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Abstract 

Self-supervised neural language models have recently found wide applications in the generative design of organic 
molecules and protein sequences as well as representation learning for downstream structure classification 
and functional prediction. However, most of the existing deep learning models for molecule design usually require 
a big dataset and have a black-box architecture, which makes it difficult to interpret their design logic. Here we 
propose the Generative Molecular Transformer (GMTransformer), a probabilistic neural network model for generative 
design of molecules. Our model is built on the blank filling language model originally developed for text processing, 
which has demonstrated unique advantages in learning the “molecules grammars” with high-quality generation, 
interpretability, and data efficiency. Benchmarked on the MOSES datasets, our models achieve high novelty and Scaf 
compared to other baselines. The probabilistic generation steps have the potential in tinkering with molecule design 
due to their capability of recommending how to modify existing molecules with explanation, guided by the learned 
implicit molecule chemistry. The source code and datasets can be accessed freely at https:// github. com/ uscco 
lumbia/ GMTra nsfor mer
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Introduction
The discovery of novel organic molecules has wide 
applications in many fields, such as drug design 
and catalysis development [1]. However, due to the 
sophisticated structure–property relationships, 
traditional rational design approaches have only covered 
an extremely limited chemical design space [2]. Recently, 
a large number of generative machine learning algorithms 
and models have been proposed for molecule design, 
as systematically reviewed in [1, 3, 4]. The first category 

of these methods is deep generative models (DGMs), 
Deep generative models (DGMs) typically leverage deep 
networks to learn from an input dataset and synthesize 
new designs [5]. Recently, DGMs such as feed forward 
neural networks (NNs), generative adversarial networks 
(GANs) [6], variational autoencoders (VAEs) [7], certain 
deep reinforcement learning (DRL) frameworks and 
normalizing flow-based models [8] have shown promising 
results in design applications like structural optimization, 
materials design, and shape synthesis. Two of the major 
limitations of these models include their black-box 
nature and the challenge of dealing with modularity in 
molecule design. In [9], Westermayr et  al. proposed an 
approach that combines an autoregressive generative 
model that predicts three-dimensional conformations 
of molecules with a supervised deep network model 
that predicts their properties. The  generation of 
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molecules with (multiple) specific properties is achieved 
by screening newly generated molecules for desirable 
properties and reusing hit molecules to retrain the 
generative model with a bias. Despite its efficiency in 
property-oriented sampling, it lacks interpretability and 
cannot use modular motifs. Another trend in molecule 
generation is that explicit 3D molecular generative 
models have recently emerged [10], aiming to generate 
molecules directly in 3D, outputting both the atom 
types and spatial coordinates, either in a one-shot or 
incrementally adding atoms or fragments. One such 
model is GeoDiff [11], which is inspired by denoising 
diffusion generative models for image generation. This 
model can generate molecular conformations by treating 
each atom as a particle and learning to directly reverse 
the diffusion process that transforms from a noise 
distribution to stable conformations. Flam-Shepherd [12] 
showed that language models based on LSTM can learn 
the distributional properties of target datasets using both 
SMILES and SELFIE representations. It can generate 
larger, more complex molecules or generate from 
chemical spaces with large ranges in size and structure, 
which shows advantages over graph generative models. 
ORGAN [6] is a GAN based black-box generative model 
for molecule generation, whose data generation can be 
subject to a domain-specific reward function. However, 
its black-box nature makes it difficult to interpret learned 
logic in terms of the chemical knowledge they learn 
and how they exploit the learned implicit knowledge 
for generation. In addition, due to the lack of syntactic 
and semantic formalization as a limitation of specific 
structured data, unsuitable generic string generation 
models often lead to invalid model outputs. We need 
to prepare a large number of valid combinations of 
structures in advance to train a reasonable model, which 
is time-consuming. Although the grammar variational 
autoencoder (GVAE) [13] directly encodes from and 
decodes grammar parse trees, aiming to ensure the 
generated outputs are always syntactically valid, it is still 
incapable of regularizing the models so that they only 
generate semantically valid objects.

The second category of molecule generative design 
methods includes several key combinatorial optimization 
algorithms such as genetic algorithms [14], reinforcement 
learning [15], Bayesian optimization [16], Monte Carlo 
Tree Search (MCTS) [17], Markov Chain Monte Carlo 
(MCMC) [3]. While GAs have demonstrated superior 
performance in several molecule design benchmark 
studies [18, 19], the genetic operators of mutation 
and cross-over lack the learning capability to achieve 
intelligent and efficient chemical space exploration. 
This also applies to MCTS, which locally and randomly 
searches each branch of intermediates and selects the 

most promising ones during each generation’s iteration 
[20]. Bayesian optimization is usually applied together 
with VAEs and searches the chemical space in the latent 
space, Jin et  al. use Bayesian optimization to optimize 
molecules generated by a variational autoencoder based 
on molecular graphs, it generates a tree-structured 
scaffold over chemical substructures first, and then 
combines them into a molecule with a graph message 
passing network [21]. However, the computational 
complexity of the dimensional space of its search space 
is relatively high, and its computational complexity 
increases exponentially with the increase of the dimension 
of the optimization space, which also makes it difficult to 
handle the modularity in molecule design. The chemical 
constraints explicitly [16] are also difficult to achieve. 
Reinforcement learning has been applied to generative 
models with both SMILES and 2D graph representations, 
which learns a policy network to determine the optimal 
actions that maximize a global reward such as a given 
property [15, 22]. However, RL is rarely used in de novo 
molecule generation partially due to the difficulty to 
achieve long-range credit assignment and to obtain 
differentiable validity checks as the reward signal.

A pivotal consideration in designing generative models 
for molecules revolves around the representation level of 
these molecules, encompassing atom-based, fragment-
based, and reaction-based approaches. While the 
majority of existing models have leaned towards atom-
based representations like SMILES, more sophisticated 
alternatives such as SELFIES [23] and DeepSMILES [24] 
have emerged for molecule property prediction. The 
impact of choosing a specific molecule representation on 
generative design performance remains an unresolved 
query. Notably, it has been observed that fundamental 
atom representations, such as SMILES, pose challenges 
when attempting to harness the modules, motifs, or 
skeletons present in known molecules. On the contrary, 
fragment and reaction-based generative models offer the 
potential to exploit these larger building blocks; however, 
they also grapple with the intricacies of expressive power.

