methods and their applications in other fields, 
as in cheminformatics. From these, we mention only the 
bi- or co-clustering [14, 15]. From the special applica-
tions in bioinformatics, we may refer to similarity search 
and alignment methods, where our references are some 
recent reviews. Similarity searching is widely applied and 
encompasses many techniques, its principle is based on 
detecting molecules that have the same biological activity 
[16]. By the same logic, alignment is based on hypothesis 
of homology [17] (sequential similarity). The real number 
of alignment algorithms is in hundreds and continue to 
increase.

Going back to chemistry, we found up to now only a 
few articles, where the word seriation is used in the 
title, abstract or in the keywords [18–21]. One interest-
ing example for seriation in chemistry, while not the 
main subject of the article, showed its importance in 

summarising the resulting relationships between produc-
tion groups and chemical clusters, and has enabled exter-
nal information to be compared with the cluster results 
[18].

The main aim of seriation is to get better visualization 
by introducing some order by appropriate permutation of 
the rows and/or columns. In the literature of seriation, it 
is often called sequencing. The final sequence may help 
to find similar objects or variables close to each other in 
vectors, tables or in their graphics (e.g., in heatmaps). 
In some cases, it can be the first visual check of data 
and it serves as a good starting point to estimate which 
enhanced data analysis method might be tried. Seriation 
offers the advantage to be a method where all information 
is kept in the seriated data, only the usually ad hoc origi-
nal order of rows and columns is changed. The special-
ized methods may outperform seriation, e.g., clustering 
is usually more efficient to identify similar objects than 
seriation. There are several graphical representation ways 
and performance measures to help the interpretation 
of clustering results, while the only accessible informa-
tion of traditional seriation is a visual check of a reor-
dered heatmap. Furthermore, clustering methods might 
provide object or variable arrangements that cannot be 
shown by a one-dimensional sequence of objects or vari-
ables. The simple hierarchical clustering of objects/varia-
bles, bi- and co-clustering methods might be interpreted 
as one- or two-dimensional seriations, because their 
results can be interpreted as a meaningful sequence. In 
the case of clustering, the aim is to find clusters, but seri-
ation has a more diffuse purpose of visual representation. 
For example, seriation helps to visually detect objects and 
variables with large amount of missing data and outliers. 
Seriation provides heatmaps with reasonable less striped 
features. The results are quite often arrangements around 
the diagonal or visually detectable clusters. Seriation can 
be performed not only on measured data, but on, e.g., 
model parameters, neuron intensities in artificial neural 
networks, connection data, as well. In these cases, seri-
ation might help in the interpretation of the models and 
the operations.

Liiv started to unify the taxonomy of the different 
methods [5]. Theoretically, seriation means the permu-
tation of data stored in one-dimensional vectors up to 
k-dimensional arrays. There are modes and ways in seri-
ation. A mode means an independent sequence that can 
be permutated. Way is the dimensionality of the object 
used in visual perception, during the calculation of a 
merit function, or during a prescribed set of operations. 
The number of modes and ways mostly coincide to the 
dimension of the data. In chemistry, we often have two-
dimensional data matrices with N rows connected to the 
objects and M variables denoting the columns. When we 
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sequence both the objects and the variables in a classi-
cal data table, we perform two-mode–two-way seriation. 
When we sequence only the objects, we usually calcu-
late a symmetric NxN distance matrix, and the seriation 
is one-mode–two-way. If we seriate only the variable 
sequence, the MxM covariance matrix might be a reason-
able choice and the seriation is one-mode–two-way.

There is rather large number of seriation methods. 
There is not any canonical way, the popular methods dif-
fer from field to field. Large number of applications can 
be found on the field of bioinformatics, where, e.g., the 
node deleting algorithm of biclustering is one of the most 
popular methods [15]. There are two groups of the meth-
ods. In a part of them, a mathematical merit (or loss) 
function is defined which depends on the sequencing of 
the modes. In the other cases, set of operational instruc-
tions are used. In the first case, the extremum of the merit 
or loss function can be found by any global optimization 
scheme, e.g., simulated annealing, genetic algorithm or 
other specialized solutions. These methods are mostly 
iterative, and they use a stop criterion. An example of the 
operational methods is the barycentric heuristic algo-
rithm. Here, ranks are calculated at the given state of the 
matrix for each rows/columns and the matrix rows and 
columns are sorted according to these ranks. Thereafter, 
the ranks are recalculated, and the matrix is sorted again. 
[9, 22]. The operational instructions are repeated as long 
as the condition of the operation is holding. There might 
be some extra conditions to avoid infinite loops and it is 
worthwhile to start all methods from several sequences 
whereof many can be randomized ones. For operational 
algorithms the schematic presentation of the problem on 
graphs can be useful [9, 22]. A part of the algorithms was 
inspired by the minimal number of crossings known as 
Turán’s brick factory problem in mathematics [23].

Another aspect of the two-mode seriations is whether 
the two sequences are treated independent from each 
other, or the merit function/operation contain cross 
terms. For the independent case, an example is the seri-
ation of the objects according to the distance matrix and 
seriation of the variables according to the covariance 
matrix. Despite the independence of the two modes, by 
chance, we might get clearly interpretable data, where 
relations between the two axes are easily readable, e.g., 
on heatmaps. For having dependent two-mode seriation, 
we need cross terms between the sequences or geo-
metrical preferences of the matrices. A recipe is some-
times that we have several local function values and the 
sum or the spatially weighted sum of the local functions 
provide the merit of loss function. The local functions 
might relate simply to the increase, to the decrease, or to 
the modality of the data within row or column wise and, 
e.g., the global loss function is the number of the violated 

case. For an overview of some of the methods and math-
ematical details, we refer to the review of Liiv [5] and the 
study of Hahsler et  al. [11]. A few traditional merit/loss 
functions are described in the Additional file 1 in order to 
help the comparison to our method.

