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Abstract 

We report the major highlights of the School of Cheminformatics in Latin America, Mexico City, November 24–25, 
2022. Six lectures, one workshop, and one roundtable with four editors were presented during an online public 
event with speakers from academia, big pharma, and public research institutions. One thousand one hundred 
eighty‑one students and academics from seventy‑nine countries registered for the meeting. As part of the meeting, 
advances in enumeration and visualization of chemical space, applications in natural product‑based drug discovery, 
drug discovery for neglected diseases, toxicity prediction, and general guidelines for data analysis were discussed. 
Experts from ChEMBL presented a workshop on how to use the resources of this major compounds database used 
in cheminformatics. The school also included a round table with editors of cheminformatics journals. The full program 
of the meeting and the recordings of the sessions are publicly available at https:// www. youtu be. com/@ Schoo lChem 
InfLA/ featu red.
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Introduction
The primary purpose of the school was to enhance 
the cheminformatics field. It was targeted but not lim-
ited to the community in Latin America. This school, 
organized by a Latin American country, was held in 
Mexico City on November 24th and 25th, 2022. The 
virtual meeting featured talks by 10 international 
experts. Table 1 summarizes the full program. The set 
of speakers covered a broad perspective as they work 
in academia, big pharma, and public research institu-
tions. One thousand one hundred eighty-one partici-
pants registered from seventy-nine different countries, 
including Mexico, India, Brazil, Colombia, United 
States, Pakistan, and Peru. They included 715 from 
America (678 from Latin America, which represents 
57% of the total number of registrants), 277 from Asia, 
92 from Africa, and 97 from Europe. The group of par-
ticipants consisted of 52% of undergraduate and grad-
uate students, 27% professionals, 12% postdoctoral 
researchers, and 9% with other non-disclosed profiles.

The talks were accessible through Zoom and You-
Tube. Available recordings of talks and the full pro-
gram are freely available at https:// www. youtu be. 
com/@ Schoo lChem InfLA/ featu red. The following sec-
tions summarize the key developments presented and 
discussed during the meeting. The content is organ-
ized into seven presentations plus a round table.

Integration then interrogation: exploratory data 
analysis on a deadline; speaker Rajarshi Guha
Exploratory data analysis (EDA) is a well-studied topic 
in statistics that helps to get better analytics. A valuable 
aspect of EDA is to generate questions about the data 
beyond the general original ones. Once initial questions 
are answered, it becomes evident that additional data is 
needed to unveil new questions that would have been 
undetected otherwise. EDA involves assessing the distri-
butions of the data, looking for correlations, performing 
dimension reduction, and exploring different represen-
tations. EDA is domain-specific, so initial assessments 
include analysis of whether the data follows a distribution 
and the identification of biases. Key strategies of EDA 
related to chemical data include assessing the distribu-
tions, looking for correlations, performing dimension 
transformations, and exploring different representa-
tions. EDA is essential for many scientific tasks, such as 
predictive model development, image analysis, and high-
throughput screening (HTS).

In HTS, a large amount of data is produced about mol-
ecule’s activities (e.g., percentage of inhibition) and there 
might be secondary data or a secondary assay run for 
a subset. In other cases, the data is compared to public 
sources like ChEMBL [1], which contains available data 
on other assays. Since the data can be generated or gath-
ered from different sources, the normality, dependence 
and linearity of the data are relevant for the assessment 
of i suitability for predictive modeling, and for the selec-
tion of the type of model to generate. Image analysis is 
also used: in a high throughput phenotypic screen, the 

Table 1 Program of the School of Cheminformatics in Latin America

Speaker,
Affiliation, Country

Title

Day 1 Alexandre Varnek
University of Strasbourg, France

Chemography concept in chemical space analysis

Matthias Rarey
University of Hamburg, Germany

Beyond screening: cheminformatics for billion‑sized make‑on‑demand compound 
catalogs

Johannes Kirchmair
University of Vienna, Austria

Cheminformatics in natural product‑based drug discovery

Round table:
Rajarshi Guha Karina Martinez Mayorga José Luis Medina 
Franco Matthias Rarey Alexander Tropsha Barbara Zdrazil
Austria–Germany–Mexico–USA

Topics:
* “Dos and don’ts” when writing a paper
* Where to get help/orientation to publish your work