Another major limitation of existing deep generative 
models for molecule design is that most of them cannot 
be used for tinkering design: a specified part of an 
existing molecule is masked for replacement of other 
modules to gain specific function property, despite 
that this is one of the most widely used approaches to 
explore new molecules [2] due to many constraints 
imposed on the possible options. During these processes, 
chemists or molecular scientists usually resort to their 
intuition, chemical knowledge, and expertise to select 
substitution or doping elements and proportions to tune 
the properties of the molecule by considering a variety 
of factors such as chemical compatibility, poison level, 
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geometric compatibility, synthesizability, and other 
heuristic knowledge.

Here we propose a self-supervised probabilistic 
language model, the Generative Molecular Transformer 
(GMTransformer) for molecular design and generation. 
The model is based on transformers and the self-
supervised blank-filling language model BLM [25]. 
The model interpretably calculates its probabilities 
and derives different actions depending on the token 
frequency shown by its vocabulary. We use SMILES, 
SELFIES and DeepSMILES representations to train 
different models, and found that each of them has its 
own advantage. The easy interpretation, data efficiency, 
and tinkering design potentials have been demonstrated 
in our recent work on inorganic materials composition 
design [26], which inspires us to explore its potential 
in molecule design in this work. We use MOSES 
benchmarking metrics to evaluate the performance of 
our GMTransformer models. The results of our extensive 
experiments show strong performance compared to 
state-of-the-art baselines. Our GMTransformer model 
with SMILES representation achieves 96.83% novelty and 
87.01% of IntDiv, which demonstrates that our model is 
capable of generating a wide variety of novel molecules. 
We also train generative models for maximizing different 
properties: logP, tPSA, and QED, and find that our 
models can learn to generate molecules with specific 
properties as demonstrated by the distribution of 
generated molecular properties.1

Methods
Generative and tinkering molecular design 
as a blank‑filling process
SMILES (Simplified Molecular Input Line Entry Sys-
tem) uses a string of characters to describe describe 
the connectivity of chemical compounds, focusing on 
their atomic arrangement and bonding patterns. While 
SMILES notation effectively captures the structural rela-
tionships between atoms and bonds, it’s essential to note 
that these representations do not convey information 
about the three-dimensional arrangement of atoms in 
space. Within SMILES, atoms, bonds, and branches com-
bine to form the strings that represent molecules. The 
atoms are represented by their element symbols, e.g. C, 
N, O, S, F. The atoms in aromatic rings are represented 
by lowercase letters, such as the lowercase c for aromatic 
carbon. There are three types of bonds in SMILES: sin-
gle bonds, double bonds, and triple bonds, and they are 

denoted by -, =, # respectively. Branches are specified by 
enclosures in parentheses.

As shown in Table  1, the following canvas rewriting 
process shows how the GMTransformer generates the 
CC(= O)C sequence of the SMILES strings step by step. 
At the beginning, there is only an initial blank token  of 
$1 on the canvas, then different candidate tokens 
and rewriting actions (E, _E, E_, _E_) are selected by 
GMTransformer. (1) action E: replace a blank with the 
element E; (2) action _E: replace a blank with element E 
and insert a new blank on its left side, allowing further 
element insertion; (3) action E_: replace a blank with 
element E and insert a new blank on its right side, 
allowing further element insertion; (4) action _E_: replace 
the blank with element E and insert new blanks on both 
sides [26]. Finally, a string without any blank symbols 
is generated on the canvas. In Table 1, there is only one 
initial blank on the canvas in step 0, and it selects action 
_E_ with the element C to get $1 C $2. Then it replaces 
the blank of $1 with the element C by taking action 
E in the first step. In the second step, the operation 
replaces $1 blank with a branch (_. Then it chooses action 
_E_ and replaces the blank with element O. In the next 
two steps, it replaces the blank with bond = and branch 
)_ respectively to get canvas C C ( = O ) $1. Finally, it 
replaces $1 with element C.

GMTransformer is different from BERT [27] and 
XL-Net [28] as it relies on pre-existing content to learn 
and generate sequences. Instead of using the context 
of a pre-masked word to predict the probability of the 
masked word, GMTransformer directly chooses the 
action and then inserts the word that best matches the 
content it learns at the appropriate position based on the 
probabilistic dependencies in the generated vocabulary.

Table 1 Strings of SMILES generated as a canvas rewriting 
process

 Canvas rewriting with 4 actions: (E, _E, E_, _E_)

Step t Action operation

0. $1 _E_ Replace $1 blank with _C_

1. $1 C $2 E Replace $1 blank with C

2. C C $1 E_ Replace $1 blank with (_

3. C C ( $1 _E_ Replace $1 blank with _O_

4. C C ( $1 O $2 _E Replace $1 blank with =

5. C C ( = O $1 E_ Replace $1 blank with )_

6. C C ( = O ) $1 E Replace $1 blank with C

7. C C ( = O ) C

1 Citation: L.W...J.H. Generative transformer for generative molecules 
design. DOI:000000/11111.
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Generative molecular transformer: blank filling language 
model for molecule generation
GMTransformer is not like the black-box models such 
as Variational Autoencoders (VAEs) [7], Generative 
Adversarial Networks (GANs) [6], and normalizing flow-
based models [8], it is a process interpretable model 
designed based on a blank language model (BLM) [25]. 
GMTransformer directly models the probability of the 
tokens in the vocabulary. It relies on the content of the 
existing canvas to calculate the probability distribution 
for selecting actions and tokens to generate a new canvas. 
It can intelligently control the intermediate process 
of generating the string, and each step can give an 
explanation of why it is doing it.