In our previous studies [7, 21] a local feature was calcu-
lated as the distance of two objects in a limited variable-
vector space. We used three-variable spaces and the i-j 
element of the so-called local distance matrix contained 
the average distance of the i-th object to its sequential 
neighbours in the local space formed by the j-1,j, and j + 1 
variables. The global merit function was a weighted sum 
of these local distances, where the weights were the spa-
tial distance of the i-j matrix elements from the diagonal 
of the data matrix. The algorithm provided that low local 
distances were sequenced around the diagonal of the data 
matrix. The ordering was according to one visual feature, 
it ordered similar objects close to each other and the cor-
responding variables around the corresponding diagonal 
parts were suggested to be responsible for the similarity.

We experienced that only a part of chemical data is 
meaningful in the obtained block diagonal forms. For 
example, there might be a group of variables responsi-
ble for two or more clusters of objects that is not easy to 
detect visually on a narrow diagonal-like arrangement. 
Our first idea was to improve our previous method by 
introduction of further adaptive lines with similar task as 
the diagonal had, but during the elaboration we realized 
that it is easier to think on a seriation forming patches.

In this paper we show our new method where the local 
function is a local average similarity, and the global merit 
function is the sum of the products of the neighbour-
ing local similarities. We found that this merit function 
forms patches of the neighbouring objects and variables. 
A patch means a local space, where the given objects are 
similar to each other. In our philosophy, the object-var-
iable points outside the patches are not relevant for the 
similarity patterns. We show it on simple chemical data, 
as well as on model details of artificial neural networks 
(ANN). The latter is related to the interpretation [24] of 
ANN models, e.g., we were able to interpret the roles of 
the neurons connected to the variables and to the objects. 
The former means the seriation of the weights in the net-
work and the latter was managed by seriation of activities 
caused the different objects on the different neurons.

Our method can be easily extended to higher modes 
and ways seriations. We developed different three-mode-
three-way methods. Since it is less easy to interpret 
three-dimensional data structures than two-dimensional 
ones, we usually used projections onto two-dimensional 
heatmaps, here. A part of our results is shown on co-
plots elaborated by us, where the original data heatmap 
and local similarity contour plot are merged. It helps to 
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easily find the responsible variables for the similarity of a 
cluster of variables.

Theory
In 2011 we introduced a mathematical merit function for 
1-mode-2-way and 2-mode-2-way seriation of matrices 
[7]. Two concepts were introduced there. The local dis-
tance matrix contained the average distance between the 
i-th object and its two neighbours in a local three-varia-
ble space, where the index of the middle variable assigned 
to j. The other quantity we called diagonal measure, and 
it represented the distribution of the elements of the 
local distance. It was the scalar sum of the local distances 
weighted with their positional distance from the diago-
nal of the matrix. In 2-mode-2-way seriation the diagonal 
measure was maximized to order similar objects close to 
each other and the corresponding variables around the 
diagonal were suggested to be responsible for the similar-
ity. If distance matrix of the objects was 1-mode-2 way 
seriated, the diagonal measure was maximized, as well. 
If covariance matrix of variables was 1-mode-2-way seri-
ated, the diagonal measure was minimized. In our new 
research we propose the development of our idea both on 
the local quantity and the global measure.

Local similarity matrix
Distances are unbounded positive numbers, what may 
hinder the interpretation of the actual values. Algorith-
mically, it is more convenient to use bounded set of val-
ues. Similarity is a frequently used concept for that. There 
is a reciprocal relation between similarity, a value of one 
denotes perfect similarity of two objects (zero distances 
of the objects in the variable space) and zero similar-
ity means maximal distance between the objects. There 
are different definitions of similarity, whereof we finally 
selected that similarity = 1-(distance/maximal distance) 
equation. We defined a local similarity matrix (S) simi-
larly to the local distance matrix. sij shows how the i-th 
object is similar to its neighbours in a local 3-variable 
space around variable j. For 2-mode-2way seriation it is 
calculated as:

,where ail and akl are the elements of the A matrix to 
be seriated, likj is their local distance in the variable space 

(1)li,k ,j =

√

∑j+1

l=j−1

(

akl − ail

diff max,l

)2

(2)sij =

(

∑

k=i−1,i+1
1 −

li,k ,j

Dcol,j

)

/Drow,i

formed by the l = j-1, j and j + 1 variables. k takes only the 
values i-1 and i + 1 for a given i index of objects. diffmax,l 
is the difference between the largest and the smallest 
elements of the l-th column in A. It is used to scale the 
distance between [0,sqrt(3)], if the local variable space 
contains three variables. If the j-th variable is at the first 
or the last column of the matrix, the local space contains 
only [0,sqrt(2)]scaled distances. Dcol,j contains the corre-
sponding upper bounds of the intervals for each variable. 
Drow,I is usually two for the i-th object except the first 
and the last row, where it is one. These row or column 
dependent quantities (diffmaxl, Dcol,j, Drow,i) were intro-
duced to be able to get theoretically sij ϵ [0,1] values for 
all i-j positions including the non-bulk matrix elements.

The global patch function
In the case of our previous global scalar (diagonal meas-
ure), the seriated matrix placed the variables responsible 
for object similarities around the corresponding part of 
the diagonal. It means, only the most important vari-
ables were emphasized, and, e.g., there was no possibil-
ity to select a variable to be important for several object 
clusters. In our new method we define a merit function, 
where forming of several patches is supported by max-
imising it in 2-mode-2way seriation. If we calculate the 
sum of the product of two neighbouring local similarity 
values (P), this quantity reflects the spatial distribution 
of large and small similarities. If random order of objects 
and variables is used, the local similarities are distrib-
uted randomly in the matrix. If we seriate the matrix to 
have larger sum of neighbouring products, a higher sum 
can be reached by clustering high and low local similari-
ties separately. Furthermore, preferential rearrangement 
is also supported by maximising such a merit function 
which creates higher similarities by neighbouring similar 
objects. In the high similarity patches the objects are sim-
ilar in the local variable space and both the objects and 
the variables can be identified.

