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Abstract 

Machine learning‑based chemical screening has made substantial progress in recent years. However, these predic‑
tions often have low accuracy and high uncertainty when identifying new active chemical scaffolds. Hence, a high 
proportion of retrieved compounds are not structurally novel. In this study, we proposed a strategy to address this 
issue by iteratively optimizing an evolutionary chemical binding similarity (ECBS) model using experimental valida‑
tion data. Various data update and model retraining schemes were tested to efficiently incorporate new experimental 
data into ECBS models, resulting in a fine‑tuned ECBS model with improved accuracy and coverage. To demonstrate 
the effectiveness of our approach, we identified the novel hit molecules for the mitogen‑activated protein kinase 
kinase 1 (MEK1). These molecules showed sub‑micromolar affinity (Kd 0.1–5.3 μM) to MEKs and were distinct from pre‑
viously‑known MEK1 inhibitors. We also determined the binding specificity of different MEK isoforms and proposed 
potential docking models. Furthermore, using de novo drug design tools, we utilized one of the new MEK inhibitors 
to generate additional drug‑like molecules with improved binding scores. This resulted in the identification of several 
potential MEK1 inhibitors with better binding affinity scores. Our results demonstrated the potential of this approach 
for identifying novel hit molecules and optimizing their binding affinities.
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Introduction
In modern drug discovery, machine learning-based vir-
tual screening (VS) has become an inevitable approach 
for identifying biologically active compounds in vast 
chemical libraries. For example, novel antibiotics were 
discovered using a deep neural network model that was 
trained using a large database of chemical structures and 

their activity against bacterial strains [1]. A generative 
tensorial reinforcement learning (GENTRL) model devel-
oped by Insilico Medicine led to the discovery of novel 
potent DDR1 kinase inhibitors in a short time period [2]. 
Machine learning methods have also been applied to for 
different processes, including drug discovery for Alzhei-
mer’s disease [3], target identification in cancer [4], and 
prediction of toxicity [5]. These studies demonstrated the 
potential of machine learning-based VS methods for drug 
discovery. In line with these developments, we recently 
developed a machine learning-based evolutionary 
chemical binding similarity (ECBS) method [6], a ligand 
similarity-based VS method, that leverages evolution-
arily conserved target-binding properties embedded in 
chemical structures for more accurate hit identification. 
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Follow-up studies have revealed that ECBS can help iden-
tify effective inhibitors of several drug targets [6–8].

Despite recent advancements, machine learning mod-
els trained on available public protein–ligand interac-
tion data often result in a high fraction of retrieved 
compounds that are not novel (i.e., structurally close to 
known active compounds) and generate low prediction 
scores and high uncertainty for unseen new chemical 
scaffolds [9–12]. Scaffold hopping is a strategy for discov-
ering novel active scaffolds; however, it requires sufficient 
information on structurally diverse compounds that spe-
cifically interact with targets [13].

To address this issue, we proposed a strategy that lever-
ages experimental validation data from an initial screen-
ing result to optimize an ECBS-based screening model 
and identify a new chemical space. Because ECBS is 
based on classification similarity learning for chemical 
pairs rather than individual compounds, we evaluated 
different chemical pairing schemes to define optimal evo-
lutionarily related chemical pairs (ERCPs) and assessed 
the value of including new experimental data for predic-
tion refinement. We assumed that incorporating newly 
identified active compounds predicted by an initial ECBS 
model would expand the searchable space of the predic-
tion model and that failed prediction data (false posi-
tives) would fine-tune the prediction model and improve 
accuracy.

To test our strategy, we selected mitogen-activated pro-
tein kinase kinase 1 (MEK1) as a target to discover novel 
hit molecules. Most MEK inhibitors have been devel-
oped to target the ERK pathway, which is involved in 
many cancers, by controlling undesirable cell growth and 
survival [14]. In particular, the development of MEK1 
and MEK2 inhibitors has been more extensive than that 
of other MEKs because of their crucial roles in biologi-
cal processes. In contrast, MEK5 has been linked to the 
development of the cardiovascular system and cancer, 
and a combination of MEK1/2 and MEK5 inhibitors 
may offer a combinatorial therapy [15]. Various resist-
ance mechanisms involving receptor tyrosine kinases and 
the PI3K/AKT pathway have been discovered for most 
MEK inhibitors [16], emphasizing the need for new MEK 
inhibitors [14]. In addition to the therapeutic potential of 
developing new MEK inhibitors [17], competitive bind-
ing assay data on MEK1 that can be used to refine an ini-
tial ECBS model are available from our recent study [8].

Here, we present an efficient chemical screening 
strategy that iteratively optimizes an MEK1-specific 
ECBS model using newly generated experimental vali-
dation data (Fig.  1). Using this approach, three new 
MEK1-binding hit molecules were identified and com-
pared with previously identified MEK1 inhibitors to 
verify their structural novelty. Binding affinity was also 

determined for MEK2 and MEK5 to reveal the bind-
ing specificity among different MEK isoforms. Of the 
three, ZINC5814210 was found to be the most effec-
tive inhibitor of MEK1, MEK2, and MEK5, with sub-
micromolar affinity in the range Kd 0.12–1.75  μM. To 
broaden the chemical space of MEK inhibitors, we used 
ZINC5814210 as a reference structure to generate new 
drug-like molecules with improved multiple binding sta-
tistics. Based on the calculated binding scores, several of 
these molecules have been suggested as potential MEK1 
inhibitors with better binding affinities. Taken together, 
our results demonstrated the potential of an iterative 
ECBS-based screening approach for identifying novel hit 
molecules and optimizing their binding affinities.

Results and discussion
Iterative chemical binding similarity search to identify 
novel active compounds
Among the ECBS variants, the target-specific ensemble 
ECBS (TS-ensECBS) model is used to apply the chemi-
cal search strategy because of its flexibility which allows 
the inclusion of a variety of chemical relationships into 
a training set [6]. Generally, ECBS models categorize 
chemical pairs into two classes: evolutionarily related 
chemical pairs (ERCPs—positive data) and unrelated 
chemical pairs (negative data). ERCPs refer to chemical 
pairs that bind identical or evolutionarily related targets, 
such as the chemical pair C1–C2 or C3–C4 in Fig.  1A 
sharing the same target T1 or T2, and the chemical pairs 
C1–C3 or C2–C4 binding evolutionarily-related targets 
T1 and T2. Negative data, on the other hand, refers to 
chemical pairs that has no evolutionarily-related bind-
ing targets. Negative chemical pairs can be generated by 
pairing previously identified active compounds with ran-
domly selected unrelated compounds (Fig. 1B). Random 
compounds can serve as useful negative training data 
for initial VS, which aims to retrieve potential hits from 
a large pool of unrelated chemical compounds. However, 
the performance of this screening on a set of structurally 
related chemical compounds with minor chemical modi-
fications may be inadequate because of insufficient true-
negative data. To enhance the model performance, we 
assumed that incorporating failed prediction data (false 
positives) as well as newly identified active compounds 
(true positives) contributes to refining the searchable 
chemical space of the original model and thus improves 
its prediction accuracy.

