
Kerstjens and De Winter
Journal of Cheminformatics (2023) 15:89
https://doi.org/10.1186/s13321-023-00761-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

A molecule perturbation software library
and its application to study the effects
of molecular design constraints
Alan Kerstjens1 and Hans De Winter1*

Abstract

Computational molecular design can yield chemically unreasonable compounds when performed carelessly. A popu-
lar strategy to mitigate this risk is mimicking reference chemistry. This is commonly achieved by restricting the way
in which molecules are constructed or modified. While it is well established that such an approach helps in designing
chemically appealing molecules, concerns about these restrictions impacting chemical space exploration negatively
linger. In this work we present a software library for constrained graph-based molecule manipulation and showcase
its functionality by developing a molecule generator. Said generator designs molecules mimicking reference chemi-
cal features of differing granularity. We find that restricting molecular construction lightly, beyond the usual positive
effects on drug-likeness and synthesizability of designed molecules, provides guidance to optimization algorithms
navigating chemical space. Nonetheless, restricting molecular construction excessively can indeed hinder effective
chemical space exploration.

Keywords Molecular design, Software library, RDKit, De novo molecule generation, Constraints, Topological
perturbations, Chemical space, Molecular fingerprints

Introduction
Many cheminformatics problems can be framed as
searches through chemical space to find molecules with
desirable properties. Examples include de novo molecu-
lar design [1, 2] and chemical library design [3, 4]. A
popular way of exploring chemical space involves itera-
tively designing molecules and assaying them for proper-
ties of interest with one or multiple fitness or objective
functions. A search or optimization algorithm, guided
by the aforementioned objective functions, decides the
regions of chemical space that are probed next based
on the outcomes of the previous assays. Chemical space

can be thought of as a multidimensional similarity-based
arrangement of molecules. A molecule corresponds to a
point in chemical space, and similar molecules, accord-
ing to some criterion, are close to each other in chemical
space. Depending on the application, different similar-
ity criteria may be used to define chemical space [5–7].
Of interest to us is a chemical space defined based on
molecular graph similarity, where molecules with simi-
lar topologies are proximal. It is believed that molecules
with similar structures possess similar properties [8, 9].
Indeed, this has become one of the cornerstone theorems
of molecular design. Hence, it’s common for optimization
algorithms to wish to explore regions of chemical space
surrounding reference molecules with promising proper-
ties, with the hopes of finding even more appealing mol-
ecules in their neighborhood. The problem of sampling
molecules from these regions then becomes that of gen-
erating molecules “neighboring” the reference molecule.

*Correspondence:
Hans De Winter
hans.dewinter@uantwerpen.be
1 Laboratory of Medicinal Chemistry, Department of Pharmaceutical
Sciences, University of Antwerp, Universiteitslaan 1, 2610 Wilrijk, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00761-5&domain=pdf

Page 2 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

Traditionally this has been done by applying small modi-
fications or perturbations to the reference molecule [1].

A fitness landscape describes the fitness of all mol-
ecules in chemical space. The goal of drug discovery is
to find molecules residing in the extrema of said land-
scape, that is, molecules for which the objective is either
minimal or maximal. Drug discovery is inherently a
multi-objective optimization problem, with the primary
objective of designing biologically active molecules,
and secondary objectives such as synthesizability and
drug-likeness. Each of these objectives can be expressed
explicitly through an individual fitness function, with a
corresponding fitness landscape. One can optimize these
objectives explicitly in parallel [10, 11]. However, defin-
ing and optimizing many objectives simultaneously can
be challenging. Some authors try to evade the challenges
of multi-objective optimization by considering explicitly
only the primary objective and capturing the secondary
objectives implicitly by constraining the molecular gen-
eration process to imitate known and desirable chemis-
try [12–22]. This effectively blocks access to certain areas
of chemical space (Fig. 1). A large corpus of enumerated
molecules with desirable secondary objectives exists
[23–25], and it’s reasoned that constraining the molecu-
lar design process to only generate compounds similar
to those in the corpus will yield molecules with desirable
properties.

Many accounts describe the effectiveness of this
approach to improve the drug-likeness and synthetic
accessibility of generated molecules [12–22], but it’s not
without drawbacks. The constraints imposed on mol-
ecule construction manifest themselves as barriers in
search space, restricting the optimization algorithm’s

freedom [22, 26]. These barriers may prevent accessing
undesirable molecules, but inadvertently they may also
hinder or impede discovering potentially appealing mol-
ecules, especially those that are most novel and resemble
known chemistry the least.

Consider some molecular generation scheme that can
modify a reference molecule to yield related molecular
entities. In this case chemical space can be visualized as
a transition graph (previously termed a “morph graph”
[27]), where vertices symbolize accessible molecules, and
edges symbolize transitions between them (Fig. 2). The
topology of this graph is dependent on the constraints
of the chosen molecule generator. Generally speaking,
atom-based approaches define a more populous graph
than fragment-based approaches since a larger number
of chemical states is accessible. The density of the graph
(that is, the ratio between the existing number of edges
and the theoretical maximum number of edges) depends
on the strictness of the perturbation rules. Approaches
with strict rules will define a sparse graph, while
approaches with lax rules will define a dense graph.