Day 2 Barbara Zdrazil & Fiona Hunter
EMBL-EBI, UK

Workshop: ChEMBL—accessing big molecular data via the web interface and API

Carolina Horta Andrade
University of Goias, Brazil

Cheminformatics‑driven discovery of hits for neglected and emerging diseases

Rajarshi Guha
Vertex Pharmaceuticals, USA

Integration then interrogation: exploratory data analysis on a deadline

Alexander Tropsha
University of North Carolina, USA

Methods and models for chemical toxicity prediction

https://www.youtube.com/@SchoolChemInfLA/featured
https://www.youtube.com/@SchoolChemInfLA/featured
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morphology of cells is normally analyzed, looking at cor-
relations between the readouts and statistics on individ-
ual channels, as there also might be artifacts to consider.

EDA deals with the entire dataset; splitting into train-
ing and test sets is not performed. It also has inherent 
biases, such as artifacts and correlations, that need to 
be acknowledged and considered. EDA is used to iden-
tify clusters of compounds in physicochemical property 
spaces. Predictive models are used to assess the suit-
ability of the data, while image analysis is used to reduce 
noise.

Thus, there are important constraints we operate under 
that need to be acknowledged:

• Data can be big or small.
• Data is updated or missing.
• There are many different data types; they need to be 

identified and integrated
• Integration is driven by the types of questions we 

want to answer.
• Some data types may be regulated.
• Usually we need to respond quickly (days to weeks).

These constraints imply that the appropriate infra-
structure needs to be in place to enable integration and 
that EDA needs to be efficient, well-executed, and com-
municated to the scientific team. An important aspect of 
efficient communication is the way the data is presented 
and visualized. To draw conclusions from the data, tools, 
and workflows must be used to manipulate it, and the 
analysis must be transmitted to collaborators.

Chemography concept in chemical space analysis; 
speaker Alexandre Varnek
Chemography is a tool for “big data” analysis, with 
approximately  109 compounds physically available, up to 
 1026 structures stored in proprietary databases, and  1033 
compounds with drug-like properties that could be syn-
thesized. Oprea [2] proposed the chemography approach 
to build maps describing the structure and properties of 
molecules using cheminformatics techniques. Generative 
topographic mapping (GTM) is a method that transforms 
the initial space of n descriptors into a two-dimensional 
space.

GTM concepts
The GTM algorithm transforms the initial space of n 
descriptors into a two-dimensional space called latent 
space by introducing a flexible sheet-shape function 
called a manifold. In the initial n-dimensional space, the 
data is modeled by an ensemble of Gaussian functions 
localized at the nodes of a rectangular grid superimposed 
on the manifold. In the latent space, the projection of a 

given molecule is described by the probability of its loca-
tion in different nodes of the rectangular grid.

The transformation of the ensemble of the probabili-
ties, called responsibilities, gives place to a vector whose 
length is equal to the number of nodes. The vectors can 
be understood as descriptors of each molecule. When the 
molecules are added, the projection of the vectors results 
in a density landscape, which shows the density distribu-
tion of the molecules in the chemical space. This density 
landscape is very convenient for analyzing regions that 
are well-populated or underpopulated and the distribu-
tion of different chemotypes. There are three types of 
GTM landscapes: a density landscape characterizing data 
density distribution, a class landscape characterizing 
population of activity classes (active or inactive) and an 
activity or property landscape which reports an average 
activity or property values in a given part of the map.

Technical details
GTM maps can be built with different descriptors, such 
as ISIDA fragment descriptors [3, 4], which can vary by 
topology, size, and atom labels. Two scenarios can be 
considered to profile a chemical library with respect to 
different activities: preparation of single-task models 
for particular activities or construction of one universal 
map able to predict the entire pharmacological profile 
in a multitasking manner. A prototype of the universal 
map was constructed for the ChEMBL database con-
taining about 1.7 million compounds, which deline-
ates the biological relevant chemical space and is able 
to predict > 700 biological activities. This gave rise to the 
ChemSpace Atlas [5] tool which contains approximately 
1.5 billion compounds, > 40,000 hierarchically related 
maps and > 1.5 million activity landscapes. GTM applica-
tions include virtual screening, analysis of large chemi-
cal collections, AI-driven design of new molecules and 
reactions, and cartography and AI-driven design of new 
molecules.