, where i-s are the row and j-s are the column indices of 
the nXm local similarity matrix and q is an arbitrary con-
trast. The two effects of maximising P - spatial ordering 
and creation of high similarities - can be justified sepa-
rately. The simple rearrangement of any matrix by clus-
tering large and small values provides large P: it is similar 
to a negative local entropy. We performed several test 
calculations supported this, and there is also a thought 
experiment in the supporting material. The other effect is 
straightforward, that placing similar objects and variables 

(3)
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∑n−1

i=1
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+
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close to each other increases the sum of the local simi-
larities. The exponent q is an empirical contrast factor. At 
high q values the positioning of highest similarities close 
to each other is extremely preferential and it may cause 
compact and small clusters, while small q-s do not penal-
ize so strictly the less large values, it may cause slightly 
larger patches. We used q = 2 and q = 3 in our calculation. 
Depending on the dataset, the visual results was some-
times better for one of the q choices, but it did not seem 
to be a decisive parameter of the merit function. We note, 
that our patch function was obtained after several trials, 
where at first, we focused on entropy or Gini-index like 
approximations. We found, that P defined as in Eq. 3 is a 
simple and feasible merit function.

If we would like to highlight the pros and cons of our 
merit function, we might compare it to the features of 
existing ones (see some details in [11] and in the Addi-
tional file 1). In the case of two-mode-two-way seriations, 
the most functions do not connect the two modes. The 
modes are seriated independently and there is only a 
chance that the sequences of the two modes have some 
cross relevance. The Moore-stress [25] is an exception 
(see Additional file  1), but there, the roles of the rows 
and columns are identical. It means, there are no differ-
ences in the object and variable spaces. In our case, only 
the variable space is used to define distances/similarities/
dissimilarities that is closer to the basic features of data 
matrices. In the same time our local similarity matrix 
connects the two modes, similarly to the Moore-stress. 
In the case of other merit functions, most of them are 
simple sums of values (e.g., Moore and Neumann stresses 
[25]) without any link to spatial arrangements or they 
reflect only spatial arrangements (e.g., violation of Robin-
sonian trends [26]). Our patch function is unique by tak-
ing care both on maximising the local similarity elements 
and spatially arranging them. This was valid also for our 
previous diagonal measure/local distance matrix scheme, 
but the present patch function/local similarity scheme 
is more flexible. The last advantage of our method is 
the local feature, namely that only the locally important 
variables are used in the calculation in contrary to the 
most clustering methods. It means, a local smoothness 
is forced instead of putting rows together with similarity 
everywhere. The disadvantage of our method is that up to 
now we have not found a computationally cheap method 
to optimize our merit function.

Local similarities in higher dimensions
The generalization of the local similarity matrix and the 
patch function to higher dimensions can be easily done, 
if we follow the idea that we are interested in the aver-
age similarity of an object to its sequential neighbours 
in a local three-variable space. The calculation of the 

possible cases, e.g., the dimension of the original data, 
the dimension of the local similarity matrix, the number 
of possible local variable sets are detailed in the Results 
and Discussion section together with some examples. 
The corresponding equations for the cases are shown 
in the Additional file  1. We show three possibilities for 
three-dimensional local similarities, where the three axes 
are formed by one object and two variable vectors (OVV 
case, original data are 2D), by two object and one varia-
ble vectors (OOV-independent, the original data are two 
dimensional) and by another two object and one variable 
vectors case (OOV-dependent, the original data are three 
dimensional).

Missing data and noninformative zeros
There are several datasets in chemistry, where part of the 
data is missing. The causes might be different, e.g., lack of 
general experimental methods for all objects, operational 
break down, or the given variable is not relevant for that 
object. In the case of cheminformatics, it is also com-
mon, that several extra variables are added to the data-
base where most of the objects provides a zero value. An 
example is the presence of chemical groups, if close to all 
the molecules do not contain that functional group. The 
traditional method to overwrite the missing data with an 
average or random value might bias the seriation. There-
fore, it would be feasible to avoid the replacement of 
missing data. Also, it is rather misleading, if the unneces-
sary and irrelevant zeros have crucial effect on the merit 
function of seriation. We solve the problem of missing 
data and unnecessary zeros by proposing a different cal-
culation of the local similarities for these cases:

The inner sum is skipped for all data, where any of the 
data (akl or ail) is non-existent. It can be used for missing 
data as well as for unnecessary zero values. Using Eq.   4 
the local similarity cannot be one, if there are unde-
termined cases in the sum. Also, if sij refers to a matrix 
position at edges or corners, the possibility for the local 
similarities to be 1 is excluded, there maximum value is 
2/3, 1/2, or 1/3. This handling of the borders is different 
from Eq.    2. The patch function is calculated according 
to Eq.   3. There is only one difference, there might be a 
chance that a sij remains undetermined. In that case the 
undetermined sij is skipped in Eq. 3.

Equations   1– 2 provide a local average similarity cal-
culated on distances of L2 norm in a three-dimensional 
local variable space (average of two local similarities 
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where each of them was calculated using three-dimen-
sional distances). On contrary, Eq.  4 calculates the simi-
larities independently for each local variables and sum 
the 1/6 of these similarities (it might be interpreted as 
1-L1norm(first object pair)/3-L1norm(second object 
pair)/3.). Both methods are accessible in our code for 
data matrices without missing data or zeros to be omit-
ted. If missing data or unnecessary zeros are present, only 
Eq. 4 is accessible in the code. We were not able to find 
any theoretical reasoning why Eqs.    1–  2. (modified L2 
norm to have theoretically sij ϵ [0,1] everywhere) or Eq.  4 
(using L1 norm without correction at edges) is theoreti-
cally feasible. Therefore, we leave both options open for 
the users.

Calculation details
Codes
The patch seriation was performed using a C code devel-
oped in our laboratory. The code reads the datasets, 
manages data pre-processing as optional normalization, 
scaling, changing zeros to undetermined values. The 
maximization of the patch function was obtained with 
Metropolis Monte Carlo algorithm, where the ordering 
with the largest P was stored as the best one. The accept-
ance ratios for the different type of trial changes were set 
to be around 0.05. Column and row permutations were 
performed independently. In the case of three-mode-
three-way seriation it was performed independently for 
all modes. The number of the trials was 1–5  million. A 
calculation took a few minutes on a PC depending on the 
size of the dataset. During this calculation length, usually 
the best sequence was detected and stored at any time 
after the 20% of the calculation time. A few (2–5) seri-
ations were performed for each dataset at q = 2 and q = 3 
values, which of the results to be shown were selected 
visually.