String-based assembly strategies represent molecules 
as strings and explore chemical space by modifying 
strings directly: character-by-character, token-by-
token, or through more complex transformations based 
on a specific grammar [29]. SMILES is well-known 
for its simplicity in denoting molecules as strings by 
following rules like adjacent atoms are assumed to be 
connected by a single or aromatic bond and branches 
are specified in parentheses, etc. In particular, learning 
valid molecules is substantially more difficult with the 
SMILES grammar, as there are many more characters to 
generate for these molecules and a higher probability that 
the model will make a mistake and produce an invalid 
string [12]. GMTransformer uses SMILES, SELFIES and 
DeepSMILES representations of atom-level tokenization. 
SMILES defines a character string representation of a 
molecule by performing a depth-first pre-order spanning 
tree traversal of the molecular graph, generating symbols 
for each atom, bond, tree-traversal decision, and broken 

cycles [30]. The SMILES representation of atom-level 
tokenization has 21 tokens in SMILES strings and 7 
special tokens as the vocabulary during the training 
process. The vocabulary contains 13 atom tokens 
< C >,< c >,< O >,< o >,< N >,< n >,< F >,

< S >,< s >,< Cl >, ,< [nH ] > , and < [H ] > , 
3 bond tokens < − >,<=>,< # > , 6 ring tokens 
< 1 >,< 2 >,< 3 >,< 4 >,< 5 >,< 6 > and 7 special 
tokens < PAD >,< UNK >,< FIRST >,< LAST >,

< EOS >,< BLANK >,< BLANK_0 > . SELFIES and 
DeepSMILES also contain the same 7 special tokens as 
SMILES.

The SmilesPE tokenization has a mean length 
of approximately 6 tokens, while the atom-level 
tokenization has a mean length of approximately 40. 
SMILES Pair Encoding contains the special tokens and 
unique tokens from the frequent SMILES substrings. 
e.g, < CCC(C)(C) > , < CCCC(C) > , < NC(= O)C > . 
Both SMILES and DEEP SMILES use the SmilesPE 
tokenization, which does not apply to SELFIES. More 
details can be found in [31].

Figure  1 shows the architecture of our Generative 
Molecular Transformer (GMTransformer). The 
model utilizes four networks in three iterative stages. 
The first stage includes the transformer network 
and linear and softmax layers. The second and third 
stages include linear and softmax layers, multi-layer 
perceptron network, respectively. In the first stage, the 
transformer network encodes the canvas into a sequence 
of representations. Then which location of the blank 
should be filled is selected by computing probabilities 
from linear and softmax layers. In the second stage, it 
picks an appropriate token and inserts it into the blank 

Fig. 1 Neural network architecture of the blank filling language model for molecules tinkering using SMILES string 
O = C1CC(c2ccccc2)Oc2cc(O)cc(O)c21 as an example



Page 5 of 15Wei et al. Journal of Cheminformatics           (2023) 15:88  

with linear and softmax layers. In the final stage, the 
action of whether or not to create blanks to the left and 
right is determined by feeding the concatenation of the 
representations of the selected blank and the token into 
the multi-layer perceptron network. The model updates 
the canvas and repeats the process until there are no 
blank positions on the canvas.

During the training process, first of all, it initializes 
the model parameter θ and then randomly samples a 
training example x = (x1, · · · , xn) with the length of n. 
Next, it samples the step length t from 0 to n− 1 and 
the generation order with n-permutation σ of the given 
example. It constructs a canvas c that remains the first t 
tokens xσj ( j = 1, ..., t) and collapses the remaining n− t 
tokens as blanks. Then it takes n− t target actions aj−t 
for filling xσj ( j = t + 1, ..., n) into canvas and calculates 
loss as Eq.  1. Finally it updates parameter θ by gradient 
descent and repeats the whole process until convergence. 
More details can be found in [25].

where the θ is the the model parameter; cx,σt  is the tth 
canvas with the given training example x and the deter-
mined generation order (permutation σ ); ax,σt  represents 
the action whether or not to create blanks to the left and 
right of the predicted token at step t with the order per-
mutation σ and the selected blank.

(1)− log(n!)−
n

n− t

∑

σt+1

log p
(

ax,σt | cx,σt ; θ
)

Datasets
We use the dataset from the benchmarking platform 
Molecular Sets (MOSES) at https:// github. com/ molec 
ulars ets/ moses [32]. It contains 1,936,962 molecular 
structures totally and splits them into three datasets 
for experiments. Each of them consists of training 
samples (around 1.6  M), test samples (176 k), and 
scaffold test samples (176 k) and we use the training 
and test sets in our experiments. We use the SMILES, 
SELFIES sets with the basic Atom-level and SmilesPE 
tokenizers.

Evaluation criteria
We use the MOSES benchmarking score metrics to 
evaluate the overall quality of the generated samples. 
Several models with different tokens are used for 
GMTransformer training and each model generates 30,000 
samples that are evaluated by the MOSES benchmarking 
metrics in Table  2. The ratios of valid and unique 
(unique@1k and unique@10k) report the validity and 
uniqueness of the generated SMILES string respectively. 
Novelty is the proportion of molecules in the generated 
samples that is not in the training set. Filter refers to the 
proportion of generated molecules that passed the filter 
during dataset construction. The MOSES metrics also 
measure the internal diversity (IntDiv) [33], the similarity 
to the nearest neighbor (SNN) [32], Frechet ChemNet 
distance (FCD) [34], fragment similarity (Frag) [32], and 
scaffold similarity (Scaf) [32].