Suppose that a chemical space search starts at a known
molecule A. The goal is to find some unknown molecule
B that exhibits good objective values. The more populous
the transition graph, the more probable it will be that
desirable molecules are part of it and therefore discovera-
ble. The perfect optimization algorithm would define the
shortest path between A and B. Such an ideal algorithm
would benefit from a very populous and dense transition
graph, as in these graphs paths between pairs of vertices
tend to be shorter (Fig. 2).

Sadly, we don’t have access to these utopian search
algorithms. In absence of omniscient oracles that reveal

Fig. 1 A section of graph-like chemical space with an excluded area (center). The exclusion stems from molecular construction constraints
and corresponds to a maximum on an undesirability objective landscape (red)

Page 3 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

B and the path towards it, our algorithms must err on
the side of exploration. Thorough exploration of very
populous and dense graphs is computationally intracta-
ble. Trimming the size and density of the search graph
in a chemically meaningful way could provide guidance
to algorithms that otherwise would wander around
unpromising regions of chemical space without a clear
sense of direction.

In summary, when it comes to predicting the effect of
molecular construction constraints on the fitness of the
designed molecules, we are faced with two opposing
hypotheses. The constraints may either hinder or facili-
tate chemical space exploration, and what the outcome
will actually be is poorly understood.

Pieces of the answer lay scattered throughout the
literature. Unfortunately, every study performs dif-
ferent experiments using different software, making
it impossible to isolate the effect of any one variable.
Attempts have been made to standardize experiments
with benchmark suites [28–30], yet software is rarely
standardized. Fully standardizing software is an impos-
sible and arguably undesirable task as scientific meth-
odologies are ever evolving. However, when it comes to

graph-based molecule edition many commonalities can
be found between different implementations.

We set out to create a software library for graph-
based molecular edition providing the common
denominator of functionality of previous implementa-
tions [3, 27, 31, 32]. We’ve named this library Molpert.
Key considerations during the design were flexibility,
extendibility, interoperability and ease of use. Molecule
perturbations are atom-based, as fragment-based edi-
tion can be described in function of the former but not
vice versa. Molecules are treated as graphs and modi-
fied without any sort of chemical considerations. This
is by design as we didn’t want to impose our own biases
and ways on others. Instead, users can specify them-
selves the properties the designed molecules ought to
fulfill through means of arbitrary constraints. Mecha-
nisms are foreseen to extend the functionality of the
library should the provided functionality not suffice.
Molpert is built on top of the RDKit, a highly popu-
lar and open-source cheminformatics toolkit [33], and
integrates well with RDKit molecules. It has no other
dependencies. A C + + and Python Application Pro-
gramming Interface (API) are both provided.

Fig. 2 Examples of transition graphs of different population and density. The shortest path between two vertices A and B is highlighted in orange.
Note that the path is shorter if the graph’s population is lower or the density is higher. As the population and density decrease the probability
of two vertices being connected decreases

Page 4 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

In this paper we describe Molpert and showcase how it
can be applied to cheminformatics research. Specifically,
we use it to build an evolutionary algorithm for mol-
ecule design and try to answer the question: “What are
the consequences of constraining atom-based molecular
construction?”.

Methods
Property perturbations
Perturbations included in the library can be broadly clas-
sified into those changing the molecular graph’s anno-
tations and those changing the graph’s topology. The
former are trivial to understand and implement: each
vertex (i.e. atom) and edge (i.e. bond) have a set of muta-
ble numeric properties that are independent from the
rest of the graph and can be freely changed. For atoms
these properties are (1) the atomic number, (2) formal
charge and (3) number of explicit hydrogens. For bonds
the only property of interest is the bond type, which in
most instances is equivalent to the bond order. Each
property has a list of allowed values and associated sam-
pling weights, both being user specified. By default the
sampling weights are proportional to the property values’
frequencies in ChEMBL31 [23]. All properties have a cor-
responding perturbation to modify it.

Modifying the number of explicit hydrogens may seem
superfluous as hydrogens are often treated implicitly.
However, explicit hydrogens can be of importance to
adjust the perception of implicit hydrogens. They are also
one of the invariants used in topological fingerprint cal-
culation [34, 35]. Hence, being able to modify the num-
ber of explicit hydrogens is essential for good interplay
with fingerprint-based scoring functions.

Topological perturbations
Topological perturbations refer to insertions and dele-
tions of atoms and bonds. These operations could be per-
formed by simply creating or destroying a single atom or
bond. However, the resulting transformations may not
match a chemist’s expectations about what these pertur-
bations should entail.

Consider a molecular graph G(V,E) with vertices or
atoms V and edges or bonds E. Naive implementation
of topological perturbations may result, among other
things, in a disconnected graph, that is, a graph in which
there is a pair of atoms v and w between which no path
exists. This is commonly undesirable unless the discon-
nected fragments represent salts.