Three types of chemical-pairing schemes were 
devised to integrate the initial experimental validation 
data into the chemical similarity model. New inac-
tive compounds (false positives by an initial predic-
tion model) were paired with known active compounds 
(negative–positive, NP) or randomly selected negative 
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compounds (negative–negative, NN) (Fig. 1C). In con-
trast, new active compounds (true positives by an ini-
tial prediction model) were paired with known active 
compounds (positive–positive, PP) or new inactive 
compounds (positive–negative, PN). For training ECBS, 
both NP (or PN) and NN chemical pairs were consid-
ered negative samples because of the absence of com-
mon or evolutionarily related binding targets, whereas 
PP chemical pairs were considered positive because of 
shared target-binding activity.

The original ECBS prediction model was retrained by 
incorporating different combinations of the new chemi-
cal-pair data (Fig.  1D). The retrained ECBS model with 
the highest prediction accuracy was used to search the 
chemical library again to identify new secondary hit mol-
ecules. To prioritize novel chemical scaffolds and ensure 
drug developability, chemical similarity filters and clus-
tering approaches were used to select structurally novel 
and minimal scaffolds that could be distinguished from 
previously known active compounds (Fig. 1D).

Comparison of screening performance with different types 
of chemical pairing data
The screening performances of the retrained ECBS mod-
els were assessed for different combinations of chemical-
pairing data generated from the newly discovered active 
 (Pnew) and inactive chemical compounds  (Nnew). Each 
type of new chemical pair data (PP, NP, and NN) was first 
evaluated to estimate its individual impact on screening 
accuracy.

In general, the test results for the four targets (MEK1, 
WEE1, EPHB4, and TYR) indicated that the NP data 
considerably improved model performance, whereas 
PP and NN had minor effects (Table  1). This suggested 
that the inclusion of negative chemical pair data (NP) 
based on new inactive compounds greatly contributes 
to improving the model performance by providing true 
negative data. Models built using only unrelated random 
compounds will likely produce rough decision bounda-
ries, thereby hindering the sensitive detection of minor 
activity-related chemical changes. Despite the marginal 
improvement, positive chemical pairs (PP) are expected 

Fig. 1 Schematic representation of ECBS retraining procedure with new chemical pair data. A Simplified example representing evolutionary 
relationships of chemicals defined by their targets and family information. T1 is a target of interest. B Definition of positive and negative samples 
is shown with the chemical compounds in A. C Different types of new chemical pair data are shown with newly‑identified active  (Pnew) and inactive 
compounds  (Nnew). D The overall iterative VS strategy is illustrated
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to expand the chemical search space of ECBS models if 
active compounds with structurally novel chemical scaf-
folds are detected in the future. Generating negative data 
with random compounds (NN) also showed considerable 
model improvement, probably due to the effect of includ-
ing true negative data, similar to NP. The increase in 
prediction accuracy was more if combinations of chemi-
cal pair data were used (Table  1 and Additional file  1: 
Table  S1). The PP–NP or PP–NP–NN combinations 
showed the highest accuracy owing to their complemen-
tarity. When the prediction performance of the ECBS 
model (using PP–NP–NN) was compared with that of 
the standard single-chemical-based model, the ECBS 
model showed comparable or slightly better performance 
than the standard model (Additional file 1: Table S2).

Effect of chemical pairing data in MEK1
Regardless of these general trends, the impact of differ-
ent chemical pairing data on the prediction performance 
varied for each test case. For example, NN and NP were 
much more effective than PP in MEK1, whereas PP con-
tributed the most in TYR. The importance of including 
NN data in MEK1 suggests that including new inactive 
compounds and their relationships with random negative 
data may be more important than including new positive 
data.

Similarity learning involves training the distances 
between samples such that similar samples are close, but 
dissimilar samples are far from each other. Thus, retrain-
ing with NN will adjust the distances between the new 
inactive and random compounds; negative compounds 
(both inactive and random) are more effectively repre-
sented by maintaining the distances between active and 

inactive compounds and by providing information that 
inactive compounds are not similar to each other. We 
presumed that adjusting these relationships for nega-
tive data contributes to the increased predictive perfor-
mance in MEK1. In contrast, PP had little impact on the 
predictive performance probably due to insufficient data 
around the new active compounds. We hypothesized that 
the potential false positives generated by including new 
active compounds into a training set may be the reason 
for the inefficiency of PP. Nevertheless, to ensure reliable 
conclusions, it is essential to perform large-scale analy-
ses with a sufficient number of test cases in the follow-up 
study.

Protein–ligand binding and cell viability assay for MEK1 
inhibitors
The ECBS model, retrained with the new PP–NP chemi-
cal pair data, was used to screen MEK1 inhibitors from 
a virtual chemical library because it showed high accu-
racy and required less training data. The ECBS model 
with PP–NP was considered more suitable for a general 
VS task because PP–NP showed almost identical perfor-
mance to PP–NP–NN with less training data (Table  1). 
According to our estimation, NN has approximately four 
times larger data size than PP or NP (Additional file  1: 
Table S3).

Using the retrained ECBS model, 20,467 molecules 
were retrieved from the drug-like subset of the ZINC 
database, with a score cutoff of 0.8. Among them, 153 
molecules were selected by excluding MEK1 pharma-
cophore-matched or structurally similar molecules to 
known active compounds. The candidates were finally 
narrowed to 17 by performing molecular clustering (i.e., 

Table 1 Comparison of model performance for the four test targets using different chemical pairing scheme

Experimental chemical activity data and cross-validation results (AUC of Precision-Recall curve) are shown for each target. The chemical compounds are labeled as 
 Pnew (new active),  Pprv (previous active),  Nnew (new inactive), and  Nprv (previous random inactive data)
a Chemical compounds with lower than POC 20% and higher than 80% are defined as active and inactive compounds, respectively

WEE1 (P30291) MEK1 (Q02750) EPHB4 (P54760) TYR (P14679) Avg. AUC 

Number of chemical data

 Known actives (< 100 nM) 19 24 22 22

 New exp. data (active/inactivea) 0/31 4/23 1/30 3/17

AUC PR

 None 0.736 0.795 0.681 0.612 0.706

  PnewPprv (PP) 0.744 0.758 0.669 0.690 0.715

  NnewPprv (NP) 0.832 0.809 0.746 0.651 0.760

  NnewNprv (NN) 0.757 0.821 0.695 0.651 0.731

 PP–NP 0.828 0.803 0.743 0.748 0.781

 NP–NN 0.839 0.829 0.753 0.665 0.772

 PP–NN 0.762 0.773 0.693 0.710 0.735

 PP–NP–NN 0.839 0.815 0.745 0.742 0.785
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selecting cluster centers). The results of the competi-
tive binding assay revealed three strong MEK1 bind-
ers (Fig. 2) with percent of control (POC) values below 
25% at 10 μM, with ZINC5814210 exhibiting the high-
est inhibitory activity (POC = 3.6%) (Table 2 and Addi-
tional file 2 : Table S1). A lower POC represents higher 
competitive binding to MEK1. Thermodynamic disso-
ciation constant (Kd) of the three MEK1 binders was 
subsequently determined to be 1.0 µM (POC 3.6%) for 
ZINC5814210, 2.4  µM (POC 15%) for ZINC5479148, 
and 3.85  µM (POC 20%) for ZINC32911363, respec-
tively. The absence of a plateau in the dose–response 
curves for some chemicals like ZINC32911363 could 
indicate unfavorable drug-like properties (such as weak 

affinity, low chemical stability, and limited cell perme-
ability), making them less suitable candidates for subse-
quent optimization (Additional file 1: Figure S1).