Beyond screening: cheminformatics 
for billion‑sized make‑on‑demand compound 
catalogs; speaker Matthias Rarey
About 20  years ago most people were doing virtual 
screening on existing compound collections. In 1998 
Lewell et al. [6] tried to create new molecules by recom-
bining fragments. They described a set of cutting rules 
and used them to shred molecules into pieces and to 
recombine the parts to form new compounds. At the 
same time a reduced graph descriptor was developed 
[7] where the molecule is also cut it into smaller pieces 
and every piece is described by a set of nodes. In 2001 
both findings were put together and a special search 
method was developed [8], which starts with a query and 
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instead of looking at one molecule after another, selects 
molecules from the chemistry space of small fragments. 
Moving forward, an interesting transition happened [9] 
when researchers were looking to create small fragments 
by mapping potential small molecules as reactants for 
the reaction and describe all the plausible chemical reac-
tions available in the library. So, this method gives them 
much higher reliability on the synthetic accessibility of 
compounds.

Recently, in 2019 Marcus Gastreich [10] summarized 
advances in modeling chemical space classification and 
their recent growth rates. Basically, all those databases 
were created by using reaction rules and certain frag-
ments. Pharmaceutical companies extended this con-
cept even further by taking more and more potential 
reactants and additional reactions to make these spaces 
much larger. The large number of molecules and possible 
reactions makes the enumeration of molecules from frag-
ments almost infeasible and will consume a lot of time 
to process. So, several methods have been published to 
solve this by combining fragment spaces and topological 
descriptors [11, 12].

An approach to overcome the limitation of meth-
ods based on topology is through the optimization via 
metaheuristics which can be combined with arbitrary 
scoring functions. In 2022, Meyenburg et  al. [13] pre-
sented Galileo, a novel genetic algorithm to sample 
fragment spaces which in combination with a novel phar-
macophore mapping approach, called Phariety, enables 
3D searches in fragment spaces. The 3D pharmacophore 
models have proven to be particularly useful as filters for 
virtual screening. Nowadays we see a lot of interest in 
larger collections which are then not available physically, 
but in make-on-demand catalogs which are provided 
by many companies. Already, for a decade we have seen 
interest in constructing these kinds of spaces.

Exploration of chemical space [14] remains in the core 
of research among the chemical informatics commu-
nity. Following a different direction, make-on-demand 
catalogs describe chemistry in an integrated way without 
the enumeration of all the molecules. Such catalogs are 
orders of magnitude larger, and they substantially impact 
the early phase of drug discovery, even for challenging 3D 
searches [15].

Cheminformatics in natural product‑based drug 
discovery; speaker Johannes Kirchmair
Natural product drug discovery is challenging due to lim-
ited availability and high costs of materials, difficulties in 
harvesting, transporting, isolating, testing, and resynthe-
sis, and problems related to decomposition, aggregation, 
precipitation, and chemical reactivity. Computational 
and cheminformatics methods offer in silico approaches, 

but 3D in silico approaches depend on correct stereo-
chemistry. Many computational methods have been 
devised from and designed for organic synthetic drug-
like molecules rather than natural products, and to use 
them also in the natural product space, some modifica-
tions and adaptations may be required.

Chen and Kirchmair [16] summarized the state-of-the-
art, scope, and limitations of computational methods in 
natural-products-based drug discovery. They covered six 
major areas of application: data curation, analysis, visuali-
zation, navigation, and comparison of the chemical space; 
quantification of natural product-likeness; prediction of 
bioactivities; ADME and safety profiles; natural-prod-
ucts-inspired de novo design; and prediction of natural 
products prone to interfere with biological assays.

Natural products databases such as the SuperNatu-
ral 3.0 [17] database offer big data downloads, and the 
BIOFACQUIM database [18], developed at the National 
Autonomous University of Mexico (UNAM) which col-
lects natural products isolated and characterized in Mex-
ico offers big downloads and virtual screening. Several 
other natural product databases in the public domain 
have been reviewed [16].

A machine-learning approach, reported in 2019 [19], 
identifies natural products with high accuracy and can be 
used to quantify drug-likeness in large molecular data-
bases. The method classifies small molecules as natural 
products or synthetic molecules using similarity maps 
that highlight important atoms. It can also quantify the 
natural-product-likeness of small molecules and identify 
natural products in large molecular databases.