To ensure that the graph remains connected an atom
insertion requires bond insertions as well. Hence,
inserting a new atom a involves (1) selecting the atomic
properties of a, (2) selecting a set of k existing atoms N
to which a will bond with k new bonds B (N ⊂ V, |N|= k,

|B|= k) and (3) selecting the bond types of B. Possible
values for a and B’s properties are sampled from a list
of allowed values. k ranges between 1 and a user speci-
fied parameter defaulting to 3 to avoid a combinatorial
explosion in possible outcomes. Up to k−1 cycles may
be formed during this process. Cycle formation may be
unwanted. For example, given an alkane one might want
to extend the length of the chain without creating a
cycle. In other words, one might want to insert an atom
between other atoms. To do so we select as N a cen-
tral atom c and some atoms J adjacent to c (J = {j | c ~ j},
N = c ∪ J), and define a “dropped” atom p ∈ N. During
insertion a and B are added and existing bonds between
p and N – p are deleted. The destruction of some exist-
ing bonds allows the insertion of atoms in acyclic
regions without the creation of cycles (Fig. 3). This only
holds true if N is selected as described above such that
all members of N are adjacent to p (N = {n | n ~ p}). If
N comprises arbitrary atoms and two atoms {v,w} ⊂ N
are separated by a topological distance d(v,w) ≥ 2 a cycle
necessarily forms. Nonetheless, specifying a dropped
atom can help in the design of more relaxed topologies
that aren’t as densely packed with cycles.

Bond insertion is simple, as it only involves the selec-
tion of two atoms v and w where the topological distance
between them d(v,w) > 1, the selection of a bond type and
the creation of the bond. Once again, this necessarily cre-
ates a cycle of d(v,w) + 1 atoms (Fig. 3). A minimum and
maximum d(v,w) may be specified. This provides the user
with some control over the size of the resulting cycles
but more importantly limits the number of possible
outcomes.

Bonds are defined by a pair of atoms. Consequently,
deleting one such atom a destroys the bond. Consider a
set of atoms N adjacent to a (N = {n | a ~ n}). The degree
g of a is defined as g(a) =|N|. If g(a) ≤ 1 it is peripheral,
and if g(a) > 1 it is internal. Peripheral atoms and inter-
nal atoms that are members of a cycle can always be
deleted without disconnecting the graph. Internal atoms
that aren’t part of a cycle separate two parts of the graph
through a unique path. Hence, their deletion would result
in a graph disconnection. To prevent this the atom dele-
tion may be followed by some bond formations. We
define a “reconnection” atom r ∈ V, and create new bonds
between r and N - (N ∩ r). This ensures that a path passing
through r exists between all pairs of atoms of N after the
deletion of a and that the graph remains connected. Typi-
cally r ∈ N. Intuitively, this corresponds to deleting a and
one of its neighbors ni ∈ N taking its place by bonding to
the remainder of the neighbors nj ∈ N - ni (Fig. 3). How-
ever, if the user allows it, one could also sample an arbi-
trary r within a given distance d(a,r) of a. This will result
in the formation of a cycle of size d(a,r) when d(a,r) ≥ 3.

Page 5 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

Similarly to atom deletions, bond deletions result in
graph disconnections if the bond isn’t a member of a
cycle. To delete an acyclic bond without disconnecting
the graph a new replacement bond vw must be formed.
Similar operations have been previously described as
“rerouting” the bond [27]. The newly bonded atoms
v and w ought to be on opposite sides of the “choke-
point” defined by the deleted bond (Fig. 3). They must
also be separated by a distance d(v,w) ≥ 2, as otherwise
the same bond would be recreated. The user can specify
a maximum distance d(v,w) to alter the topology less
drastically.

The described perturbations are sufficient to access
the entirety of chemical space when executed in the
right order. When sampled randomly specific long
sequences of perturbations are statistically unlikely. It
may be of interest to execute some of these sequences
of perturbations as a unit. For example, one might want
to insert a fragment corresponding to a specific func-
tional group. It’s possible to combine the above elemen-
tal perturbations to create more complex operations.

Molecule sanitization
Perturbations treat molecular graphs more like mathe-
matical objects than chemical structures. Careless edition
of the molecular graph is bound to result in chemi-
cally invalid structures. Notorious pain points include
explicit hydrogen counts, stereochemistry and aromatic-
ity. Cheminformatics toolkits like the RDKit store atom
and bond properties as integers within atoms and bonds
themselves. These properties may be sensible when first
calculated, but can lose their meaning after modifying
the molecular graph. We employ a post-perturbation
sanitization procedure that either alters these properties
to sensible values or deletes them altogether.