Cell viability assays were performed to evaluate the 
anticancer activity of the MEK1 inhibitors. It showed 
that ZINC5814210 and ZINC32911363 had compara-
ble activity to PD98059, a known selective cell perme-
able MEK inhibitor (IC50 2–50  µM) (Fig.  3). Especially, 
in the A549 cell, PD98059 showed about 80% cell viabil-
ity at 10 μM which was similar to that of ZINC5814210 
and ZINC32911363 (Fig.  3A). This also suggests that 
MEK inhibition alone has moderate cellular activity and 
requires additional effects to inhibit cell growth com-
pletely [18].

Notably, ZINC32911363 and ZINC5814210 showed 
similar activity in the A549 cell line, despite the weak 
biochemical activity of ZINC32911363 to MEKs. The 
discrepancy between biochemical and cell-based assay 
outcomes has been a recurring challenge when the new 
inhibitor identified from the biochemical studies is 
applied to cell-based studies. Because this discrepancy 
has been ascribed to the low cell permeability of the com-
pound, we have attempted to elucidate the relationship 
by calculating logP values, which are indicative of com-
pound cell permeability (Additional file 1: Table S4). The 
result showed that all the three compounds were within 
the moderate logP range (0.62 < LogP < 1.83), showing a 
drug-like property. Therefore, we guess that other fac-
tors may also contribute to variations in cell-based activ-
ity such as compound insolubility, nonspecific binding 
with serum proteins in the culture medium, interactions 
with culture plates, metabolic transformation, potential 
off-target effects, and pathway cross-talk [19]. Since the 
compounds have not yet been optimized, improving their 
anti-proliferative activity by conducting lead optimiza-
tion and investigating the cell-specific variations in anti-
cancer activity would be an interesting future work.

Structural novelty of the new MEK inhibitors
Through ECBS retraining and chemical structural filter-
ing, the newly discovered MEK1 inhibitors were found to 
have low structural similarity to known MEK1 inhibitors. 
In addition, three different similarity criteria were used 
to verify the structural novelty: molecular clustering, 2D 
fingerprint similarity, and substructure searching.

Molecular clustering
The 17 experimentally tested molecules were clustered 
using the RDK5 subgraph-based fingerprint (FP) to 
determine structure activity relationship (SAR) within 
each cluster. Eight clusters were formed when the simi-
larity cut-off (Tanimoto coefficient) was set to 0.6. 
In the first cluster (C1 in Fig.  4), ZINC5814210 and 

Fig. 2 Two‑dimensional structures of the new MEK1 inhibitors 
(ZINC5814210, ZINC5479148, and ZINC32911363), experimentally 
proven through scanELECT and KdELECT services from DiscoverX. 
The POC at 10 μM and Kd values are annotated (the lower values 
of POC and Kd indicate higher binding affinities)

Table 2 The percentage of control (POC) values for the 17 
molecules tested at 10 µM using Protein–Ligand binding assay 
(scanELECT by DiscoverX)

Name POC (%) CAS Registry Number

ZINC5814210 3.6 151266‑23‑8

ZINC5479148 15 83255‑86‑1

ZINC32911363 20 1135283‑22‑5

ZINC4023558 43 42951‑65‑5

ZINC48325380 72 1223037‑63‑5

ZINC261507424 77 1640120‑88‑2

ZINC32581883 85 1125427‑49‑7

ZINC72156820 88 1360224‑51‑6

ZINC0130101 90 329712‑63‑2

ZINC16052626 91 848635‑49‑4

ZINC1573667 100 2993‑05‑07

ZINC70450773 100 1338218‑78‑2

ZINC84199299 100 1378862‑01‑1

ZINC8557584 100 93352‑69‑3

ZINC81947236 100 946157‑08‑0

ZINC0061493 100 2550–73‑4

ZINC9419630 100 121371‑16‑2
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Fig. 3 Results of cell viability assay with A A549 and B HT29 cell lines. To evaluate the cellular efficacy of the compounds against cancer cells, A549 
lung cancer and HT29 colon cancer cells were selected to observe the relation between the cancer cell growth inhibition and MEK inhibition. 
PD98059 is a known selective cell permeable inhibitor for MEK1 (IC50 = 2 ~ 7 µM) and MEK2 (IC50 = 50 µM) and was used as a positive control 
in the present study. The two MEK inhibitors (ZINC5814210 and ZINC32911363) showed activity against A549 and HT29 cancer cells, especially 
at higher concentrations

Fig. 4 Molecular clustering results of all tested molecules for MEK1. The compounds (six weak or non‑binders) not in C1 or C2 are not clustered
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ZINC5479148 clustered with seven very weak binders 
or non-binders. The second cluster (C2 in Fig.  4) con-
sisted of another new MEK1 inhibitor, ZINC32911363, 
and a weak MEK1 binder, ZINC4023558 (POC 43%). 
The remaining clusters comprised six weak binders and 
non-binders. The four molecules in C1 (ZINC5479148, 
ZINC32581883, ZINC48325380, and ZINC130101) had 
a core structure similar to that of ZINC5814210; how-
ever, their MEK1 inhibition was much weaker. A com-
parison of ZINC5814210 with ZINC5479148 (or other 
similar molecules in C1) suggested that the presence of 
iodine or any halogen atom at the 10th atomic position in 
ZINC5814210 may be crucial for MEK1 inhibition, which 
was not found in previously known MEK1 inhibitors.

2D fingerprint similarity
Additional 2D chemical similarities (Tanimoto coeffi-
cient) were calculated using Morgan and MACCS key 2D 
fingerprints for comparison with known MEK inhibitors, 
and the molecules most similar to ZINC5814210 were 
manually inspected (Fig.  5). The similarity calculation 
included 17 molecules tested in this study, 33 molecules 

from our previous study [8], and 692 MEK1-related 
molecules (486 molecules with IC50, Kd, or Ki values 
less than 10  µM) from BindingDB. ZINC5479148 (Kd 
2.4 μM) and ZINC32911363 (Kd 3.85 μM) found in this 
study were excluded from the similarity search results.

Both fingerprints identified three common similar mol-
ecules; 18864755 (POC 8.1%, Kd 2.9 μM), ZINC4023558 
(POC 25%), and ZINC1573667 (POC 100%) (Fig.  5). 
Among the three, 18864755 and ZINC4023558 were 
part of our previous study [8] whose chemical informa-
tion had already been used to retrain the ECBS model, 
whereas ZINC1573667, validated in the present study, 
was also retrieved by both fingerprints. A strong MEK1 
inhibitor, CID24905147 (Kd 51  nM from BindingDB), 
was identified using Morgan fingerprints with a similar-
ity score of 0.24; however, it possessed bulky aromatic 
rings and alkyl groups. In contrast, MACCS fingerprints 
revealed that CID9907612 (IC50 4.9  μM from Bind-
ingDB) had a score of 0.67, but its chemical constituents 
were quite different from those of ZINC5814210. The 
low similarity scores and distinct chemical substituents 
in these molecules revealed that ZINC5814210 could be 

Fig. 5 Molecules that are structurally similar to ZINC5814210 were identified using multiple structural criteria, as shown by green (MACCS 
fingerprints), blue (Morgan fingerprints), and gray (Substructure search) box. Tanimoto Coefficient (TC) was used to define molecular similarity 
with MACCS or Morgan fingerprints. The known experimental affinity values (POC, IC50, or Kd) are annotated with similarity scores
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an effective hit molecule with a minimally active scaf-
fold. All the remaining molecules retrieved by 2D finger-
prints were weak MEK1 binders from our own studies or 
BindingDB.