The Internal diversity (IntDiv) is calculated via eq (2), it 
evaluates the chemical diversity in the generated set G of 

Table 2 Performance comparison of generators using the MOSES Benchmark

 Bold value indicates the best performance of samples generated by different models under the same evaluation metric

GMT MOSES reference models

GMT‑ SMILES GMT‑PE‑ SMILES GMT‑ SELFIES GCT ‑SGDR VAE AAE char RNN

Validity ↑ 0.8587 0.8288 1.000 0.9916 0.9767± 0.0012 0.9368± 0.0341 0.9748± 0.0264

Unique@1k ↑ 1.0000 1.0000 1.0000 0.998 1.0±0.0 1.0±0.0 1.0±0.0
Unique@10k ↑ 0.9998 0.9995 1.0000 0.9797 0.9984± 0.0005 0.9973± 0.002 0.9994 ± 0.0003

IntDiv ↑ 0.8569 0.8558 0.8701 0.8458 0.8558± 0.0004 0.8557± 0.0031 0.8562 ± 0.0005

Filters ↑ 0.9766 0.9797 0.7961 0.9982 0.6949± 0.0069 0.9960± 0.0006 0.9943 ± 0.0034

Novelty ↑ 0.9531 0.8829 0.9683 0.6756 0.6949± 0.0069 0.7931± 0.0285 0.8419 ± 0.0509

Test 0.5381 0.5778 0.4673 0.6513 0.6257± 0.0005 0.6081± 0.0043 0.6015 ± 0.0206

SNN ↑ TestSF 0.5143 0.5460 0.4485 0.5990 0.5783± 0.0008 0.5677± 0.0045 0.5649 ± 0.0142

Test 0.7294 0.1986 3.7750 0.7980 0.0990± 0.0125 0.5555± 0.2033 0.0732 ± 0.0247
FCD ↓ TestSF 1.2607 0.7595 4.5698 0.9949 0.5670± 0.0338 1.0572± 0.2375 0.5204 ± 0.0379

Test 0.9879 0.9982 0.9869 0.9922 0.9994± 0.0001 0.9910± 0.0051 0.9998 ± 0.0002
Frag ↑ TestSF 0.9850 0.9958 0.9831 0.8562 0.9984± 0.0003 0.9905± 0.0039 0.9983 ± 0.0003

Test 0.8661 0.9125 0.8431 0.8562 0.9386± 0.0021 0.9022± 0.0375 0.9242 ± 0.0058

Scaf ↑ TestSF 0.1650 0.1087 0.1096 0.0551 0.0588± 0.0095 0.0789± 0.009 0.1101 ± 0.0081

https://github.com/molecularsets/moses
https://github.com/molecularsets/moses
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molecules and detects if the generative model has model 
collapse.

Where G is the generated set, ma and mb are their 
Morgan fingerprints [35] for two molecules a and b. T is 
the Tanimoto-distance [36] molecules of generated set G.

The Similarity to a nearest neighbor (SNN) is calculated 
via eq (3).

Where m is the Morgan fingerprints of a molecule. 
T(mG ,mR ) is an average Tanimoto similarity between mG 
in generated set G and its nearest neighbor molecule mR 
in the reference dataset R.

The Fréchet ChemNet distance (FCD) is computed 
from the activation of the penultimate layer of the deep 
neural network ChemNet, which was trained to predict 
the biological activity of drugs. These activations can 
capture chemical and biological properties of compounds 
for two sets G and R. It is defined as Eq. 4):

Where µG , µR are mean vectors for sets G and R 
respectively, 

∑

G , 
∑

R are full covariance matrices of 
activations. Tr stands for the trace operator.

The Fragment similarity (Frag) is calculated via eq (5), 
which compares distributions of BRICS fragments [37] in 
the generated set G and reference set R.

Where F is the set of BRICS fragments. cf (X) stands for 
the frequency of occurrences of a substructure fragment f 
in the molecules of set X.

The Scaffold similarity (Scaff) is similar with Frag but 
it computes the frequencies of Bemis-Murcko scaffolds 
[38]. It is calculated as eq (6):

(2)IntDivp(G) = 1− p

√

√

√

√

1

|G|2

∑

m1,m2∈G

T(m1,m2)
p

(3)SNN(G,R) =
1

|G|

∑

mG∈G

max
mR∈R

T (mG ,mR)

(4)

FCD(G,R) = ||µG − µR||
2 + Tr
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(5)Frag(G,R) =

∑

f ∈F

(

cf (G) · cf (R)
)

√

∑

f ∈F c
2
f (G)

√

∑

f ∈F c
2
f (R)

(6)Scaf(G,R) =

∑

s∈S (cs(G) · cs(R))
√
∑

s∈S c
2
s (G)

√
∑

s∈S c
2
s (R)

Where S is the set of Bemis-Murcko scaffolds, sS(X) 
stands for the frequency of occurrences of a substructure 
scaffold s in the molecules of set X.

Results and discussion
De novo generative design of molecules composition
Training of GMTransformer for hypothetical molecule 
generation
 We use the MOSES dataset as our benchmark dataset, 
which is widely used in the generative molecular design 
community. The performance evaluation criteria is 
derived from the MOSES package, which is also a 
standard in generator performance evaluation.

The GMTransformer model was trained and evaluated 
using the database of the MOSES benchmarking platform. 
MOSES is a benchmarking platform to standardize the 
training results of molecule generation models. Its initial 
dataset, ZINK Clean Leads, contains about 4.6 million 
molecules. The final dataset was obtained by filtering 
molecules containing charged atoms (except C, N, S, O, 
F, Cl, Br, H); macrocyclic molecules with more than 8 
molecules in the ring; medical chemistry filters (MCFs) 
and PAINS filters. MOSES provides both training and 
test sets and a set of metrics for assessing the quality and 
diversity of the generated molecules. We also evaluate 
the generated samples of three additional properties: the 
octanol-water partition coefficient (logP), the topological 
Polar Surface Area (tPSA), and the Quantitative Estimate 
of Drug-likeness (QED) [39] computed from RDKit [40] 
are used for training the conditional GMTransformer 
generator.