Schematically the calculation starts with a matrix 
with randomized row and column sequences. Thereaf-
ter exchange of two rows or columns are performed. The 
step is accepted, if the merit function of the new arrange-
ment is larger than that of the old one. The global opti-
mization is maintained by Neumann’s rejection method, 
small decrease of the merit function is also accepted with 
a small probability to have a total acceptance ratio of 
0.05. In a few cases during the calculation, the ’tempera-
ture’ of the Metropolis algorithm is increased temporary 
to restart from new arrangements. The sequence with the 
largest merit function is stored as the final result.

The elaboration and visualization of seriation results 
were done using R [12]. In the comparison to other meth-
ods, here we used the seriation package of Hahsler et al. 
[11]. For three-dimensional graphs we used the RGL 
package [27]. We developed an overlay plot, where the 

heatmap coded scaled data are shown together with con-
tour plots of the local similarity. We think, these overlay 
plots are rather effective to identify object clusters and 
the variables causing the similarity.

The neural network modelling was performed in 
Python using the scikit learn package [13]. The partly 
optimized hyperparameter sets for the models were 
selected from one of our previous studies where we used 
the same datasets [28].

Datasets
The tested datasets are mostly freely available ones 
related to QSAR, chemistry, material science, food sci-
ence, cheminformatics and environmental chemistry. 
Several datasets of them are accessible in repositories 
[29–31]. Some details of the data and the performed type 
of seriations are collected in Table  1. The first dataset 
(SIM [32]) is a semi-randomly simulated one, its struc-
ture is related to our initial idea, what kind of benefit 
we would like to get using patch seriation. There are 50 
objects and 20 variables in this set ordered in 4 clusters 
of 10 objects each and 10 random objects not associated 
with any clusters. Members of the clusters have similar 
values at some selected variables, but their other data 
are random. Some of the selected variables are common 
also with other clusters. At first, we generated [0,1) ran-
dom numbers for all data and thereafter the groups were 
recalculated by adding a given random number for that 
variable of the group biased with white noise. In the case 
of other datasets, if a dataset was published for modelling 
a response variable, we omitted it from the seriation and 
only the predictor variables were used in the seriation 
process.

The RETSIM dataset [32] is a simulated one, as well. 
We defined three functional groups and created 4 com-
pounds with random linear combination of the three 
groups. We set 6 mixtures of the 4 compounds. 6 chro-
matographic columns were set as well with differently 
randomized partial retention times for the functional 
groups. The retention times of the compounds were cal-
culated with linear combination of the functional groups 
therein. Finally, we added uniform broadening for each 
compound with integrals related to the concentrations. 
In this way we had 36 chromatograms of the 6 mixtures 
on the 6 columns.

Results and discussion
Simulated dataset for 2‑mode‑2‑way seriation
The dataset contained 50 objects and 20 variables. Each 
of the 4 clusters had 10 objects. The objects within a clus-
ter had similar values in the case of 5 variables and they 
had random ones for the other 15 variables. These vari-
ables were distinct except for group C and D, here two 
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variables were common but with different average values 
for the two sets of objects. Ten objects and two variables 
had no cluster affiliation. Figure 1 shows the heatmaps of 
a randomly ordered matrix (used as start), the seriated 
data matrix, the corresponding local similarity matrix 
and the corresponding hidden cluster information at the 
data generation in the seriated order. If we plot only the 
data matrix as a heatmap, it is not easy to identify the 
clusters. Therefore, we use the overlay of a contour plot 
on the local similarity matrix in Fig. 1b. In more than one 

third of our trials the variables were seriated perfectly 
and the number of clusters of the objects was equal or 
only slightly more than 4. We show a case in Fig. 1b and 
d, where the seriation worked perfectly both for variables 
and objects. We choose the actual contour levels of the 
local similarity matrix to help the assignment of the clus-
ters in Fig. 1b. The 10 random objects and the 2 random 
variables are sometimes between the clusters or some-
times they are neighbouring to each other, but the over-
lay contour plot does not identify them as a 5th cluster.

Table 1  Datasets

Abbr. Row × column Description Seriations Refs.

SIM 50 × 20 4 clusters with common variables 
for each

OV  [32]

RETSIM (6 × 6)x100 and (6 × 6)x150 Simulated retention times of mixtures 
on different columns (+’fingerprints’)

OV; OOV dependent  [32]

POL_MONTH (26 × 12)x9 Monthly air pollutant averages at 26 
stations in 2017

OV; OOV dependent  [33]

POL_YEAR (12 + 14)x9 Yearly air pollutant averages at 26 
stations in 2017 (12 at Budapest, 14 
at countryside)

OV; OOV independent  [33]

FLASHP1 420 × 26 for ANN model (N = 4,6,8,10 
hidden neurons), 80 objects in the test 
set

Flash point estimation of molecules 
using different QSAR parameters

OV: 80 × 26 (test objects-variables); 
26xN (variables neuron weights); Nx80 
(neurons, object activities on the neu-
rons)

 [29, 34]

DR8 600 × 28 for ANN model (N = 10–15 
neurons), 114 objects in the test set

Different QSAR parameters originally 
used to estimate toxicity

OV: 114 × 28 (test objects-variables); 
28xN (variables-neuron weights); 
Nx114 (neurons-object activities 
on the neurons);
OVV independent 114x(N + 28) 
(objects, neuron activities, original 
variables)

 [29, 35]

FLASHP2 632 × (13 + 12), for ANN models 
(N = 10–15 neurons), 100 object 
in the test set

13 molecular and 12 general descrip-
tors of molecules originally used 
for flash point estimation

OV of 100 × 25, 100 × 13, 100 × 12;
OVV 100 × (13 + 12); OVV 114x(N + 28) 
(objects, neuron activities, original 
variables)