Sub‑structure similarity
The substructures of ZINC5814210 were compared to 
compounds examined with MEK1 using Discovery Stu-
dio Client (DSC) v19.1, ignoring the amino and iodo 
groups. CID24905147, listed by MACCS fingerprints, 
was also identified, but the others were all MEK1 non-
binders (ZINC8557584 from the present study and 
CID118737057 and CID71575642 from BindingDB) 
(Fig.  5). No molecules with the same substructure as 
ZINC5814210 and with MEK1 binding properties were 
found in the Reaxys database (Additional file  1: Figure 
S2).

Cross‑activity to the MEK isoforms and docking models
MEK1/2 and MEK5 are targeted by drugs because of 
their additive effects [14]; however, limited information 
exists regarding their binding specificity and promiscuity. 
We tested three MEK1 inhibitors on MEK2 and MEK5, 
which share 86% and 44% sequence similarity with 
MEK1 [20]. The results showed that ZINC5814210 had 

the strongest inhibitory effect on all MEK isoforms, with 
eight times higher inhibition of MEK5 than MEK1 and 15 
times higher inhibition of MEK5 than MEK2 (Table  3). 
ZINC5479148 and ZINC5814210 showed similar inhibi-
tion of MEK1 and MEK2 and higher inhibition of MEK5 
than MEK1/2. In contrast, ZINC32911363 showed low 
inhibition of MEK2 despite the high sequence similarity 
between MEK1 and MEK2.

Because the compounds showed unintended binding 
affinities for MEK5, we checked the binding targets of 24 
known MEK1 binding compounds used for training (10 
from DrugBank and 14 from BindingDB). However, out 
of 24, only one compound (BDBM50386693) from Bind-
ingDB had an IC50 value for MEK5, but its binding affin-
ity was very low (IC50 > 10,000  nM) compared to IC50 
2100  nM for MEK1. One hypothesis for the stronger 
MEK5 binding of ZINC32911363 is that non-optimized 
MEK1 inhibitors may have similar or higher binding 
affinities for MEK5 because of their similar binding pock-
ets (Fig. 6 and Additional file 1: Figure S3). During lead 
optimization, the binding specificity to a particular MEK 
isoform likely increases with minimal cross-activity. 
Additionally, because the newly identified active com-
pounds share a similar core structure, this particular type 
of chemical structure might have a higher binding affinity 
for MEK5.

To understand the molecular mechanisms underly-
ing the dual inhibition of MEK1/2 and MEK5, we per-
formed docking simulations with ZINC5814210 and 
compared the potential binding modes of the different 
MEK isoforms. The docking results suggested that the 
iodine atom of ZINC5814210 is crucial for interacting 
with the hydrophobic cavities of MEK1/2 and MEK5, 
leading to different inhibitory activities (Fig.  6). In par-
ticular, Val180, Lys195, and Cys300 in MEK5 formed 

Table 3 Cross inhibitory activity (Kd, nM) of the three MEK1 
inhibitors to the MEK isoforms

a Higher chemical concentration is required to reach a plateau and make more 
accurate Kd determination

Compound Name MEK1 MEK2 MEK5

ZINC5814210 1000 1750 120

ZINC5479148 2400 5350a 235

ZINC32911363 3850a > 10,000a 3950a

Fig. 6 Molecular Docking results of ZINC5814210 for MEK1, MEK2, and MEK5. The carbon atoms of ZINC5814210 are shown as yellow sticks. The 
carbon atoms of residues that participate in interaction with ZINC5814210 and contribute to the hydrophobic environment around the ligand are 
shown as white sticks. The secondary structures of proteins are shown as cartoon. Hydrogen bond interactions and hydrophobic interactions are 
represented by black and orange dotted lines, respectively. X‑ray crystal structures of human MEK1 and MEK2 (PDB accession codes: 3V01 and 1S9I) 
and Alphafold predicted structure of MEK5 were used for docking
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extensive hydrophobic contacts with the iodine atom 
of ZINC5814210, whereas Leu14 and Val22 in MEK1 
formed similar contacts. ZINC5814210 also formed 
hydrogen bonds with the backbone atoms of Met244 
in MEK5 and Met86 in MEK1; the additional hydrogen 
bond with Glu242 in MEK5 may result in a higher bind-
ing affinity to MEK5 than to MEK1. The different binding 
orientations of ZINC5814210 between MEK1 and MEK5 
may be due to the change from Thr241 (MEK5) to Met83 
(MEK1), a small-to-large mutation in the ligand-binding 
pocket. In MEK2, the ligand orientation was similar to 
that in MEK1 and the hydrogen bond interaction with 
Met150 was conserved, as in the other two MEKs. The 
binding orientation of ZINC5814210 partially overlaps 
with that of ATP of MEK1 (PDB ID:3V01), even though 
there is not a perfect alignment between their adenine 
parts (Additional file  1: Figure S3). The distinct func-
tional groups of ZINC5814210 notably lacking a phos-
phate group likely contribute to the different docking 
conformation to ATP. Nonetheless, the aromatic rings of 
ZINC5814210 and ATP are aligned, indicating partially 
conserved interactions around the adenine part.

Chemical features for binding to MEKs
The structure activity relationship (SAR) study of the 
tested molecules (Figs.  4 and 5) reveals that halo-
gen atoms are present in all three new MEK1 inhibi-
tors. The core structure of ZINC5814210 was shared by 
three molecules (ZINC32581883, ZINC48325380, and 
ZINC130101 in the C1 cluster of Fig.  3), further high-
lighting the importance of halogen atoms in MEK1 inhi-
bition. The second-best MEK1 binder, ZINC5479148, 
contained bromine instead of iodine in a similar position, 
leading to a two-fold reduction in MEK1 inhibition (from 
1.0 to 2.4  μM). Similarly, replacing iodine with chlorine 
in ZINC32911363 resulted in a lower inhibitory activ-
ity (from 1.0 to 3.85  μM). These observations suggest 
that the hydrophobic contribution to MEK binding is 
enhanced in the presence of iodine but much less when 
bromine or chlorine is present in the ligand.

Because none of the docking poses of the three iden-
tified inhibitors in the MEK isoforms showed halogen 
bond interactions (Fig. 6), we focused on the hydropho-
bic interactions surrounding the iodine atom. Although 
halogen bonds are often given greater importance in 
studies on halogenated ligands, hydrophobic interactions 
are frequently overlooked [21]. However, recently, there 
have been implications for a recurring hydrophobic envi-
ronment surrounding halogen atoms in the context of 
protein–ligand interactions [22]. Shinada et al. suggested 
that fluorine, bromine, and iodine exhibited similar ten-
dencies to participate in carbon interactions, with per-
centages of 72.3%, 72.6%, and 71.3%, respectively. Heavier 

halogens are more frequently found in hydrophobic-rich 
environments (a minimum of four hydrophobic part-
ners), with 6.8% in chlorine and 13.4% in iodine [22].

In contrast, the previously reported MEK1 inhibi-
tors CID24905147 and 18864755, which were similar 
to ZINC5814210 in our study, were not halogenated 
(Fig. 5). Therefore, they inhibited MEK1 by non-bonded 
interactions without halogen atoms. The docking results 
were similar to those of ZINC5814210 in MEK1 as they 
shared common interactions with Val22, Glu84, and 
Met86 (Additional file  1: Figure S4). Thus, we propose 
that a combination of hydrophobic interactions provided 
by the iodine atom in ZINC5814210 and a few hydrogen 
bonds contribute to its strong binding affinity for MEK1, 
MEK2, and MEK5. The docking poses of ZINC5479148 
and ZINC32911363 in the three MEKs also supported 
the idea that hydrophobic and hydrogen bond interac-
tions are crucial for MEK inhibition (Additional file  1: 
Figures S5 and S6).