Workshop. ChEMBL—accessing big molecular 
data via the web interface and API; led by Barbara 
Zdrazil and Fiona Hunter
The first launch of the ChEMBL database (www. ebi. ac. 
uk/ chembl) in 2009 [1] was a milestone in the recent 
history of chemical biology and drug discovery because 
it provided unprecedented free access to large amounts 
of high-quality, curated data on bioactive molecules. 
ChEMBL has grown significantly since then and now 
impacts a wide range of areas that include drug discov-
ery, data science, and the development and validation of 
AI, machine learning, and other in silico methods.

The ChEMBL database links drug-like compounds to 
their biological targets via experimental bioactivity data. 
UniChem is a database that produces cross-references 
between chemical structure identifiers from different 
databases (www. ebi. ac. uk/ unich em). Both ChEMBL and 
UniChem can be accessed through an interactive web 
interface as well as programmatically via web services.

A general introduction to ChEMBL and UniChem was 
presented, and the following topics were discussed:

http://www.ebi.ac.uk/chembl
http://www.ebi.ac.uk/chembl
http://www.ebi.ac.uk/unichem
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 (i) What is ChEMBL and how is it structured?
 (ii) What types of data does ChEMBL contain?
 (iii) The process to extract and curate bioactivity data
 (iv) Sources of drug data for ChEMBL, and its curation 

and integration
 (v) What is UniChem?
 (vi) A demonstration of ChEMBL web interface
 (vii) Other methods to access ChEMBL data (via down-

load, sematic web, or API)
 (viii) Worked examples to access ChEMBL programmat-

ically using the API endpoints.

Further information is available via free training 
resources:

• ChEMBL webinar: https:// www. ebi. ac. uk/ train ing/ 
events/ guide- explo re- drug- compo unds- and- their- 
biolo gical- targe ts- using- chembl/.

• ChEMBL quick tour: https:// www. ebi. ac. uk/ train ing- 
beta/ online/ cours es/ chembl- quick- tour/.

• ChEMBL & UniChem API webinar: https:// www. ebi. 
ac. uk/ train ing/ events/ guide- acces sing- chembl- and- 
unich em- throu gh- api/.

For questions about using ChEMBL or UniChem, the 
user can check the documentation and Frequently Asked 
Questions (www. ebi. ac. uk/ chembl), or email at chembl-
help@ebi.ac.uk or unichem@ebi.ac.uk for queries, feed-
back, and suggestions.

Cheminformatics‑driven discovery of hits 
for neglected and emerging diseases; speaker 
Carolina Horta Andrade
The Zika virus, reported for the first time in 1947, is bio-
logically fascinating; sadly, the associated disease is being 
neglected, for drug discovery applications [20] and has 
now spread to more than 50 countries. To address this 
issue, the Open Zika project [21] was launched. It is a 
global collaboration with the goal of accelerating the dis-
covery of an effective treatment for the infection. The 
project enabled the performance of massive docking-
based virtual screening campaigns for all Zika virus pro-
teins and the development of machine-learning models 
to predict the cytoprotective effect of compounds over 
Zika virus infection. As a result of the combined com-
putational and screening efforts, several compounds 
were identified: five no-nucleoside compounds that 
inhibit the Zika virus polymerase, one dual inhibitor of 
the virus protease and polymerase, and eight compounds 
that were able to protect the glioblastoma cells from Zika 
virus infections.

The research group then turned to the COVID-
AI project [22, 23] which focuses on the discovery of 

anti-COVID-19 agents. The workflow consisted of nine 
steps: in silico assays, target-based assays, cytotoxicity 
assays, cell-based SARS-CoV-2 assays, chemical syn-
thesis, in vitro ADMET, in vivo DMPK, development of 
drug-targeted nanoparticles, and in  vivo SARS-CoV-2 
models. The best model for cytopathic effect assays was 
developed using available information from PubChem, 
MACCS key descriptors, and the random forest machine 
learning algorithm. For the main protease, a virtual 
screening campaign of compound databases was per-
formed. The first compounds obtained showed medium-
to-high potency.