Evaluation of GMT’s molecular generation performance
We evaluate the performance of our GMTransformer 
generators and compare it with that of the reference 
models using ten evaluation criteria with MOSES 
metrics including validity, uniqueness (unique@1k and 
unique@10k), internal diversity (IntDiv), filters, novelty, 
the similarity to a nearest neighbor (SNN), Frechet 
ChemNet distance (FCD), fragment similarity (Frag), 
and scaffold similarity (Scaf ). As shown in Table 2, GMT-
SMILES, GMT-PE-SMILES and GMT-SELFIES generate 
85.87%, 82.88% and 100% valid samples, respectively. 
The uniqueness of all models is almost 100%. Especially, 
the novelty of GMT-SMILES, GMT-PE-SMILES and 
GMT-SELFIES is as high as 95.31%, 88.29% and 96.83% 
respectively. At the same time, GMT-SMILES, GMT-
PE-SMILES, GMT-SELFIES have the highest values with 
85.69%, 85.58%, and 87.01% of IntDiv respectively among 
all reference models. These high values mean that they 
can generate samples with higher diversity, which may 
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accelerate the discovery of new chemical structures. For 
FCD/Test, GMT-PE-SMILES performs best among all 
models with 19.86%, while GMT-SMILES and GMT-
SELFIES have values with72.94% and 377.5%. GMT-
SMILES, GMT-PE-SMILES and GMT-SELFIES also 
achieve high values with 16.50%, 10.87% and 10.96%, 
respectively.

We also compared our model performance to two recent 
generative models. In a recent work, Gnaneshwar et al. [41] 
trained a transformer-based score function (a diffusion 
model) on SELFIES representations of 1.5 million samples 
from the ZINC dataset and used the Moses benchmark-
ing framework to evaluate the generated samples on a suite 
of metrics. The evaluation metrics of validity, Unique@1k 
and Unique@10k are 100%, 88% and 82%. The perfor-
mance for the filters, novelty, IntDiv, FCD/Test and FCD/
TestSF metrics are 37%, 100%, 90%, 398.4% and 409.2%. We 
find out that except for IntDiv and novelty, our GMT-PE-
SMILES model performs better in terms of all other met-
rics than this diffusion model with filters of 97.97%, FCD/
Test of 75.95% and FCD/TestSF of 19.86%. In the work of 
Wang et  al. [42], the cTransformer method is proposed, 
which is capable of generating both drug-like compounds 
(without specified targets) and target-specific compounds. 
The metrics Valid, Unique@1k and Unique@10k are 98.8%, 
100% and 99.9%. For the Frag/Test, Frag/TestSF, SNN/Test 
and SNN/TestSF, the results are 100%, 99.8%, 61.9% and 
57.8%. We find that compared to the cTransformer, our 
GMT-SELFIES model performance are similar in terms 
of validity, unique@1k, unique@10k, Frag/Test and Frag/
TestSF with 100%, 100%, 100%, 98.69% and 98.31%. Our 

GMT-PE-SMILES model has relatively lower performance 
in SNN/Test (57.78%) and SNN/TestSF (54.6%) but it has 
better interpretability and can be used for tinkering design 
as described in the Discussion section below.

Data efficiency of our GMT model
 We further checked how the amount of training 
samples affects the generator’s performance. We trained 
two additional GMT models using 20% and 50% of the 
SELFIES represented samples and used them to generate 
30,000 hypothetical molecules, respectively. We then 
compared these molecule qualities with those generated 
by the GMT trained with the whole dataset. The results 
are shown in Table 3. We find that when we reduced the 
sample size by 50%, most of the performance metrics 
only changed slightly. For example, the Frag/Test, Frag/
TestSF, IntDiv, IntDiv2, Filters all dropped by less than 
0.01, which indicates that we can achieve almost twice 
the data-efficiency using our model. When we further 
reduced the training set size to 20%, we found several 
measures related to diversity and novelty increased while 
the other performance measures deteriorate, but not too 
significantly.

Interpretability of our GMT model and tinkering design
 First, we demonstrate the interpretability of our 
GMTransformer models. We selected the SMILES string 
C C n 1 n n n c 1 S C C ( = O ) N 1 C C c 2 c c c c c 2 1 
from the dataset and pre-masked the first token to get a 
template string <mask> C n 1 n n n c 1 S C C ( = O ) N 1 
C C c 2 c c c c c 2 1, then we fed the template string to our 
model to check the possible substitutions for the masked 
position. Table 4 shows the predicted substitution tokens 
sorted by their probabilities. We found that our model 
correctly predicted the masked token to be carbon with a 

Table 3 Performance comparison of the GMT models trained 
with 20%, 50%, and 100% training samples

 Bold value indicates the best performance of samples generated by different 
models under the same evaluation metric

Training samples 20% 50% 100%

Valid ↑ 1.0000 1.0000 1.0000
Unique@1000 ↑ 1.0000 1.0000 1.0000
Unique@10000 ↑ 1.0000 0.9998 1.0000
FCD/Test ↓ 4.3961 3.9164 3.7750
SNN/Test ↑ 0.4526 0.4573 0.4673
Frag/Test ↑ 0.9840 0.9850 0.9869
Scaf/Test ↑ 0.8225 0.8049 0.8431
FCD/TestSF ↓ 5.2401 4.7000 4.5698
SNN/TestSF ↑ 0.4362 0.4395 0.4485
Frag/TestSF ↑ 0.9792 0.9802 0.9831
Scaf/TestSF ↑ 0.1340 0.1461 0.1096

IntDiv ↑ 0.8707 0.8704 0.8701

IntDiv2 ↑ 0.8653 0.8650 0.8646

Filters ↑ 0.7858 0.7913 0.7961
Novelty ↑ 0.9790 0.9751 0.9683

Table 4 Blank-filling substitution suggestions by GMTransformer 
explain how its working logic

The masked template is “<mask> C n 1 n n n c 1 S C C ( = O ) N 1 C C c 2 c c c c c 
2 1”

Substitution token Probability Action

C 0.895 0

C 0.048 1

C 0.046 2

= 0.007 3

O 0.002 3

C 0.001 3

= 0 2

O 0 1

N 0 1

( 0 3
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high probability of 0.895. The next two suggested actions 
are filling the blank with carbon and adding an additional 
token on the left or right, both with much lower prob-
abilities (0.048 and 0.046). After inspecting the training 
samples, we found that there are more than 13 training 
samples that start with C C n 1 n n n c 1 S C C ( = O ), 
which establishes a context for making correct probabil-
istic predictions of the substitutions at the masked posi-
tions. This shows that our model successfully learns the 
statistical dependencies among the different positions of 

the molecule sequences, which explains their blank-fill-
ing suggestions.