Generation of chemical derivatives starting 
from ZINC5814210
The dual binding ability of ZINC5814210 to MEK1/2 and 
MEK5, and its low molecular weight make it a desirable 
starting point for the development of stronger deriva-
tives. To verify this possibility, using the REINVENT 
[23] and DOCKSTREAM [24] methods, we generated 
200 diverse drug-like molecules with improved dock-
ing scores based on the docking complex structure of 
ZINC5814210 and MEK1 (Fig.  6). This computational 
chemical generation experiment was based on the 
assumption that structure-based methods are gener-
ally acceptable for estimating ligand-binding affinity [25, 
26]. When we checked the convolution neural network 
(CNN) affinity scores of GNINA to MEKs, ZINC5814210 
and ZINC5479148 showed higher MEK5 binding scores 
than MEK1, which was consistent with the experimen-
tal data, although precise predictions for ZINC32911363 
and MEK2 were not made (Additional file  1: Table  S5). 
The cyclopropane ring of ZINC32911363 likely contrib-
utes to increase chemical lipophilicity (Additional file 1: 
Table  S4), which might be responsible for the overesti-
mated docking scores of ZINC32911363 despite the weak 
biochemical MEK-binding affinity. To avoid possible bias 
resulting from the use of one particular method, multi-
ple structure-based methods, such as molecular docking, 
MM/PBSA, and MM/GBSA, were used to find common 
high-scoring candidates (Fig. 7A).

The generated molecules showed drug-like proper-
ties, with synthetic accessibility scores (by RDkit) rang-
ing from 3 to 5, where 1 was easy to synthesize and 10 
was the hardest. Of these, 15 were selected based on 
average scores from AutoDock Vina, AutoDock4.2, 
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graphDelta, MM/GBSA, and MM/PBSA (Fig.  7A). The 
representative docking conformation using C07 with the 
highest binding score suggested similar chemical inter-
actions to ZINC5814210, but with a larger chemical 
group replacing the iodine atom (Fig. 7B). In contrast to 
ZINC5814210, C07 showed additional favorable interac-
tions with the beta sheet region (Ala16-Val22, and Lys37) 
and Lys37 in MEK1. Nevertheless, experimental vali-
dation should be conducted to confirm the activities of 
these newly generated molecules.

Conclusion
This study examined the optimization of the ECBS 
model by incorporating the initial VS validation data on 
MEK1. A refined ECBS model was used to identify novel 
hit molecules for MEK1. The most effective inhibitor, 
ZINC5814210, showed little structural similarity to previ-
ously known MEK1 inhibitors as determined by multiple 
chemical structure similarity searches and pharmacoph-
ore analyses. Using molecular docking models, we also 
assessed the binding activity between ZINC5814210 and 
MEK isoforms (MEK2 and MEK5), which suggested rele-
vant structural features for MEK-binding. Further chemi-
cal novelty was explored by predicting ZINC5814210’s 
binding targets using the Structure Ensemble Approach 
(SEA) [27] and SwissTargetPrediction [28] methods; 
however, no MEK-related targets were found (Addi-
tional file 1: Tables S6 and S7). The potential to improve 
MEK binding was further examined through computa-
tional molecular generation, which suggested the pos-
sibility of designing more promising active compounds. 

Iterative chemical synthesis, experimental validation, 
and model retraining with these compounds will aid in 
further improving the prediction model, as performed 
using the initial VS data. This approach demonstrates the 
advantages of using ECBS in conjunction with generative 
modelling to design molecules. To introduce additional 
therapeutic options, this strategy can be evaluated using 
several other targets.

Methods
Training and testing evolutionary chemical binding 
similarity with new experimental data
The ECBS model is based on a binary classification (clas-
sification similarity learning) model; the training set 
consists of positive and negative chemical-pair samples. 
Positive data refer to evolutionarily related chemical pairs 
(ERCPs) that bind to common or homologous targets, 
while negative data represent chemical pairs that are not 
ERCPs. Negative data can be generated by chemical pair-
ing of active and randomly selected (most likely inactive) 
compounds. The target-ECBS model confines ERCPs as 
chemical pairs that bind to common targets, whereas 
the family-ECBS model expands ERCPs as chemical 
pairs that bind to any evolutionarily related targets. The 
ensemble ECBS (ensECBS) model integrates these differ-
ent evolutionary ECBS models (X-ECBS), each of which 
is defined using heterogeneous protein family databases, 
such as PFAM, SMART, and SUPERFAM. The target-
specific ensECBS (TS-ensECBS) model was designed 
to accelerate the target-specific similarity search of the 
ensECBS model by confining the ERCPs related to a 

Fig. 7 Different binding scores for designed molecules generated from ZINC5814210. A The docking conformation of 15 designed molecules were 
evaluated using different scoring methods (including Autodock Vina, AutoDock4, graphDelta, MM/GBSA, and MM/PBSA). Each score was min–max 
normalized (0–1) and averaged (Avg. Score). B Molecular Docking result of C07 in MEK1. The carbon atoms of C07 are shown in blue and the beta 
sheet region (Ala16‑Val22, and Lys37) that contacts with C07 is shown in cyan. The X‑ray crystal structure of human MEK1 (PDB ID: 3V01) was used 
for docking
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specific target. Details about the ECBS model training 
and scoring can be found in a previous study [6].

In a previous VS study [6], a TS-ensECBS model was 
created for MEK1 (UniProt ID Q02750) using chemical 
data from BindingDB (threshold 10 μM) and DrugBank, 
which comprised 27,906 positive and 167,436 nega-
tive chemical pairs generated from 860 evolutionarily 
related compounds (including 24 MEK1 inhibitors) and 
5061 random compounds. The training data comprised 
460 proteins homologous to MEK1 collected from the 
SMART, PFAM, and SUPFAM databases. Through ini-
tial screening using TS-ensECBS for MEK1, 6 active 
and 26 inactive compounds were successfully identified, 
and their 3D pharmacophore models for MEK1 bind-
ing were suggested [8]. The new 4 active and 19 inactive 
compounds were paired with chemicals from the origi-
nal training set reduced with a binding affinity threshold 
1  μM, which generated 645 PP, 528 NP, and 2667 NN 
chemical pair data. The new chemical-pair data were 
then combined with the original training data to retrain 
the ECBS model. The same procedure was applied to 
WEE1 (P30291), EPHB4 (P54760), and TYR (P14679) for 
which initial ECBS screening data were available [6].

The “ranger” Random Forest package in R was used for 
training and model building with default parameters. The 
retrained ECBS models with different combinations of 
chemical-pair data were evaluated using the area under 
the curve (AUC) value of the precision-recall (PR) curve 
(AUCPR) from sevenfold cross-validation. Because the 
AUCPR baseline performance varies according to the 
ratio of positive/negative labels in the test set, we gen-
erated common test data applicable to all ECBS models. 
Individual chemical compounds for each target were split 
into training and test sets for cross-validation, and all 
chemical pairs containing the selected test compounds 
were considered as a common test set to calculate the 
AUCPR values. By contrast, the remaining training data 
varied according to the model.