Methods and models for chemical toxicity 
prediction; speaker Alexander Tropsha
A pivot-point in modern chemical toxicity modeling was 
the conception of Tox21, in 2007. Tox21 aims to move 
chemical toxicity to a mechanistic explanation and away 
from animal testing. This has been pursued by developing 
tools and protocols that rely on in vitro data and mecha-
nistic modeling of toxicity. Historically, testing of chemi-
cals has been performed on animal models. This practice 
requires the use and sacrifice of several animals and is 
occasionally valuable for building predictions to extrapo-
late to humans. These analyses have been done without a 
deep understanding of why chemicals cause certain types 
of toxicity. Several tests have been run on thousands of 
chemicals at EPA and FDA, as well as in universities and 
biotech companies. In addition, the strong statement 
from US EPA in 2019 to eliminate all mammal chemical 
testing for toxicity by the year of 2035, imposed pres-
sure on the development of alternative toxicity testing 
methods.

There are two major historical trends: read across and 
statistical methods. “Read across” is a relatively simple 
chemical similarity-based method with the key aspect 
of extracting structural alerts or chemical toxicity alerts 
[23]. Chemical fragments are presumed to be associated 
with a specific type of chemical toxicity. QSAR (statisti-
cal) models are directly computed from chemical struc-
tures. Historically, regulatory agents have been given 
higher recognition to the chemical categories under the 
read-across method, mainly due to the transparency and 
mechanistic interpretability associated with this method.

The OECD QSAR Toolbox is an open-access tool used 
by regulators to fill in gaps in current knowledge. It is 
based on grouping chemicals into categories, presum-
ing that in the read-across approach, a new chemical of 
interest has the particularly expected toxicity because 
of its similarity with other chemicals of the same chemi-
cal category. In QSAR methods, there is no mechanistic 
assumption. Instead, there is a hypothesis that one could 
build statistical models to correlate a chemical descriptor 

https://www.ebi.ac.uk/training/events/guide-explore-drug-compounds-and-their-biological-targets-using-chembl/
https://www.ebi.ac.uk/training/events/guide-explore-drug-compounds-and-their-biological-targets-using-chembl/
https://www.ebi.ac.uk/training/events/guide-explore-drug-compounds-and-their-biological-targets-using-chembl/
https://www.ebi.ac.uk/training-beta/online/courses/chembl-quick-tour/
https://www.ebi.ac.uk/training-beta/online/courses/chembl-quick-tour/
https://www.ebi.ac.uk/training/events/guide-accessing-chembl-and-unichem-through-api/
https://www.ebi.ac.uk/training/events/guide-accessing-chembl-and-unichem-through-api/
https://www.ebi.ac.uk/training/events/guide-accessing-chembl-and-unichem-through-api/
http://www.ebi.ac.uk/chembl
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matrix with the target property and expect to get a strong 
correlation between the actual and the predicted biologi-
cal activity or toxicity values.

Typically, the alerts are derived from a large collection 
of chemical structures that happen to have a particu-
lar chemical functional group. For example, in the work 
reported by Braga et al. [24] molecules were predicted by 
alerts as blockers but experimentally are nonblockers of 
hERG, while QSAR model predictions agreed with the 
experimental data.

Hybrid strategies combine building statistical QSAR 
models and interpreting them in terms of significant 
chemical fragments and using these models to assess 
the significance of structural alerts derived solely from 
looking at the structure of toxic compounds without any 
statistical modeling. In most cases, model accuracy and 
prediction can be improved by integrating chemical and 
biological descriptors, typically by concatenating them.

Chemical-biological read-across (CBRA) [25] is a 
methodology that learns from two sets of neighboring 
molecules: biological and chemical. It outperforms other 
models and exhibits consistently high external classifi-
cation accuracy and applicability to diverse chemicals. 
Chemistry-wide association studies (CWAS) [3] explore 
how chemical structures are associated with activity by 
integrating statistical and non-statistical modeling. This 
model derives alerts from validated QSAR models and 
validates alert-based assertions by QSAR. In this way, the 
toxicity predictions are both interpretable and statisti-
cally significant.