A heavy atom’s hydrogen count is modified to the value
resulting in the lowest valid valence for said atom. The list
of valid valences per element is provided by the RDKit.
When no hydrogen count would result in a valid valence
the count is set to zero. Chiral center stereochemistry
labels are kept where possible. If a former chiral center
is no longer chiral after a perturbation its stereochemis-
try label is erased. Newly formed chiral centers are not

Fig. 3 Examples of topological perturbations. Input and output molecules are depicted on the top and bottom respectively. Deleted atoms
and bonds are highlighted in red while inserted atoms and bonds are highlighted in blue. In the atom insertion example N = {1, 2, 3} and p = {1}. In
the atom deletion example N = {2, 3, 4, 5} and r = {2}

Page 6 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

assigned any stereochemistry labels. Bond stereochem-
istry labels are always erased. Aromaticity presents the
most egregious problem. Bonds may have been flagged
as aromatic once upon a time, yet these flags are kept
indefinitely even after modifying the molecule. The naive
solution would be to convert aromatic bonds to single
bonds once aromaticity has been broken. In the context
of editing molecules, aromatic systems are fragile as most
topological perturbations will cause aromaticity to be
invalidated. On the other hand, creating an aromatic ring
system is much more challenging, as it requires atoms
and bonds of the right types to be placed in the right
positions simultaneously. When modifying molecules
stochastically the sequence of events leading to the crea-
tion of an aromatic ring system is highly unlikely. In prac-
tice this means that most designed ring systems won’t be
aromatic, which is uncharacteristic of organic molecules.

Molpert handles aromaticity in two different ways,
depending on the user’s preference. The simplest option
is to work with kekulized molecules only, that is, mol-
ecules where aromatic systems are represented by alter-
nating single and double bonds. Alternatively, one can
work with “partially aromatic” molecules where the
aromaticity flags are preserved, irrespective of whether
they are valid at present time or not. For example, acy-
clic regions may be transiently labelled as aromatic. The
former aromatic character of bonds is remembered and
used to reestablish aromaticity in the future whenever
conditions are right. When a molecule with valid aro-
maticity assignments is required, a sanitization proce-
dure can be applied. Acyclic regions labelled as aromatic
are kekulized. Rings are defined as components of the
Smallest Set of Smallest Rings (SSSR) [36]. Rings that
are correctly flagged as fully aromatic are left untouched.
Kekulized rings fulfilling aromaticity criteria are aro-
matized. Partially aromatic rings are sorted in descend-
ing order according to their number of aromatic bonds
and sanitized. If the number of aromatic bonds in the
ring is greater than half and the ring otherwise meets
the requirements to be aromatic it’s aromatized. Other-
wise it is kekulized. Starting the sanitization process with
the most aromatic rings allows aromaticity to propagate
throughout fused ring systems (Fig. 4).

Modes of operation
Perturbations are implemented as objects specifying how
a molecule will be modified. These objects are callable
and can be invoked when the perturbation ought to be
executed. The user may construct these objects directly
for fine-grained control over the outcome of a perturba-
tion. For convenience we also provide factory functions
that abstract away the details of constructing perturba-
tions. Said factories can systematically enumerate all

possible perturbations that could be applied to a mol-
ecule. Enumeration may be restricted to specific types
of perturbations and/or atom/bond targets. When used
deterministically all generated perturbations fulfilling the
constraints are stored in a queue. When used stochasti-
cally the iteration order is randomized and the first gen-
erated perturbation fulfilling the constraints is returned.
The randomization relies on a weighted shuffle in such a
way that perturbations featuring common property val-
ues are most likely to be tried first [37]. This reduces the
number of perturbations that need to be tried before one
fulfilling the constraints is found.

Constraints
While we designed the software to be able to generate
any molecular graph, there may be instances where one
wishes to use it to generate molecular graphs fulfilling
specific criteria. This is enabled through constraints. In
this context constraints are callback functions evaluating
whether a molecule fulfills some arbitrary requirements.
They take as input an atom, bond or molecule and return
as output a boolean. A return value of “true” signals that
the requirements are satisfied, whereas “false” signals the
requirements aren’t met. Constraints may apply to one
specific atom or bond. It’s therefore possible to constrain
only certain parts of the molecule and to mix constraints
as desired.

Constraints are enforced through trial and error. A
queue of compatible perturbations is prepared. The per-
turbation at the front of the queue is applied to a copy of
the molecule to simulate its outcome. The perturbed mol-
ecule is then forwarded to the constraints for evaluation.

CH2

CH3

Fig. 4 Aromaticity sanitization example. Aromatic bonds are
depicted as dashed bonds. Aromatic ring systems where all bonds
are aromatic are depicted with internal circles. Partially aromatic
ring systems are either aromatized or kekulized depending on their
“degree of aromaticity”. Bonds incorrectly labelled as aromatic are
kekulized

Page 7 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

If any constraint evaluates to “false” the perturbed mol-
ecule is discarded and the next perturbation is simulated.
This process repeats until a perturbation satisfying all
constraints is found or the queue is empty. The stricter
the constraints the higher the perturbation attrition rate
and with it the computational performance degradation.