Virtual screening with retrained ECBS model
For VS, a drug-like subset (661,339) from the ZINC data-
base (downloaded on June 4th, 2020) was used as the 
chemical library. The chemical library was converted into 
binary fingerprints (MACCS and FP4 using Open Babel) 
to screen for MEK1 inhibitors using ECBS. FP4 is a sub-
structure fingerprint based on SMARTS patterns and 
implemented in Open Babel. The retrained ECBS model 
with the highest AUCPR value (PP–NP in Table  1) was 
used to calculate similarity scores between the chemi-
cal library and known MEK1 inhibitors. The original and 
retrained ECBS models were identical, except that the 
latter included experimental data into a training set. The 
highest similarity score assigned to a chemical compound 

in the chemical library was used to select final candidates 
for subsequent experimental validation.

Molecular filtering by 2D structure similarity 
and pharmacophore match
The chemical library was filtered based on a prebuilt 
pharmacophore model and chemical structure similar-
ity with known MEK1 inhibitors. Pharmacophore mod-
els built for MEK1 [8] were applied using the Ligand 
Profiler protocol in DSC and all molecules with non-
zero fit scores were excluded. Chemical structure simi-
larity (Tanimoto coefficient) to previously-identified 
MEK1 inhibitors (from Binding DB with 10  μM cutoff) 
was calculated using FCFC_6 fingerprints in DSC, with 
the highest similarity score taken as representative. Mol-
ecules with a similarity score higher than 0.47 (p-value 
0.01) were excluded. The remaining molecules were 
sorted by ECBS scores, and 153 molecules with a score 
above 0.8 were clustered with FCFP_6 fingerprints in 
DSC. The resulting 17 molecules (cluster centers) were 
used for the subsequent competitive binding assay. Clus-
tering was performed to select the minimal and most 
conserved chemical core structures among the cluster 
members. Nonspecific binding of these molecules was 
checked using the PAINS filter in RDKit. Information on 
the binding targets, patents, and bioactivity data for the 
tested chemicals was manually checked using the Reaxys, 
ChEMBL, and PubChem databases to ensure chemical 
novelty before purchase.

Competitive ligand binding assay
Chemical compounds were purchased from InterPharm 
(http:// www. inter pharm corp. com) with a minimum 
purity of 90%. Experimental validation of chemical bind-
ing to MEKs was performed using the scanELECT and 
KdELECT services from DiscoverX [29]. In scanELECT, 
quantitative detection of kinase binding is accomplished 
by comparing the amount of kinase captured on a solid 
support in the presence of both test and control ligands. 
The kinase inhibition activity was estimated by evalu-
ating the inhibitory percentage (%) of a control ligand 
(POC) at 10 μM. The 10 μM was used as a threshold to 
define active compounds. For molecules with less than 
25% POC, binding dissociation constant (Kd) values were 
determined using KdELECT from DiscoverX by fitting to 
a standard dose–response curve using the Hill equation.

Cell viability assay
A549 and HT29 cells was purchased from Korea cell 
line bank, and cultured in RPMI-1640 medium (22400-
089, Thermo Fisher Scientific) supplemented with 
10% (v/v) heat-inactivated FBS (12483020, Gibco), 
100 U  mL−1 of penicillin and 100 μg  ml−1 of streptomycin 

http://www.interpharmcorp.com
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(penicillin–streptomycin, 15140122, Thermo Fisher Sci-
entific). Cells were maintained in a humidified incubator 
at 37 °C and 5%  CO2.

Next, 10  mM DMSO stock solutions of PD98059 
(positive control), ZINC5814210, ZINC5479148, and 
ZINC32911363 were diluted in the cell culture medium. 
The prepared compound solution was added to 96-well 
microplates (SPL) in triplicate, and serial 1/3 dilution 
were performed. The volume of each well was set to 
50  μL. Cell culture medium containing 50,000 cells/mL 
was prepared in a reagent reservoir, and 50 μL of the pre-
pared cell-containing medium was added to 96 a well 
micro plate (Corning) to seed approximately 1,000 cells/
well. The plates were then incubated at 37 °C and 5%  CO2 
for 24 h. 50 μL of the prepared compound solution was 
added to each well of a cell plate, and the plate was incu-
bated at 37  °C and 5%  CO2 for 72  h. Cell viability was 
measured using the EZ-Cytox cell viability assay. Then 
10 μL of EZ-cytox reagent was added to each well, and 
the plate was incubated at 37 °C and 5%  CO2 for 1 h. UV 
absorption was recorded using a plate reader. Average 
cell viability was calculated using the following formula:

Structural similarity of ZINC5814210 to known MEK1 
inhibitors
The 33 MEK1 tested molecules in our previous study [8] 
and 692 MEK1 tested molecules (486 molecules with 
IC50, Kd, or Ki values less than 10  µM) from Binding 
DB [30] along with seven MEK1 binders from DrugBank 
[31] were collected for checking structural similarity 
with ZINC5814210. We performed a structural similar-
ity analysis on ZINC5814210 using 2D fingerprints, sub-
structure matching, and clustering approaches. The 
Tanimoto coefficient similarity was calculated using 
Morgan fingerprints (radius of 2, 1024 bits) and MACCS 
keys (166 bits fingerprint) in RDKit, in addition to the 
FCFC_6 fingerprints in DSC used as a similarity filter in 
the VS procedure. The “Align to substructure” protocol 
in DSC was used for substructure matching, and Reaxys 
database was used together to find molecules with the 
same substructure as ZINC5814210. Clustering was per-
formed using the Butina algorithm in the RDKit. All the 
2D chemical structures were obtained using ChemDraw 
20.1.1. A structural analysis was performed following the 
OpenCADD tutorial [32].

Cell viability (% ) = 100

×

(OD of compound wells−OD of blank well)

(OD of DMSO wells−OD of blank well)

Protein structure modelling, and molecular docking 
to MEK isoforms
The X-ray crystal structures of human MEK1 (PDB acces-
sion code:3V01) and MEK2 (PDB accession code:1S9I) 
were obtained from the PDB database. In DSC, co-crys-
tallized ligands and ions were removed and the resulting 
protein structure was prepared by building missing loops 
using a modeller, followed by energy minimization and 
protonation. The MEK5 structure was modelled using 
AlphaFold v2.1.0 [33].

Molecular docking was performed using GNINA 1.0 
[34] with 1000 Monte Carlo chains. The XYZ dimensions 
were 40 Å and the center coordinates of XYZ were esti-
mated based on the bound ATP. For the MEK5 structural 
model, ATP bound to MEK1 was grafted, and the center 
coordinates were used as a docking initiation site. A 
RMSD filter value of 1.0 Å was applied to eliminate mul-
tiple closely related binding poses, and the docking con-
formation with the best docking score was used for the 
structural analysis.

Molecular design and generation from ZINC5814210
The REINVENT 3.0 tool [23] was trained using filtered 
ChEMBL [35] data for 20 epochs to create a new gen-
eral agent. The pretrained agent was introduced into a 
set of known MEK inhibitors, including ZINC5814210 
to obtain a focused agent. Consequently, 200 molecules 
were generated with multiple optimization conditions 
(i.e., molecule diversity, scoring functions based on better 
QED, molecular weight less than 550  Da, high similar-
ity to ZINC5814210, and Autodock VINA [36] docking 
score between − 8 and − 12 kcal/mol) over 1000 epochs. 
The docking score was assigned a weight of 2 to prioritize 
high binding affinity, whereas other conditions were set 
to 1.