 [29, 36]

POLMET_DAY 56 × (7 + 6), subset of original, two 
weeks from each season (56 days)

Daily meterological and airpollutant 
data set in 2007

OV: 56 × 13, 56 × 7, 56 × 6; 3D OVV: 
56 × (7 + 6)

 [37]

ESSOIL 10 × (10 + 38) Essential oils in 10 species, 10 chemical 
and 38 bactericid/fungicide data

OV: 10 × 48, 48 × 10;
3D OVV: 10 × (10 + 38)

 [8]

CERAMIC 88 × 17 Ceramics with body and glaze data OV  [31, 38]

GLASS 214 × 9 Composition of glasses from different 
sources

OV  [30, 31, 39]

WINE 178 × 13 Wine analysis OV  [30, 40]

TOXIC 112 × 8 Toxic on 8 data OV  [41]

SAND 30 × 14 Sand data radiation OV  [42]

MOLDESCRg 500 × 50
more subsets of the original

Molecular descriptors for enormous 
number of molecules to calculate dif-
ferent properties

OV  [29, 43]

COIN 257 × 10 Composition of ancient coins from dif-
ferent era of Hungary

OV  [44–46]

REAC 95 × 32 Fuel combustion with reactions 
and reactants

OV  [32, 47]
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The number of the object clusters is 4 in this exam-
ple. We compared it to other seriation methods built in 
R [11, 12]. The number of object clusters were between 
14 and 33 for the other methods. It means, the clusters 
were split into 3–8 parts in average. We also calculated 
how many of the variables are found in a cluster for the 
object clusters. In our seriations, the 5 variables were 
mostly clustered for all object groups correctly. In the 
case of the other methods, it was between 13 and 18. It 
means, there were only 2–7 cases, when two common 
variables of object clusters were placed to be neighbours 
in the variable sequence. The Additional file  1 contains 
further details on the comparison of the methods. We 
should emphasize, that our patch seriation worked effi-
ciently both for objects and variables simultaneously and 
it explores the link between the two modes. This link is 
missing for most of the other methods. As it can be seen 
in the Additional file  1, most of the methods use only 
distance matrices of the objects, where the simultaneous 
sequencing of the two axes is not possible. In our com-
parison, we calculated also variable sequencing of the 
other methods by calculating a ‘distance matrix’ of the 
variables, as well.

In this prototype of data, different groups of variables 
are responsible for the different clusters of the objects 
and the other variables are not important for the object 
clustering. It seems so, that our method totally outper-
forms all the other seriation methods. Even more, clus-
tering methods, e.g., hierarchical clustering is not able to 
find this type of relationship within the objects due to the 
nonlocal distance calculations.

2‑mode‑2‑way seriation of other datasets
The most of the tested patch seriations concerned the 
simultaneous ordering of objects and variables in two 
dimensions. Here we show some examples with original 
and seriated heatmaps. Figure 2. shows three datasets.

The first is the POL_YEAR one [33] in Fig. 2a–b. It con-
tains the yearly averaged concentrations of 9 air pollut-
ants at 12 places in Budapest and 14 places at countryside 
(mostly in cities) in 2017. There are differences in the 
measuring stations, not all of them were able to measure 
all the 9 components and there were several shutdowns 
at some places. Here, we calculated the local similarity 
matrix according to Eq.  4. The seriation clearly shows 
that the dominant variables for similarity are the differ-
ent nitrogen-oxide and ozone concentrations. The sta-
tions with heavy traffic are ordered close to each other. 
The other stations are separated into two groups, where 
the nitrogen oxides are dominant pollutants and where 
ozone pollution is dominant. It is known, that there is a 
transition cycle of ozone and nitrogen-dioxide. The first 
and the last stations are somehow thrown out by the seri-
ation. These are the places where the number of missing 
data was high.

In Fig.  2c–d we show a case, where the component 
of ceramics (celadons) are the variables [38]. Here it is 
known for the objects, what kind of celadon ceramics 
and what part of them are analysed (body or glaze). The 
seriation clearly shows, how the randomized data can 
be turned to form two groups: body and glaze, accord-
ing to the low concentration of some oxides in the body 
part and high concentrations of them in the glaze. The 

Fig. 1  2-mode-2-way seriation of simulated data. The data are shown on scaled heatmaps. a random order (typical start) b an example of patch 
seriated data with q = 3. The overlay contour plot shows the local similarity levels around 0.85. c the corresponding local similarity matrix sorted 
as figure b, d intended common values of the clusters during the dataset simulation sorted as figure b 
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seriation also found a subgroup of celadons, which were 
only imitated Longquan celadon in Jingdezhen civilian 
kilns in Ming Dynasty. The seriation was not able to dif-
ferentiate the Longquan celadons of different dynasties.

In Fig.  2e–f we show a set of reactions and reactants 
used in the combustion modelling of gasoline [47]. It is 
not easy to determine an order of the reactions and reac-
tants. Previously we used our diagonal seriation for this 
reaction set and we were able to arrange them accord-
ing to a diagonal suggesting a hypothetical pathway. Of 
course, that simple order was related to a non-realistic 
graph structure, where it is well known that a proposed 
way need not coincidence to the real fluxes of the pro-
cesses, especially the fluxes highly differ for different 
combustion conditions. In the case of patch seriation, 
we concentrated on the identification of reaction parts, 
e.g., reactions using the same components as reactants 
or products. The presence of a component in a reaction 
was denoted with 1 irrespectively the components role 
and stoichiometry. The gasoline components, the final 
CO2 and H2O components are coloured differently. It 
can be seen in Fig. 2f, that there is a reasonable re-clus-
tering of the reaction system, where around six clusters 
of reaction-components are there. Two of them is related 
to the final products CO2 and H2O, another is related to 
the CH4 and CH3 components, one is formed by different 
small entities containing H and O, and another contains 
additionally carbons. The group on the bottom-middle 
is related to H and H2. Such kind of seriation might be 
interesting if one intends to build reaction mechanism in 
a modular way.