For our experiments we explored different variants of
atom and bond constraints. The most basic constraints
are valence constraints. Each element is assigned a maxi-
mum allowed valence, and any atoms of said element with
a lower or equal valence are accepted, under the assump-
tion that hydrogens can be added to pad the valence up to
the closest valid value. The remainder of the constraints
are key-based constraints. Atoms and bonds are charac-
terized with atom and bond keys respectively (Table 1,
Fig. 5). An atom key is a tuple of integer properties char-
acterizing the atom. Depending on the properties used
to define the key we distinguish between local atom keys
made up of common atomic invariants [23, 24] (degree
D, valence V, atomic number Z, formal charge Q and
number of explicit hydrogens H) and ring-aware (RA)
atom keys, which on top of the aforementioned atomic
invariants include the number of SSSR rings the atom is
involved (R) and the sizes of the smallest and largest SSSR

rings it is involved in (NR and XR respectively). Bond keys
are defined through combination of the bonded atoms’
keys and the bond’s type (B). Lastly, we also define atomic
environment keys as the hashes of circular atomic envi-
ronments, akin to the Extended Connectivity Fingerprint
(ECFP) algorithm [35]. Environments of topological radii
1 (r = 1) and 2 (r = 2) were studied.

We determined the set of keys found in drug-like mole-
cules, specifically ChEMBL31 [23], and recorded them in
dictionaries, one for each key type. Given one such dic-
tionary and a query molecule, a key based constraint cal-
culates the same type of keys for the query molecule and
compares said keys to the dictionary’s keys. If the query
molecule exhibits keys that aren’t part of the dictionary
the constraint evaluates to false and the query molecule
is rejected.

Property and perturbation sampling
Some molecular perturbations, namely property pertur-
bations, atom insertions and bond insertions must sam-
ple atom and/or bond properties. The properties being
sampled are atomic numbers, formal charges, explicit
hydrogen counts and bond types. Property values are
sampled from pre-defined sets of allowed values. When
perturbations are enumerated deterministically each
allowed value is used to construct one perturbation.
When perturbations are generated stochastically a single
allowed value is randomly sampled to construct a single
perturbation, with each value having an associated sam-
pling probability.

While the user may provide their own sampling values
and probabilities, we provide some reasonable defaults.
For each property we recorded the frequency of occur-
ring values in ChEMBL31 [23], as well as the mode (i.e.
the most frequent value). Property values occurring with
a frequency larger than 0.01% are considered allowed and

Table 1 Overview of the molecular keys used to characterize
molecules and constrain molecular perturbation

Molecular key Key structure

Local atom key (D, V, Z, Q, H)

Ring-aware atom key (R, XR, NR, D, V, Z, Q, H)

Local bond key (LB) (D1, V1, Z1, Q1, H1, D2, V2, Z2, Q2, H2, B)

Ring-aware bond key (RAB) (R1, XR1, NR1, D1, V1, Z1, Q1, H1, R2,
 XR2, NR2, D2, V2, Z2, Q2, H2, B)

Local environment key Hash ({LB1, LB2 … LBn})

Ring-aware environment key Hash ({RAB1, RAB2 … RABn})

Fig. 5 Example molecular keys. The color highlighted atoms are characterized with atom keys, and the color highlighted bond between them
characterized with a bond key. The nitrogen’s circular atomic environment of radius 1 is shown as a dotted outline and characterized with the hash
of its bonds’ keys, resulting in seemingly random numbers. For the meaning of each integer see Table 1

Page 8 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

may be sampled with probabilities proportional to the
values’ frequencies. The mode is taken as a default prop-
erty value and, at the discretion of the user, may replace
the list of allowed values to reduce the number of pertur-
bations resulting from deterministic enumeration.

Property values for a specific atom or bond are sampled
independently from the rest of the atom’s or bond’s prop-
erties and independently from their surrounding chemi-
cal environment. As an exception one may opt to sample
atomic numbers and bond types with different probabili-
ties depending on whether the atom/bond is part of a
ring or not. The main motivation behind this exception
is to preferentially place aromatic and double bonds in
rings, and triple bonds in acyclic structures.

When generating perturbations stochastically the user
may or may not specify the type of the perturbation.
Should they choose to not do so the library will randomly
sample a perturbation type for them. Property perturba-
tions have sampling probabilities that are proportional
to how often the property deviates from the mode. For
example, since it’s rare to encounter charged atoms the
probability of sampling a “formal charge change” pertur-
bation is low. Conversely, since it’s relatively common to
encounter non-carbon atoms the probability of sampling
an “atomic number change” perturbation is compara-
tively high.

Weighted property sampling is supposed to reduce
the probability of stochastically generating a constraint-
infringing perturbation. To verify this assumption we
took a subset of 10,000 ChEMBL molecules of varying
sizes and generated 10 perturbations of each type for
each molecule. We repeated the process twice sampling
property values from either a uniform distribution or
from the aforementioned ChEMBL-derived distribu-
tion. We then measured the perturbation rejection rate
according to different molecular constraints.