To investigate the capability of our model for tinkering 
design, we picked a molecule’s SMILES string O = C ( 
N C c 1 c c c s 1 ) N c 1 c c c ( F ) c c 1 and pre-masked 
it at 22nd position (F) to get a template string O = C ( N 
C c 1 c c c s 1 ) N c 1 c c c ( <mask> ) c c 1 and fed it to 
our GMTransformer model for predicting substitutions 
at this position. Table  5 shows the probabilities over 
the candidate tokens and corresponding actions 
to guide the blank-filling process. We found that 
our model suggested three substitutions with high 
probabilities. Besides the masked element fluorine (F) 
with the probability of 0.297, there are two alternative 
substitutions with bromine (Br) and chlorine (Cl) for 
tinkering with this position with the probability of 
0.427 and 0.25, respectively. All these three elements 
belong to the same element group, sharing common 
chemical properties. which demonstrates that our 
model has learned to make meaningful tinkering design 
suggestions based on the learned chemical knowledge.

Process of GMT’s learning of chemical rules
 To illustrate the chemical order/rules emerge during the 
training process of our GMT models, we save the inter-
mediate models at the end of 1/5/10/15/20/25/30/50/100
/150/200 epochs of training using the SMILES and SELF-
IES dataset, respectively. Then we use 30,000 generated 

Table 5 Tinkering design based on GMTransformer suggests Br 
and Cl as replacements for F element

The template string is “O = C ( N C c 1 c c c s 1 ) N c 1 c c c ( <mask> ) c c 1”

Substitution token Probability Action

Br 0.427 0

F 0.297 0

Cl 0.25 0

O 0.019 0

C 0.002 1

S 0.001 1

O 0.001 2

N 0 0

# 0 3

- 0 1

epoch
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0.0000

0.2500

0.5000

0.7500

1.0000

1 5 10 15 20 25 30 50 100 150 200

valid unique@10000 IntDiv Scaf/TestSF Novelty

Fig. 2 Percentages of valid, unique@10000, intDiv and Scaf/TestSF samples generated by the SMILES atom tokenizer models saved 
over the training process. The models generate few valid SMILES strings in the beginning. As the training goes on, the models gradually gain 
the capability to generate chemically valid SMILES molecules compositions
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samples to evaluate validity, unique@10k, IntDiv, Scaf/
TestSF and Novelty with MOSES benchmarking metrics. 
As shown in Fig.  2, the validity of the model using the 
SMILES representation is only about 50% of the maxi-
mum value when the epoch of the model training is less 
than 30, and its validity exceeds 80% at the 100 epochs. 
This growing process shows that the model is learning 
the valence rules and the syntax of the SMILES language. 
For the model using the SELFIES representation, the 
results are shown in Fig. 3. Because every SELFIES syntax 
is guaranteed to correspond to a valid molecule [23], the 
validity is always 100% throughout training epochs from 
1 to 200. The increase in Scaf/TestSF value also indicates 
that the model has learned the Bemis–Murcko scaffold 
[38], which contains all molecule’s ring structures and 
linker fragments connecting rings.

Comparison of different molecule representations: SMILES, 
SELFIES, and DeepSMILES
Different representations make the model more capable 
of generating new potential molecules. We use three 
types of string-based molecular representations: The 
simplified molecular input line entry system (SMILES) 
[43], SELF-referencIng Embedded Strings (SELFIES) 
[44], DeepSMILES [24] and two kinds of tokenizers: 
Atom-level and SmilesPE [31]. Table  7 shows exam-
ples of the different molecule representations with 
two types of tokenizers. SELFIES only has atom-level 
tokenizers. We first use SMILES, which is the most 

widely used representation in computational chem-
istry. SMILES has some weaknesses such as multiple 
different SMILES strings can represent the same mol-
ecule and it is not robust because it is possible for gen-
erative models to create strings that do not represent 
valid molecular graphs. DeepSMILES is a modifica-
tion of SMILES which obviates most syntactic errors, 
while semantic mistakes were still possible [24]. There-
fore, we also use the representation of SELFIES, which 
can generate a 100% effective molecular graph to defi-
nitely avoid the problem of model robustness. SELF-
IES is like an automaton or derivation grammar, which 
is designed to eliminate syntactic and semantic invalid 
strings. Atomic-level tokenization is a method com-
monly used in deep learning, which simply breaks the 
SMILES string character-by-character, with each char-
acter serving as a token. We use not only an atom-level 
tokenizer  but also the SmilesPE representation, which 
has shorter input sequences and can save the compu-
tational cost of model training and inference. Smile-
sPE identifies and retains frequent SMILES substrings 
as unique tokens, where each token is represented as 
a chemically meaningful substructure. We utilize bold 
and thin strings with spaces between them to distin-
guish different substrings that are combined into one 
single tokenizer of SmilesPE in Table 7.

We also train five GMT models using different 
representations and tokens, generate 30,000 hypo-
thetical molecules and evaluate them using MOSES 

epoch

P
er
ce

nt
ag

e

0.0000

0.2500

0.5000

0.7500

1.0000

1 5 10 15 20 25 30 50 100 150 200

valid unique@10000 IntDiv Scaf/TestSF Novelty

Fig. 3 Percentages of valid, unique@10000, intDiv and Scaf/TestSF samples generated by the SELFIES atom tokenizer models saved 
over the training process. The models generate almost one hundred percent valid SMILES strings from the beginning to the end and the Scaf/
TestSF value has also been growing with epoch from 1 to 200
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benchmarking metrics. Table  6 shows the perfor-
mance of the comparison of the MOSES Benchmark-
ing Results. All models perform very well in terms of 
uniqueness, in the range of 99.5%-100%. In terms of 
the novelty of the hypothetical molecules, GMT-PE-
SMILES achieves 88.92%, while all other models exceed 
90%. GMT-PE-SMILES outperforms the other models 
by a wide margin on FCD/Test at 19.86%.