In Fig. 3 we show two cases, where the seriation helps 
to find some general pattern. In the GLASS and COIN 
compositional datasets the exchange of species can be 
easily detected in the seriated data besides the visual 

simplification of the heatmaps. In the seriated GLASS 
data (Fig. 3b) one can detect a negative mirror like differ-
ence in the exchange of ions with similar charges, e.g., K+ 
- Na+; Ca2+ - Mg2+; Al3+ - Ba3+. Furthermore, it is also 
easy to detect the relation between Al3+ and the refrac-
tive index. It is not easy to realize these features in the 
unseriated data according to the rather striped heatmap 
(Fig. 3a). The method also seriated the glasses quite well 
according to their sources or use detailed in the original 
source [30, 31, 39].

Figure 3c–d contain a dataset on Hungarian coins from 
the X-XIII. century. Here, we used Eq. 4 and set the zero 
values to be skipped during the calculation of the local 
similarity matrix. The heatmap shows a similar exchange 
of species, like Cu-Ag exchange. It groups the coins 
where Sn and Sb took part in it, as well. The seriation was 
done with 0–1 scaled data, therefore, the traces of some 
metals had a large effect on the ordering. Due to the scal-
ing, it is easy to identify the coins having the same met-
als from second importance. Our method clusters the 
objects (coins) according to the era and kings, but here 
we should add that traditional clustering and classifica-
tion methods provided better results [44, 45].

3D seriation: 1‑object–2‑variables case
If we have a two-dimensional data matrix, where the col-
umns contain two separable set of variables, we might 
perform a seriation, where the order of the objects, the 
first set variables and the second set of variables can be 
separately sequenced. A three-dimensional local similar-
ity matrix can be constructed, where an element shows 
the average similarity of the given object to its neighbours 
(axis one), but now in two local three-dimensional vari-
able spaces (axis two or axis three). Using the first type of 

Fig. 2  2-mode-2-way seriation. a, c, e: random data order b, d, f: seriated ones. The data are shown on scaled heatmaps. a, b yearly air pollution 
data at 26 stations in 2017 (POL_YEAR dataset), the seriated order of the variables (columns): PM2.5, PM10, O3, NO2, NOX, NO, SO2, CO, BENZOL 
c–d) components of celadon ceramics (CERAMIC dataset) e–f reaction and species in a gasoline combustion model (REAC dataset), blue denotes 
the three reactants, red ones are H2O and CO2
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variables and the second type of variables independently, 
we calculate the two local similarities between the given 
object and one of its neighbours. The final sijk local simi-
larity contains the average of four similarities (over the 
two neighbours times the two local variable spaces).

Such an independent set of variables can be, e.g., 
the chemical content and the biological activities of 
the essential oils (ESSOIL), the daily averages of air 

pollutants and the corresponding meteorological data 
(POLMET-DAY) or the complex QSAR descriptors 
and the simple enumeration of functional groups in the 
flash point modelling FLASHP2.

We show our results on the latter one, where the QSAR 
descriptors for a given molecule are called molecu-
lar descriptors in the original paper and the enumera-
tion of functional groups is called general descriptors. 

Fig. 3  2-mode-2-way seriation. The data are shown on scaled heatmaps. a–b glass compositions (GLASS dataset) a-random, b-seriated c–d coin 
compositions (COIN) c-random, d-seriated

Fig. 4  2-mode-2-way seriation and 3-mode-3-way seriation of the FLASHP2 dataset. a 2-mode-2-way seriation of the objects with molecular 
descriptors b 2-mode-2-way seriation of the objects with general descriptors c Random start of the whole data matrix used in 2-mode-2-way 
seriation d 2-mode-2-way seriated whole data matrix e 3-mode-3-way seriated whole data matrix unfolded to 2D
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If we apply separately two-dimensional seriation for the 
two sets of variables, the obtained heatmaps are clearly 
arranged (Fig. 4a–b). Here we calculated the local simi-
larities with skipping the zero data to avoid the cluster-
ing of molecules due to the lack of functional groups in 
the set. If we seriated the total data matrix in two-dimen-
sions, many of the clear patches disappeared. The con-
tinuous molecular variables were dominant during the 
seriation, most of the general descriptors was not clearly 
seriated (Fig.  4d). If we performed the seriation using a 
three-dimensional local similarity matrix, the two parts 
of the data in the original two-dimensional dataset pro-
vided clear patches for both set of variables (projected 
back to two dimensions: Fig.  4e). The advantage of the 
three-dimensional seriation over the two independ-
ent two-dimensional seriations is the common target 
function during the sequencing of the three axes. The 
three-dimensional local similarity array can be directly 
visualized (see later Fig.  5 right) or two-dimensional 
projections can be calculated (see Additional file 1). We 
emphasize here again, that our mathematical target func-
tion connects all the modes of the seriation in contrary to 
the usual biclustering schemes.

3D seriation: 2‑objects‑1‑variable case
For the demonstration of the case, where a two-dimen-
sional data matrix contains two different sets of objects, 

we selected the air pollution data of stations in Buda-
pest and at countryside (POL-YEAR). The two sets of 
objects might be seriated independently. Here, the first 
axis of the local similarity matrix contains the stations 
at Budapest, the second one is the stations at country-
side and the third axis shows the yearly averaged pol-
lutant concentrations. The sijk local similarity contains 
the average of 4 similarities: the similarity of the i-(i-
1) and i-(i + 1) object pairs of the first axis (stations in 
Budapest) and the j-(j-1) and j-(j + 1) object pairs of the 
second axis (stations at countryside). The local variable 
space for this element is spanned by the k-1, k, k + 1 
variables.