Chemical space connectivity
Stricter constraints are associated with sparser chemi-
cal spaces (Fig. 2). One can quantify the stringency of a
set of constraints by calculating the average degree of the
corresponding chemical transition graph. We stratified
ChEMBL31 [23] according to the molecules’ heavy atom
counts (HAC), and sampled 1000 random molecules
every 5 HAC between 10 and 50 HAC. Two molecules
are considered to be neighbors in chemical space if they
are separated by a single edge in the chemical transition
graph, that is, a single perturbation. Molpert was used to
deterministically enumerate all perturbations applicable
to each molecule of the aforementioned ChEMBL sub-
sets. Said perturbations were subsequently executed to
enumerate the molecule’s neighbors. Different perturba-
tions may result in the same neighbor, but only unique

neighbors were kept. The process was repeated using
different sets of constraints, and the number of pertur-
bations resulting in constraint-infringing neighbors was
recorded. The average number of neighboring molecules,
equal to the average degree of the transition graph, was
taken as a measure of the constraints’ stringency.

Benchmark
Two experiments were performed to evaluate the effects
constraints have on atom-based chemical space explo-
ration. To evaluate the effects constraints have on mol-
ecule fitness we developed an evolutionary algorithm
using Molpert to mutate and recombine molecules. The
algorithm was modelled after LEADD [22], a previously
published evolutionary algorithm. Recombination isn’t a
core part of Molpert, but simple digestion-based recom-
bination operators [31, 38] are made available as addons.
Every time a molecule is mutated we check if the result-
ing molecule satisfies the constraints. If it doesn’t the
mutated molecule is discarded. The algorithm was tasked
to design molecules maximizing the scores of GuacaMol
goal-directed benchmark scoring functions [28]. Briefly,
the GuacaMol goal-directed benchmark suite consists of
20 benchmarks with corresponding ligand-based objec-
tive functions that score molecules in the [0, 1] range,
with higher scores being better. Some benchmarks
demand the generation of a population of molecules, in
which case the total benchmark score is calculated as a
population weighted average. We opted out of this last
step and took as score the fitness of the top molecule
only. In our algorithm population diversity is enforced
through means of a topological similarity threshold [22].
Due to this filter the remainder of the population is by
design subpar and present solely to facilitate the evolu-
tion of the top molecule. Since evolutionary algorithms
are stochastic one will presumably want to run multiple
independent replicas anyways, sourcing the top molecule
of each run. We ran the benchmark 50 times for each
type of constraint recording the top molecule of each
replica. Jobs were given a maximum of 72 h core hours.
Some jobs for strict constraints failed to complete within
this time, reducing the sample size (Additional file 1:
Table S1). Differences in molecule fitness between the
“no constraints” control group and constraints groups
were analyzed using the non-parametric Kruskal–Wallis
H-test [39] followed by pairwise Mann–Whitney U-tests
[40] with Šidák correction [41]. α = 0.05 was taken as sig-
nificance level and family-wise error rate.

To evaluate the chemical appeal and novelty of mole-
cules we designed 1000 random molecules using each set
of constraints. Said molecules, hereon forward referred
to as Randomly Designed Molecules (RDM), were con-
structed through successive atom and bond insertions,

Page 9 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

aiming to create a molecule of 29 heavy atoms and 32
bonds, which corresponds to the average number of
heavy atoms and bonds of molecules in ChEMBL31 [23].
Synthesizability and drug-likeness were assessed through
means of the SAScore [42] and Quantitative Estimation
of Drug-likeness (QED) [43] respectively. ChEMBL31
was used as reference synthesizable chemistry for SAS-
core calculations. Differences between distributions were
analyzed with one-way Analysis Of Variance (ANOVA)
[44] followed by Dunnett’s test [45]. α = 0.05 was taken
as significance level and family-wise error rate. Chemi-
cal novelty was evaluated qualitatively by embedding
the molecules into a 2D continuous chemical space and
studying their location. Said chemical space was defined
by characterizing molecules as binary 2048-bit ECFP4
fingerprints [35] and reducing their dimensionality with
Principal Component Analysis (PCA) [46].

Optimizing molecules according to some objective
function by design biases the regions of chemical space
that are sampled. This is particularly true for the Gua-
caMol scoring functions, many of which incorporate
topological similarity to some reference molecule as a
component [22, 28]. We chose to study the chemical
appeal and novelty of RDM as opposed to that of the opti-
mized molecules resulting from the benchmark because

we wanted to distinguish which effects are attributable
to the constraints and which ones to the scoring func-
tion. Nonetheless, for completeness’ sake we repeated all
analyses on the optimized molecules as well. Interested
readers can find the corresponding results in the supple-
mentary material (Additional file 1: Figures S2–S6, Tables
S6–S7).

Results
To rationalize the effects constraints have on molecular
design it is important to study the extent to which they
trim the chemical space transition graph. Figure 6A
shows the average degree of said graph for different types
of constraints. A higher average degree is indicative of a
denser graph and therefore laxer constraints, whereas a
lower average degree is indicative of sparser graphs and
stricter constraints. The differences in graph density can
be explained by discrepancies in the number of pertur-
bations or moves that are rejected by the constraints
Fig. 6B).