DockStream [24] integrated with REINVENT enables 
the incorporation of docking simulations into the mole-
cule generative process, thus providing the agent with 3D 
structural information. To run DockStream, the MEK1 
protein structure was prepared using PDBFixer, which 
added missing heavy atoms and hydrogen atoms at pH 
7.4, built missing loops and standardized residues, and 
removed non-standard residues not relevant to struc-
tural modelling. The candidate ligands were input as the 
SMILES code, and conformer embedding was performed 
using the RDKit. The SMILES codes were standardized, 
and the ligands were protonated. The search space for 
docking was based on the ATP bound to the 3V01 pro-
tein. The grid size was set at 40  Å for the XYZ coordi-
nates, and 1000 poses per ligand were generated. The 
docking procedure described in a previous study [37] was 
followed using Autodock4 [38] for cross-checking.
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Molecular dynamics and binding free energy calculations
The Molecular Dynamics (MD) simulations were con-
ducted using Gromacs-2018 [39]. The CHARMM22 
force field for the ligands were obtained using the Swis-
sParam server [40]. The system was solvated using the 
SPC water model, and the system was neutralized. Peri-
odic boundary conditions were applied in all directions, 
and energy minimization was performed using the steep-
est descent algorithm. The particle mesh Ewald method 
was used for long-range interactions with an electrostatic 
cutoff of 1.2  nm and van der Waals cutoff of 1.2  nm. 
The bond angles were restrained using the LINCS algo-
rithm and the pressure was set to 1  atm using the Ber-
endsen method. The temperature was regulated to 310 K 
using the V-rescale weak-coupling method. For position 
restraints in the NVT and NPT, 100 ps was set, followed 
by a 10 ns production run for each protein–ligand com-
plex with a time step of 2  fs. The structural coordinates 
were saved every 1  ps, and final snapshots of the com-
plexes were extracted using the GROMACS analysis tool. 
To calculate the endpoint binding free energies, the MM/
PBSA and MM/GBSA methods were applied using the 
gmx_mmpbsa [41] and g_mmpbsa [42] tools, respec-
tively. The binding free energy was computed using 100 
snapshots sampled from the entire MD production run 
for each protein–ligand complex.

Abbreviations
ECBS  Evolutionary chemical binding similarity
TS‑ensECBS  Target‑specific ensemble ECBS
ERCP  Evolutionarily‑related chemical pair
MEK1  Mitogen‑activated protein kinase kinase 1
POC  Percentage of control
MD  Molecular dynamics
DSC  Discovery Studio Client
PR AUC   Area under the curve (AUC) of precision recall (PR) curve
PDB  Protein data bank
FP  Molecular fingerprint
SEA  Structure ensemble approach

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 023‑ 00760‑6.

Additional file 1: Figure S1. The duplicated dose response curves to 
determine Kd values of chemical compounds are shown for MEK1, MEK2, 
and MEK5. X‑axis represents ligand concentration (nM) and Y‑axis relative 
inhibitory activity by KdELECT service. Figure S2. Structurally similar 
molecules were identified via substructure search in Reaxys database. 
Figure S3. Molecular docking conformations of ZINC5814210 for MEK1, 
MEK2, and MEK5 are superimposed with ATP found in the MEK1 structure 
(PDB ID: 3V01). Figure S4. Two‑dimensional interaction diagram of 
previously reported MEK1 inhibitors retrieved by 2D fingerprint similarity. 
Figure S5. Two‑dimensional interaction diagram of MEK‑ZINC5479148 
docking models. Figure S6. Two‑dimensional interaction diagram of MEK‑
ZINC32911363 docking models. Except MEK2, ZINC32911363 has better 
Kd binding affinity to other two MEKs. Figure S7. The molecules selected 
based on binding free energy scores from either MM/GBSA or MM/PBSA 
or both of the methods. Table S1. Experimental chemical activity data 

and cross‑validation results (AUC of Precision‑Recall curve) for each test 
target protein. Table S2. Comparison of the prediction performance of 
the standard single chemical‑based Random Forest model with the ECBS 
model trained with PP‑NP‑NN data. Table S3. Estimation of chemical pair 
data size. Table S4. LogP values for the tested compounds. Table S5. 
GNINA docking scores for MEKs are shown with biochemical binding affin‑
ity data in Table 3. Table S6. The target prediction results for ZINC5814210 
from Swiss target prediction server. Table S7. The target prediction results 
for ZINC5814210 from Structure Ensemble Approach (SEA) server.

Additional file 2: Table S1. SMILES for the tested compounds.

Acknowledgements
The model building and testing was facilitated through the use of KIST Server 
Farm infrastructure.

Author contributions
KP and PD conceived the study. KP and PD developed and implemented the 
method. SJL, CHP and JWL performed experimental validation for the predic‑
tion results. KP and PD wrote the final manuscript with input from all authors. 
All authors read and approved the final manuscript.

Funding
This work was supported by Korea Institute of Science and Technology 
intramural research grant (2E32611) and by Korea Institute of Marine Science 
& Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisher‑
ies (20210647).

Availability of data and materials
The test data and code required to generate the results of this paper and run 
ECBS are available in the following GitHub repository: https:// github. com/ 
keunw an‑ kist/ iter_ ECBS_ VS

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The authors consent to the publication of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 23 May 2023   Accepted: 12 September 2023

References
 1. Stokes JM, Yang K, Swanson K, Jin W, Cubillos‑Ruiz A, Donghia NM, 

MacNair CR, French S, Carfrae LA, Bloom‑Ackermann Z et al (2020) A deep 
learning approach to antibiotic discovery. Cell 180(4):688‑702 e613

 2. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladin‑
skaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A et al 
(2019) Deep learning enables rapid identification of potent DDR1 kinase 
inhibitors. Nat Biotechnol 37(9):1038–1040

 3. Carpenter KA, Huang X (2018) Machine learning‑based virtual screening 
and its applications to alzheimer’s drug discovery: a review. Curr Pharm 
Des 24(28):3347–3358

 4. You Y, Lai X, Pan Y, Zheng H, Vera J, Liu S, Deng S, Zhang L (2022) Artificial 
intelligence in cancer target identification and drug discovery. Signal 
Transduct Target Ther 7(1):156

 5. Cavasotto CN, Scardino V (2022) Machine learning toxicity prediction: 
latest advances by toxicity end point. ACS Omega 7(51):47536–47546

 6. Park K, Ko YJ, Durai P, Pan CH (2019) Machine learning‑based chemi‑
cal binding similarity using evolutionary relationships of target genes. 
Nucleic Acids Res 47(20):e128

https://doi.org/10.1186/s13321-023-00760-6
https://doi.org/10.1186/s13321-023-00760-6
https://github.com/keunwan-kist/iter_ECBS_VS
https://github.com/keunwan-kist/iter_ECBS_VS


Page 14 of 14Durai et al. Journal of Cheminformatics           (2023) 15:86 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 7. Durai P, Ko YJ, Kim JC, Pan CH, Park K (2021) Identification of tyrosinase 
inhibitors and their structure‑activity relationships via evolutionary 
chemical binding similarity and structure‑based methods. Molecules 
26(3):566

 8. Durai P, Ko YJ, Pan CH, Park K (2020) Evolutionary chemical binding 
similarity approach integrated with 3D‑QSAR method for effective virtual 
screening. BMC Bioinform 21(1):309