The results of the seriation can be shown in the origi-
nal two-dimensional data (Fig. 5 right), where both set of 
stations are rather homogeneously sequenced separately 
(cf. to Fig. 2b. of 2D seriation, where the cities might be 
mixed). Using interactive three-dimensional graphics, 
one might have a look on the local similarity array. We 
show an example in Fig. 5 left, but it is rather uninforma-
tive without the possibility of rotating the graph. The 
different projections or enumerations on different sub-
spaces of the three axes might be informative, e.g., which 
pollutant causes locations in Budapest and in country-
side to be similar. It is clear from the graphs, that mostly 
the NO-NOx-NO2, and sometimes the SO2 and PM10 
data cause the similarities. Table 2 shows this projection 

Fig. 5  3-mode-3-way seriation of the POL-YEAR dataset. Right: seriated data matrix (stations in Budapest and at countryside form the two 
independent object sets. Left: three-dimensional view of the local similarity array. B1-B12: stations at Budapest in alphabetical order, C1-C14: stations 
at countryside in alphabetical order, PM2 = PM2.5, BE = benzene
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where highly similar locations are ordered into the mid-
dle of the local similarity array. The corresponding alpha-
betical code enumerates all the local variables involved in 
at a given high similarity, e.g., a similarity over 0.9 at the 
O3-NO2-NOx position means that the two neighbouring 
variables (SO2 and NO) are also involved therein.

3D seriation: 2‑objects‑1‑variable sets – 3D original data
In the case of two dependent objects - one variable sets, 
the data might be originally three dimensional. In the 
case of the POL-MONTH dataset, the data are for 26 sta-
tions with 12 monthly averages of 9 pollutants in 2017. 
The theoretical three axes are stations, month and pol-
lutants. The sijk local similarity contains the average of 4 
similarities: the similarity of the j-th month data for the 
i-(i-1) and i-(i + 1) station column pairs and the similarity 
of the i-th station data for the j-(j-1) and j-(j + 1) monthly 
pairs. The local variable space for an element is spanned 
by the k-1, k, k + 1 pollutant concentrations.

Figure 6a is a randomized data matrix where both rows 
(stations in a given month) and columns (pollutants) 
are randomized. If we perform a 2-mode-2-way patch 
seriation, the heatmap became simpler, e.g., the NO2, 
NO and NOx variables were seriated near to each other 
(Fig. 6b). Here we used that zero and missing values were 
not used in the similarity calculations (Eq.  4). The sta-
tions and pollutants with a lot of missing values are out-
seriated to the edges of the heatmap. One can see, as in 
the case of the monthly averages, that the high nitrogen-
oxide and ozone data provided a good basis for similar-
ity. Figure 6c shows the original data, where an arbitrary 

alphabetical order was used for the stations while the 
months are in calendar order. If we perform the 3-mode-
3-way patch seriation, we obtained an ordered map with 
regular stripes (Fig. 6d). The neighbour analysis showed, 
that 48–59% of the neighbouring objects in the local 
similarity array belong to the same season, while this is 
only 39–47% for the 2-mode-2-way seriation. Around 
30% of the four neighbours in the similarity array are the 
same in the station and/or in the month. We note that 
we do not want to get a perfect classification for these 
data, because it is not obligatory that objects of different 
classes (location, month or season) could not be closer 
to each other than objects from the same classes. The P 
(Eq. 3) of Fig. 6c (perfect classification) is around the at 
the middle of the random and the best P-s. Our method 
is data driven and it helps to override traditional classifi-
cation, where the data do not support to clearly perform 
classification.

Another example for the 2 objects – 1 variable sets case 
(RETSIM dataset) is shown in the Additional file 1.

Seriation of neural network model data
Artificial neural network is one of the most popular 
methods to solve classification and regression tasks. The 
simplest conventional structure contains an input, a hid-
den and an output layer, where the input and the hidden 
ones and the hidden and the output ones are connected 
using sets of weights. In the simplest case, the hidden 
layer neurons contain activation functions, and the out-
put layer ones only sum their weighted input. In the case 
of classification and regression, supervised method is 

Table 2  Local similarities over 0.9 between stations in Budapest and in countryside

The local variables causing the similarities: A: NO2,NOX,NO B: O3,NO2,NOX,NO C: NO2,NOX,NO,PM10 D: NOX,NO,PM10 E: SO2,O3,NO2,NOX,NO F: O3,NO2,NOX,NO,PM10 G: 
SO2,O3,NO2,NOX,NO,PM10 H: SO2,O3,NO2,NOX I: O3,NO2,NOX The stations belonging to the columns (Budapest) and the countryside (rows) are listed in the Additional 
file 1

1 2 3 4 5 6 7 8 9 10 11 12

1

2 A A A A

3 A A B B C D

4 A A B B A

5 A A B E A

6 F B E E F D

7 F E E E G D D

8 A A E E D D

9 D H

10 B B E E I

11 A A A A

12

13

14
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used, where the weights are optimised to get a correct 
output for a training set. In an optimal situation, there 
is an independent test set to validate the model. There 
are two basic trends in the evaluation of models. In the 
novel applications of data science, we concentrate on the 
output performance without restricting the complex-
ity of the ANN models. In the traditional case we would 
like to have limited complexity of the models with some 
possibility to interpret the model itself. The order of the 
neurons in the input, hidden and output layer are usu-
ally totally arbitrary. Therefore, it is an open question 
for seriation, especially, if we would like to interpret and 
understand a given model. Here we focus on some simple 
cases.

The first one is the visualisation of the weights between 
the input and the hidden layer. We might choose the 
hidden layer neurons as objects and the weights are the 
columns assigned to the input channels. The opposite 
assignment is also meaningful, where the input channels 
(input variables) are the objects, and the number of the 
variables is equal to the number of the neurons in the 
hidden layer. The same data matrix can be used, in one 
case the original matrix is seriated, in the other case its 
transpose is the input.