The use of popular algorithms such as AI and deep 
learning has gained more attention in recent years. The 
statistical accuracy of deep-learning-based models seems 
to have been very high. However, potential problems 
should be taken into account, for example, verifying if the 
data used on the model was heterogeneous, adequate and 
curated. Importantly, the lack of data curation could rep-
resent a major weakness. When the data is not curated, 
for example, when there are duplicates, the model is 
expected to show over-optimistic accuracy. However, the 
accuracy of curated data is more realistic and shows the 
innate inaccuracy of the data but also shows an honest 
assessment of model accuracy.

When analyzing publications that use the most innova-
tive methods, it is important to look at the data carefully 
and see if statements made are justified by the data. Mod-
els, even in the age of deep learning, need to be built with 
proper division of the data set into training and test set, 
and external validation. All the best practices need to be 
preserved.

In computational toxicology, the times are good and 
exciting, as the amount of data is large and growing, and 

the importance of building reliable models of computa-
tional toxicity prediction is increasing.

Quotes from the round table with editors 
and beyond

Rajarshi Guha
When you apply methods, be sure you applied statistics 

properly.
If people think of deep learning as the next step beyond 

random forest for regression analysis, that is a dead end.
In the future, cheminformaticians will couple AI or ML 

with chemical structure generation to influence synthetic 
chemists in the design of new molecules.

Karina Martinez
Focus on the main topic, avoid unnecessary wordiness.
Learn to follow ethics guidelines.
Be moved by the aim of communicating your ideas and 

contributions, not by Journal Impact Factor or fashion.
Documentation gives transparency.
When building models, consider flexibility, temporality 

and nondeterminism.
Jose Medina
If you are not an expert, have a sense of the usefulness 

and the limitations so that you can interpret the outcome 
of programs you use.

Always read the documentation of the programs you 
use.

Preprints are becoming more popular; they are a good 
way to disseminate the work, and for making the work 
available to the community.

Matthias Rarey
There are two main types of research papers: applica-

tion and development of methods.
Pay attention to the language, reach out to colleagues 

for proof reading, and especially ask English native 
speakers to peer review your work.

Alexander Tropsha
(About social media) Don´t self-glorify but distribute 

the knowledge anyway you can.
(About predatory journals) just ignore them, you can-

not fight them, you cannot eliminate them, but you could 
ignore them, you should ignore them.

If your work focuses on applications, you must validate.
If you just use something from the web and make pre-

dictions about molecules it is worth almost nothing.
Barbara Zdrazil
Bring your message out in a simple and clear way.
Predictions can never be better than the underlying 

data (garbage in – garbage out).
By providing more and better-quality data in a fair way, 

we will enable better predictions in the future.
It is the practice of writing what gives you the skills.
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Improve your writing skills by writing, reading, and 
reviewing papers.

Others
The structure of a language determines (or greatly 

influences) the modes of thought and behavior charac-
teristics of the culture in which it is spoken – Sapir & 
Whorf.

The limits of the tool shape my reality – Bridget Cogley.
In drug discovery, the treasure is in the molecules – 

John Van Drie.

Conclusions
The virtual School of Cheminformatics in Latin America, 
Mexico City, November 24, 25, 2022, gave an overview 
of recent developments of chemical space enumeration, 
applications of cheminformatics to natural products 
research with focus on drug discovery, drug discovery for 
neglected diseases, toxicity prediction, and data analy-
sis. The school also featured a workshop on using of the 
broadly available resources from ChEMBL, focusing on 
how to use the resources of this major compounds data-
base used in cheminformatics. The school included a 
round table to discuss topics related to scientific publish-
ing. The event was part of a continued effort in Mexico to 
contribute to developing the rigorous practice of chemin-
formatics in Latin America [26] in an open format avail-
able to the scientific community worldwide that, in this 
school, was attended by participants from seventy-nine 
countries. It is anticipated that in the next few years, the 
Latin American community will be more integrated with 
cheminformatics and associated topics being developed 
worldwide. It is expected that the present school will 
be part of a continued and sustained effort to join other 
research and educational events on cheminformatics 
that have being happening for several years now such as 
the School of Chemoinformatics or Pharmacy Informat-
ics held at the University of Strasbourg in France, or the 
University of Vienna in Austria. It is expected that future 
editions of this school will be hybrid in order to benefit 
from face-to-face discussions and to facilitate the rapid 
dissemination and contact with interested persons for 
whom traveling is a burden.
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