 9. Balabin RM, Smirnov SV (2012) Interpolation and extrapolation prob‑
lems of multivariate regression in analytical chemistry: benchmark‑
ing the robustness on near‑infrared (NIR) spectroscopy data. Analyst 
137(7):1604–1610

 10. Cortes‑Ciriano I, Firth NC, Bender A, Watson O (2018) Discovering highly 
potent molecules from an initial set of inactives using iterative screening. 
J Chem Inf Model 58(9):2000–2014

 11. Kaiser TM, Burger PB (2019) Error tolerance of machine learning algo‑
rithms across contemporary biological targets. Molecules 24(11):2115

 12. von Korff M, Sander T (2022) Limits of prediction for machine learning in 
drug discovery. Front Pharmacol 13:832120

 13. Sun H, Tawa G, Wallqvist A (2012) Classification of scaffold‑hopping 
approaches. Drug Discov Today 17(7–8):310–324

 14. Caunt CJ, Sale MJ, Smith PD, Cook SJ (2015) MEK1 and MEK2 inhibi‑
tors and cancer therapy: the long and winding road. Nat Rev Cancer 
15(10):577–592

 15. Kwong AJ, Scheidt KA (2020) Non‑’classical’ MEKs: a review of MEK3‑7 
inhibitors. Bioorg Med Chem Lett 30(13):127203

 16. Kun E, Tsang YTM, Ng CW, Gershenson DM, Wong KK (2021) MEK inhibitor 
resistance mechanisms and recent developments in combination trials. 
Cancer Treat Rev 92:102137

 17. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev 
Drug Discov 17(5):353–377

 18. Mekkawy AI, Naguib YW, Alhaj‑Suliman SO, Wafa EI, Ebeid K, Acri T, 
Salem AK (2021) Paclitaxel anticancer activity is enhanced by the MEK 
1/2 inhibitor PD98059 in vitro and by PD98059‑loaded nanoparticles in 
BRAF(V600E) melanoma‑bearing mice. Int J Pharm 606:120876

 19. Teuscher KB, Zhang M, Ji H (2017) A versatile method to determine 
the cellular bioavailability of small‑molecule inhibitors. J Med Chem 
60(1):157–169

 20. Fremin C, Meloche S (2010) From basic research to clinical development 
of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 3:8

 21. Poznanski J, Shugar D (2013) Shugar D (2013) Halogen bonding at the 
ATP binding site of protein kinases: preferred geometry and topology of 
ligand binding. Biochim Biophys Acta 1834(7):1381–1386

 22. Shinada NK, de Brevern AG, Schmidtke P (2019) Halogens in protein‑
ligand binding mechanism: a structural perspective. J Med Chem 
62(21):9341–9356

 23. Blaschke T, Arus‑Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, 
Papadopoulos K, Patronov A (2020) REINVENT 2.0: an AI tool for De Novo 
drug design. J Chem Inf Model 60(12):5918–5922

 24. Guo J, Janet JP, Bauer MR, Nittinger E, Giblin KA, Papadopoulos K, Voronov 
A, Patronov A, Engkvist O, Margreitter C (2021) DockStream: a docking 
wrapper to enhance de novo molecular design. J Cheminform 13(1):89

 25. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to 
estimate ligand‑binding affinities. Expert Opin Drug Discov 10(5):449–461

 26. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/
PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA 
methodologies evaluated by various simulation protocols using PDBbind 
data set. Phys Chem Chem Phys 16(31):16719–16729

 27. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK 
(2007) Relating protein pharmacology by ligand chemistry. Nat Biotech‑
nol 25(2):197–206

 28. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated 
data and new features for efficient prediction of protein targets of small 
molecules. Nucleic Acids Res 47(W1):W357–W364

 29. Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, 
Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M et al (2005) A small 
molecule‑kinase interaction map for clinical kinase inhibitors. Nat Bio‑
technol 23(3):329–336

 30. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web‑acces‑
sible database of experimentally determined protein‑ligand binding 
affinities. Nucleic Acids Res 35(Database issue):D198‑201

 31. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, John‑
son D, Li C, Sayeeda Z et al (2018) DrugBank 5.0: a major update to the 
DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

 32. Sydow D, Morger A, Driller M, Volkamer A (2019) TeachOpenCADD: a 
teaching platform for computer‑aided drug design using open source 
packages and data. J Cheminform 11(1):29

 33. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunya‑
suvunakool K, Bates R, Zidek A, Potapenko A et al (2021) Highly accurate 
protein structure prediction with AlphaFold. Nature 596(7873):583–589

 34. McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sunseri 
J, Koes DR (2021) GNINA 1.0: molecular docking with deep learning. J 
Cheminform 13(1):43

 35. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E, Magarinos 
MP, Mosquera JF, Mutowo P, Nowotka M et al (2019) ChEMBL: towards 
direct deposition of bioassay data. Nucleic Acids Res 47(D1):D930–D940

 36. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accu‑
racy of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem 31(2):455–461

 37. Kwon J, Lee K, Hwang H, Kim SH, Park SE, Durai P, Park K, Kim HS, Jang DS, 
Choi JS et al (2022) New monocyclic terpenoid lactones from a brown 
algae Sargassum macrocarpum as monoamine oxidase inhibitors. Plants 
(Basel) 11(15):1998

 38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, 
Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking 
with selective receptor flexibility. J Comput Chem 30(16):2785–2791

 39. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, 
Smith JC, Kasson PM, van der Spoel D et al (2013) GROMACS 4.5: a high‑
throughput and highly parallel open source molecular simulation toolkit. 
Bioinformatics 29(7):845–854

 40. Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high‑through‑
put crystallography of protein‑ligand complexes. Acta Crystallogr D Biol 
Crystallogr 60(Pt 8):1355–1363

 41. Valdes‑Tresanco MS, Valdes‑Tresanco ME, Valiente PA, Moreno E (2021) 
gmx_MMPBSA: a new tool to perform end‑state free energy calculations 
with GROMACS. J Chem Theory Comput 17(10):6281–6291

 42. Kumari R, Kumar R, Lynn A, Open Source Drug Discovery C (2014) g_
mmpbsa—a GROMACS tool for high‑throughput MM‑PBSA calculations. 
J Chem Inf Model 54(7):1951–1962

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Iterative machine learning-based chemical similarity search to identify novel chemical inhibitors
	Abstract 
	Introduction
	Results and discussion
	Iterative chemical binding similarity search to identify novel active compounds
	Comparison of screening performance with different types of chemical pairing data
	Effect of chemical pairing data in MEK1
	Protein–ligand binding and cell viability assay for MEK1 inhibitors
	Structural novelty of the new MEK inhibitors
	Molecular clustering
	2D fingerprint similarity
	Sub-structure similarity

	Cross-activity to the MEK isoforms and docking models
	Chemical features for binding to MEKs
	Generation of chemical derivatives starting from ZINC5814210

	Conclusion
	Methods
	Training and testing evolutionary chemical binding similarity with new experimental data
	Virtual screening with retrained ECBS model
	Molecular filtering by 2D structure similarity and pharmacophore match
	Competitive ligand binding assay
	Cell viability assay
	Structural similarity of ZINC5814210 to known MEK1 inhibitors
	Protein structure modelling, and molecular docking to MEK isoforms
	Molecular design and generation from ZINC5814210
	Molecular dynamics and binding free energy calculations

	Anchor 27
	Acknowledgements
	References