Generally speaking, constraints are stricter the more
variables define the corresponding key. Accordingly,
ring-aware (RA) constraints are stricter than local con-
straints, environment constraints are stricter than bond
constraints, and bond constraints are stricter than atom

Fig. 6 A Average number of neighboring molecules for molecules in ChEMBL based on their size and molecular constraints. The lower the number
of neighbors the sparser the chemical transition graph. B Fraction of accepted perturbations broken down by perturbation type. The remainder
of the perturbations were rejected by the molecular constraints

Page 10 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

constraints. Counterintuively valence constraints appear
to be stricter than certain key-based constraints that
encompass valence. This stems from differences in the
definitions of valid valences. For valence constraints a
rather conservative list of allowed valences hard coded
within the RDKit is used. For key-based constraints
allowed values are extracted from a large library of ref-
erence molecules. Should one find within this library a
few examples of atoms with unusual valences this would
suffice for said valences to be considered valid. Moving
forward results will be color coded according to the con-
straint stringency order described in Fig. 6.

It is well established that constraining the way in which
molecules are constructed increases the likelihood of
designing chemically appealing molecules [12–22]. Fig-
ure 7 shows how the synthetic accessibility of RDM, as
measured with the SAScore [42], increases with design
constraints becoming stricter. Our constraints restrict
the designed molecules to topological features present in
reference molecules, with the differences between them
being in the granularity of these features. As the granu-
larity increases so does the algorithm’s ability to mimic
the topology of reference molecules. Since the SAScore
is partially calculated based on topological similarity to
reference chemistry this result is to be expected.

Figure 8 shows some examples of molecules designed
using different types of constraints. While subjective,

molecules designed using stricter constraints are chemi-
cally more appealing. It has been noted that one of the
main factors explaining chemists’ willingness to pursue
synthesis or further development of a compound is the
molecule’s ring complexity [47]. The use of ring-aware
constraints discourages the design of complex ring sys-
tems. One could argue that the use of strict constraints
leads to the design of “plain” molecules, rich in carbons
and single bonds yet poor in functional groups. This fore-
shadows that excessively restricting molecular construc-
tion may be undesirable. Regardless of the constraints
used, RDM are unlikely to contain aromatic systems
(Fig. 8, Additional file 1: Table S4). As discussed previ-
ously, the creation of aromatic rings requires very spe-
cific arrangements of single and double bonds that are
unlikely to occur by chance. This illustrates the value of
the proposed partial aromaticity treatment.

The use of constraints also seems to improve the drug-
likeness of the designed molecules as measured with the
QED [43] (Fig. 9). QED is calculated based mostly on
physicochemical descriptors, yet our constraints don’t
consider physicochemical descriptors explicitly. Further
analysis reveals that the main driver for QED improve-
ments is a reduction in the number of undesirable
substructures (i.e. structural alerts) (Additional file 1:
Table S4). A drop-off in QED is observed for RA environ-
ment (r = 2). This is explained by the designed molecules

Fig. 7 SAScore distributions of RDM using different types of constraints. Medians are shown as black lines. Lower SAScores are indicative
of an easier synthesis. Stars on top of the distributions indicate statistically significant differences with the “no constraints” control group. A more
detailed statistical analysis can be found in Additional file 1: Table S2

Page 11 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

having over double the number of rotatable bonds one
might expect to find in molecules designed with other
constraints or drug-like molecules (Additional file 1:
Table S4). RA environment (r = 2) constraints are so strict
that oftentimes the only allowed atom insertion is that
of carbons in existing hydrocarbon features, resulting in
long and flexible molecules (Fig. 8).

We would like to clarify that within Molpert the only
dependable source of molecule correctness are the
molecular constraints. Weighted property sampling
reduces the probability of stochastically generating per-
turbations that would infringe upon the constraints, but
doesn’t prevent it (Additional file 1: Figure S7). Weighted
sampling should thus be seen more as an algorithmic

Environment
(r = 2)

Environment
(r = 1)

Bond

Atom

Valence

None

Local Ring-aware
C

N

O C
C

HS

C

C

OH

SH

N
NH2

F

O

F

NHH2N

H
S

Cl

O

HN

ON

HO

N

N

NH

O

HN

N

N O
S

O

O

N

NH
O

NH2

HN

OH

O

O
O O

N
NH2

O F

NH2

O
HO

HO HO

Fig. 8 Examples of molecules designed by successive random atom and bond insertions using different types of constraints

Page 12 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

efficiency optimization than a strategy to design reason-
able molecules.

One could be concerned that imitating reference chem-
istry stifles chemical innovation. To investigate this con-
cern, we visualized the positions of designed molecules in
a 2D chemical space, using ChEMBL [23] as a reference
space (Fig. 10). There is some overlap between ChEMBL
and designed molecules, but the latter are skewed
towards the less densely populated areas of chemical
space, regardless of the constraints used. It should be
noted that a 2D projection of chemical space is overly
simplistic, with distances between molecules appear-
ing to be smaller than they truly are. Hence the designed
molecules are more distinct from ChEMBL than what
Fig. 10 might indicate. We believe that the designed mol-
ecules are sufficiently novel.