We also evaluate our GMT model performance by 
using the QM9 as the training dataset with the atom-
level SMILES representation (Table  7). The validity, 
unique@1k, unique@10k are 89.37%, 100%, and 96.89% 
respectively, which are very close to the performance 
of the GMT trained with MOSES SMILES dataset. The 
GMT-QM9 is also slightly better in terms of IntDiv and 
novelty while its filters score is much lower with 0.6549 
compared to 0.8569 of GMT-MOSES. Other metrics 
such as SNN, FCD, Frag, Scaf, they are all evaluated 
using the reference sets of MOSES, the GMT-QM9 has 
much lower performance indicating that the training 
sample distribution strongly affects the properties of 
generated samples (Table 8).

Conditional training of generative models for molecule 
design
One desirable generation capability of molecular 
generators is to design molecules that optimize one or 
more specific properties. Here we evaluate whether our 
models have such capability by conditionally training 
three generators aiming at generating samples with 
a desired property. This is in contrast to conditional 
generative models [5] which take the conditions as input. 
Basically, we prepare three different training sets from 
the MOSES training dataset by picking samples whose 
corresponding property values are within the top 50% 
of the whole MOSES training dataset, where the three 
properties include the octanol-water partition coefficient 
(logP), the topological Polar Surface Area (tPSA), and 

Table 6 Performance comparison of GMT models with different representations

 Bold value indicates the best performance of samples generated by different models under the same evaluation metric

GMT models

GMT‑ SMILES GMT‑QM9‑ SMILES GMT‑PE‑ SMILES GMT‑ SELFIES GMT‑ DEEP GMT‑PE‑ DEEP

Validity ↑ 0.8586 0.8937 0.8288 1.0000 0.8168 0.7954

Unique@1k ↑ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Unique@10k ↑ 0.9998 0.9689 0.9995 1.0000 1.0000 0.9997

IntDiv ↑ 0.8569 0.9182 0.8558 0.8701 0.8570 0.8519

Filters ↑ 0.9765 0.6549 0.9797 0.7961 0.9844 0.9847
Novelty ↑ 0.9532 1.0000 0.8829 0.9683 0.9367 0.9149

Test 0.5381 0.2575 0.5778 0.4673 0.5509 0.5722

SNN ↑ TestSF 0.5143 0.2510 0.5460 0.4485 0.5246 0.5405

Test 0.7294 30.5280 0.1986 3.7750 0.3604 0.4366

FCD ↓ TestSF 1.2607 31.3022 0.7595 4.5698 0.9563 1.0736

Test 0.9879 0.3945 0.9982 0.9869 0.9981 0.9967

Frag ↑ TestSF 0.9850 0.3909 0.9958 0.9831 0.9964 0.9934

Test 0.8661 0.0007 0.9125 0.8431 0.8880 0.8903

Scaf ↑ TestSF 0.1649 0.0000 0.1087 0.1096 0.1511 0.1170

Table 7 Comparison of the different molecule representations: 
SMILES, SELFIES, and DeepSMILE

 Bold value indicates the best performance of samples generated by different 
models under the same evaluation metric

Tokenizer Atom‑level

SMILES C O c 1 c c c c c 1 O C ( = O ) O c 1 c c c c c 1 O C

DeepSMILES C O c c c c c c 6 O C = O ) O c c c c c c 6 O C

SELFIES [C] [N] [C] [Branch1] [C] [P] [C] [C] [Ring1] [=Branch1]

Tokenizer SmilesPE

SMILES COc1ccccc1 O C(=O)O c1ccccc1 OC
DeepSMILES CO cccc cc 6 OC =O) O cccc cc 6 OC

Table 8 Datasets for conditional generation

Whole set Training set (Top 
50%)

Generated 
samples

LogP 1,584,662 792,331 16,748

tPSA 1,584,662 792,331 16,643

QED 1,584,662 792,331 17,082
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the Quantitative Estimate of Drug-likeness (QED), 
which are computed using the RDKit. We then train 
the three generators with these high-property training 
molecules and use them to generate 20,000 candidate 
samples, which are then fed to the RDkit for the property 
calculation. It is found that RDKit cannot calculate the 
properties for some of these generated samples. After 
filtering these generated samples, we finally obtain 
16,748, 16,643, and 17,082 samples for LogP, tPSA, and 
QED respectively. The distributions of these properties 
values of the whole dataset, the biased (top 50%) training 
set, and the generated candidate sets are shown in Fig. 4. 
It is found that for all three properties, the distributions 
of our generated molecules are much closer to those 
of the top 50% training sets compared to the property 
distributions of the whole MOSES training dataset, 
which indicates that the GMTransformer models have 
learned the implicit rules to generate high-property 
molecules. It indicates that our models can learn the 
intrinsic bias of the molecules that are shared among a 
group of molecules with a desired common property. We 

can also approach fine-tuning to improve the model’s 
performance when dealing with a smaller, more focused 
dataset.

In Fig. 5, we present sample molecular structures gen-
erated by conditional training models based on proper-
ties such as logP, tPSA, and QED. For each property, we 
selected some of them including the highest score, the 
lowest score, and an intermediary score for each prop-
erty to provide a comprehensive view. Figure  5a, b, and 
c showcase molecular structures generated by the model 
trained using the top 50% of logP property values. Mean-
while, Fig. 5d, e, and f exhibit molecular structures gen-
erated from the model trained with the top 50% of QED 
property values. Lastly, the structures in Fig. 5g, h, and i 
are shown from the model trained using the top 50% of 
tPSA property values.

One possible issue with our conditional training 
strategy is that we may only have access to a limited 
number of samples with labeled properties of interest. In 
that case, we can take the transfer learning strategy: we 

Fig. 4 Comparison of property distribution of three different datasets: the whole MOSES training set, the top 50% properties set used for training 
the conditional generator models, and the generated samples set for logP, tPSA, QED
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first train a pre-trained model using datasets with a large 
amount of labels of related properties. The pre-trained 
model can then be fine-tuned over the small dataset with 
the target property labels.