In Fig.  7 we show the seriated results for the dataset 
FLASHP1. The original data was intended to estimate the 
flash point of different molecular systems. The predictor 
matrix contains information on the presence of different 
functional groups. We built several ANN models using 
several hyperparameters settings. Here we show 9 ANN 

models with three different activation functions and 4, 6 
and 8 neurons in the hidden layer. The same training and 
test set was used for each model, and we selected models 
with both R2 and Q2

F2 (R2
test) more than 0.9. The graph 

shows the case, where the neurons were the objects, and 
the local variable spaces were formed by the weights 
assigned to the input channels. According to the calcula-
tion of the patch function (using Eq.  1), we scaled here 
the variables. It means, in the presence of both negative 
and positive weights blue colour might denote a large 
negative weight and red colour denotes large positive 
weight. Of course, the scaling might bias the interpreta-
tions, but in this feasibility study we do not intend to go 
really into the details of any ANN model. One can see 
that some of the seriated graphs (models with 4 neurons 
and models using logistic activation function) are clearly 
arranged providing the possibility of interpreting the 
operation of the model. In the case of this dataset, logis-
tic activation seems to be the most interpretable group of 
models. We checked several high weight values at one-
one neurons, and we assigned them as, e.g., F, O, or N 
containing functional groups. It means, these neurons 
are the responsible ones for different chemical parts as in 
ref. [48, 49]. This bunch of seriated graphs can be used to 
select models which are better interpretable.

Our other example is the seriation of the objects (mol-
ecules) and their corresponding activity on the neurons 
as variables. One aspect of neural networks, that the 
original variables are mapped to the neurons of the hid-
den layer. This can be used as a dimensional reduction. 

Fig. 6  Seriation of monthly air pollutant averages at 26 stations in 2017 POL-MONTH. a–b 2-mode-2-way seriation a - random b - seriated. c, d 
3-mode-3-way seriation c - ordered by hand, 12 months/station d - seriated
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Depending on the dimensionality of the original data and 
the number of the neurons, several features of the varia-
bles space might remain on the low-dimensional maps. A 
short investigation of it is shown in the Additional file 1 
for hierarchical clustering. The object activities were 
calculated as the dot product of the variable vector of a 
molecule and the weight vector of a neuron in the hid-
den layer. Figure  8. shows a case, where 80 test objects 
are mapped on the neurons and molecules - original vari-
ables are shown, as well. One can see in Fig. 8a–b, that 
the patch seriation orders the molecules according to 
their activity on the neurons. This graph might be used to 
visually detect group of objects and details of the model, 
e.g., activity, inactivity, or redundancy of the models. This 
object activity -neuron seriation graph resembles some-
how to unsupervised maps, e.g., a Kohonen map. The 
seriation in the original variable space is also successful, 
but here the variable space is 26 dimensional, while the 
neuron activity space is only 4 dimensional.

Conclusions
We developed a new seriation method where our previ-
ous idea of using a global merit function based on a local 
quantity was improved. We defined a local similarity 
matrix containing the average similarity of neighbour-
ing objects in a local 3-dimensional variable space. These 
local similarities were put into a global merit function, 
where the permutations of the object and variable vectors 
were directed to have both increased local similarities 
and forming patches of the large similarities.

The basic idea behind our seriation method is that 
there are datasets, where different parts of the variables 
are responsible for the different clusters of the objects. If 
a set of variables is not concerned in a cluster, they can 
be easily identified by being outside of the patches. In 
our method, an overlay contour plot of the local similar-
ity values can be drawn onto the heatmaps of the original 
data to identify the clusters of the objects and the vari-
ables causing the clustering.

Fig. 7  Seriated details of neural network models on the FLASHP1 dataset. The objects are the neurons, and the variables are the scaled weights 
of the original input variables. Three activation function are used (tangent hyperbolic, relu and logistic) with 4, 6 or 8 neurons in the hidden layer
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Both the local similarity matrix and the global patch 
function can generalize into more than two dimensions. 
We showed some examples of different three-dimen-
sional cases, where the data were arranged according to 
two variable and one object axes or to one variable and 
two object axes. Furthermore, the local similarity and the 
patch function can be generalized for data with missing 
values or cases, where zero values need not be accounted 
as responsible ones for clustering.

We show two simulated datasets, where our patch 
method is especially effective to discover object clusters 
and the corresponding variables. Here the traditional 
seriation methods with non-local distances are mostly 
in trouble, the ad hoc values of the “non-important’ vari-
ables hinder the formation of the clusters. In the case of 
several public datasets, we found always clearly arranged 
heatmaps compared to the criss-crossed chequered ran-
dom ones. Depending on the datasets (material science, 
compositional, air pollution, reaction kinetic data) clus-
ters of objects and/or variables were always detectable in 
the seriated heatmaps. In the case of sparse matrices, the 
patch seriation glue together the non-zero variables.

In the case of three-dimensional seriation, the inter-
pretation is less straightforward. One needs advanced 
three-dimensional graphical software or feasible two-
dimensional maps to enhance visual perception. If the 
result is unfolded into two dimensions, the seriated data 
show periodic changes according to the dimensions 
merged visually into one axis. In our examples we show 

the details of three-dimensional air pollution data and 
retention of different mixtures on different columns.

We show some examples, how seriation helps to inter-
pret neural network data. For example, we seriated the 
variable – hidden neuron weight matrices of different 
models and there is a striking difference depending on 
the activation function and the number of the neurons. 
For example, logistic activation function provided a more 
interpretable model than the other functions for a flash 
point dataset, especially at low number of hidden neu-
rons. Also, seriation is a feasible method to detect the 
neurons responsible for a cluster of objects and to detect 
inactive parts of the models.

We think, that seriation is a powerful data evaluation 
or pre-evaluation method. Our special method forms 
patches of object and clusters. It is effective, if the non-
important variables for a given cluster mask the identifi-
cation possibility according to their variability. Seriation 
does not replace the different pattern recognition meth-
ods, but it at least helps to detect which methods and 
task might be successful on a dataset.

Up to now we seriated small- and medium-scale data-
sets. The highest number of objects was around 600 and 
the number of variables was 150. The feasibility of the 
method on large datasets needs new aims and justifica-
tion, because the primary aim of seriation is to enhance 
visual interpretation on data heatmaps and the use of 
heatmaps has their limits for large datasets.

Fig. 8  Seriation of the FLASHP1 data (test set). a–b Object – object activities on the hidden layer neurons (model: logistic function with 4 neurons) 
a- original b-seriated c–d Object – original variable data c-random order d-seriated
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