Discussion
The ability to generate new potential molecular structures 
has broad implications for a variety of fields, including 
drug discovery, materials science, and renewable energy. 
It has the potential to revolutionize the development of 
new drugs, lead to the creation of new materials with 
desirable properties, and help advance the development 
of renewable energy technologies. This ability has 
the potential to drive innovation and advance our 

understanding of the world around us, with significant 
implications for the future of science and technology. 
It is of benefit to incorporate synthesis knowledge into 
computational approaches such as small molecule de 
novo design in order to enhance the practical relevance 
of the results and achieve better acceptance by medicinal 
chemists [45].

While uniqueness, validity, and novelty are evaluated 
mainly based on the molecule structure, the relevance 
of generated samples to druggability and biological pro-
cesses is not clear. To address this issue, we evaluate 
our models using the FCD criterion [34], which is com-
puted using the activation of the penultimate layer of 
ChemNet. This criterion can capture both the chemical 

Fig. 5 Sample molecular structures generated by conditional training models of logP, QED, and tPSA
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and biological property of the generated molecules. We 
find that out of the six language models (in Tables 2 and 
6), our GMT-PE-SMILES achieves the best performance 
in terms of the FCD/Test measure with 19.86%, while 
GMT-SMILES shows the performance with 72.94% and 
the baseline GCT-SGDR shows 79.80% of the FCD/
Test. However, the FCD/Test performance of the GMT-
SELFIES model is relatively low without a clear reason. 
We also find the FCD performance is also relatively low 
in other relevant models [41, 46] that also use SELFIES 
representation.

To evaluate how the hyper-parameters may affect the 
model performance, we utilize SMILES representations 
with Atom-level tokenizer for hyper-parameter tuning. 
We use 5, 10, 15, and 20 transformer layers to train 
the model, then generate 30,000 samples and evaluate 
the criteria with the MOSES benchmarking metrics. 
As shown in Table  9, the overall performance of the 
metrics is similar for each model, the best of which is 
when the number of layers is 15. The values of Validity, 
Unique@10000, Filters, and Novelty at this point are 
86.46%, 99.99%, 98.06%, 94.13% respectively. The values 
of FCD/Test and Scaf/TestSF are 32.08% and 15.41% 
respectively. We use the default number of layers for the 
model of 6 instead of 15 because hyper-parameter studies 
show that the number of layers has little effect on the 
overall performance of the model, and the model with 
the default number of layers has higher efficiency.

In addition to the ability to generate molecular 
structures from scratch, our model has a potential 
application: molecular optimization. This feature 
consists of shielding specific portions of a given 
molecular structure and then utilizing our model to 

intelligently complete those shielded portions. Unlike 
the traditional method of regenerating molecules, our 
model optimally adapts the existing structure. We have 
applied this method in materials [26] with good results. 
With this approach, we can extend the utility of our 
model to a wider range of molecular design tasks. This 
improvement makes our model an important tool for a 
variety of applications in the molecular design process. 
From generating new structures to refining existing ones, 
our model demonstrates its multifaceted potential in 
improving the efficacy and efficiency of molecular design 
strategies.

Conclusion
We propose the Generative Molecular Transformer 
(GMT), a probabilistic generative language model based 
on neural networks and transformers for the generation 
and design of molecules. Our model is based on the blank 
filling language model, which has a unique advantage 
and potential for tinkering molecule design as we 
showed in both in this study (Tables 4 and 5) ans well as 
in our previous work for tinkering design of materials 
compositions [26]. Since there are many design constraints 
in real-world molecule and drug design, most of the 
time, the tinkering design is a preferred approach which 
starts from an exciting molecule and then finetunes its 
structures. Our GMT model thus conveniently provides a 
way for such tinkering design. The advantages of the GMT 
model also include its interpretability and data efficiency 
as shown in this study (Table 3) as well as in our previous 
work on generating hypothetical inorganic materials [26]. 
Overall, we have shown that our probabilistic transformer 
model can efficiently learn the grammar rules of molecules 
and exploit them for generating high-quality hypothetical 
molecules.

Another advantage of our GMTransformer for molecule 
generation is that it allows the use functional groups 
of molecules as tokens to train models that generate 
molecules with specific functions. The advantage over a 
simple substructure search for the respective functional 
group for linking is the ability to directly construct the 
virtual product. Changes introduced by replacing a part 
of the structure can thus be scored in the context of the 
complete molecule [45]. While fragment-based models 
have been proposed before, the blank filling model we use 
here can be used to discover those function groups as highly 
dependent subsequences. The discovery and usage of these 
special functional groups of molecules may have great 
potential for molecule design for specific functions suitable 
for real-life scenarios [47]. For example, fragment-based 
design has unique advantages in drug design [48]. We also 
find that the molecule sequence rewriting probabilities and 

Table 9 Hyper-parameter tuning of GMTransform molecules 
generator

Number of layers 5 10 15 20

Valid 0.8582 0.8488 0.8646 0.8549

Unique@1000 1.0000 1.0000 1.0000 1.0000

Unique@10000 1.0000 0.9997 0.9999 0.9998

IntDiv 0.8529 0.8536 0.8541 0.8540

Filters 0.9802 0.9838 0.9806 0.9812

Novelty 0.9351 0.9389 0.9413 0.9362

SNN Test 0.5559 0.5556 0.5509 0.5554

TestSF 0.5277 0.5279 0.5252 0.5304

FCD Test 0.5404 0.3243 0.3108 0.3903

TestSF 1.1415 0.8461 0.7978 0.8609

Frag Test 0.9939 0.9950 0.9965 0.9966

TestSF 0.9904 0.9913 0.9933 0.9950

Scaf Test 0.8954 0.8902 0.8955 0.8868

TestSF 0.1425 0.1482 0.1541 0.1285
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interpretability of the GMT model provide more control 
over the molecular generation process, which brings more 
potential for generating molecules with specific properties. 
This has been demonstrated in our materials composition 
design using the BLM model [26]. We believe that data 
efficiency, interpretability, and modularity are three key 
features that are required for next-generation generative 
molecule design algorithms.
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