The effect constraints have on compound fitness during
molecular optimization is poorly understood. Figure 11
shows the optimization power of a Molpert-based evolu-
tionary algorithm in the GuacaMol benchmark suite [28]
using different types of constraints. As a reminder, con-
straints are enforced every time a molecule is mutated.
Using mild constraints, that is, anything between local
and RA bond constraints, leads to significantly improved
molecule fitness over unconstrained molecular design.
RA bond constraints performed best, followed closely by
local environment (r = 1) and RA atom constraints. RA

Fig. 9 QED distributions of RDM using different types of constraints. Medians are shown as black lines. Higher values are indicative of more
drug-like molecules. Stars on top of the distributions indicate statistically significant differences with the “no constraints” control group. A more
detailed statistical analysis can be found in Additional file 1: Table S3

Fig. 10 Positions of RDM in 2D PCA space. The grayscale grid
represents the density of ChEMBL molecules in chemical space
on a linear scale, with darker cells being more densely populated

Page 13 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

environment (r = 1) constraints are equivalent to uncon-
strained molecular design in terms of molecule fitness.
Stricter constraints, namely environment (r = 2) con-
straints are markedly worse.

The results in Fig. 11 suggest that there is a constraint
stringency sweet spot that trims the search graph in
just the right way to facilitate the optimization process.
Upsettingly the exact location of this sweet spot depends
on the individual benchmark (Additional file 1: Figure
S1). The most common pattern is a fitness maximum
at some constraint stringency middle point such as RA
bond constraints, with laxer and stricter constraints
both performing worse. Even in the cases where fitness
is unaffected by constraint choice most constraints seem
to be tolerated. This is an encouraging result as the pri-
mary use of constraints in molecular design is to increase
the likelihood of designing drug-like and synthesizable
molecules.

Two peculiar cases are those of Celecoxib and Trogl-
itazone rediscovery, where very pronounced fitness dif-
ferences are observed between local and RA constraints
(Additional file 1: Figure S1). Visual inspection of the
designed molecules reveals that when using local con-
straints the algorithm correctly rediscovers many of

the reference molecule’s features, but proposes alterna-
tive ring systems. In rediscovery benchmarks the goal is
to re-design a reference molecule, with the score being
given by the topological similarity to the reference mol-
ecule. Topological similarity is assessed through means
of ECFP4 fingerprints similarity [35], with two mole-
cules being similar if they share many chemical features.
Crucially, it is not required for the features to be in the
same position for two molecules to be deemed similar.
Celecoxib and troglitazone possess multiple benzene
rings, with paths of aromatic carbons as features. The
algorithm is rewarded for designing molecules with aro-
matic carbons, but this reward is the same regardless of
the topology and size of the ring systems. Limiting the
sizes of designed rings with RA constraints can prevent
the algorithm from being led astray and towards macro-
cycles by the scoring function (Fig. 12).

It’s worth noting that molecular design constraints
can add considerable computational overhead (Fig. 13).
This is especially true for Molpert since constraints are
enforced in a naive fashion. The slow down stems from a
higher perturbation rejection rate for stricter constraints,
prolonging the search for a suitable perturbation. Inter-
estingly the number of molecules designed before the

Fig. 11 Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions. Medians are shown as black lines. Only
the best molecule of each population is included. The benchmark suite consists of 20 individual benchmarks, but for clarity’s sake the results of all
benchmarks were aggregated. A per-benchmark breakdown can be found in Additional file 1: Figure S1. Stars on top of the distributions indicate
statistically significant differences with the “no constraints” control group. A more detailed statistical analysis can be found in Additional file 1:
Table S5

Page 14 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

algorithm reaches convergence is moderately lower
for stricter constraints. For the vast majority of objec-
tive functions this decrease is insufficient to offset the

increased perturbation cost. Nonetheless, when working
with very expensive objective functions the cost of per-
turbing molecules can be negligible compared to the cost
of scoring them, making the use of constraints as conver-
gence acceleration strategy an appealing proposition.

Discussion
Our results indicate that moderately constraining molec-
ular construction has a net positive effect as it increases
both the synthesizability and fitness of designed mol-
ecules. Nonetheless one must care to not choose
excessively strict constraints as this can cause a sharp
degradation of molecule fitness. As a guideline we recom-
mend constraining bond or small environment proper-
ties and, if necessary, ring topologies. However, while the
results presented herein apply to atom-based evolution-
ary algorithms, they may not be extrapolatable to alter-
native molecular optimization schemes. Evolutionary
algorithms are powerful optimizers capable of navigat-
ing complex search spaces. Other algorithms such as tree
searches may be less tolerant of barriers in search space
and therefore construction constraints. We developed a
simple tree search algorithm to test this hypothesis but
found the fitness of the designed molecules too poor to
extract any useful conclusions. Evolutionary algorithms
are heuristic gradient-free optimization algorithms. They
wander around chemical space until they stumble upon
good solutions by chance. For an algorithm lacking a
sense of direction the very dense chemical spaces char-
acteristic of unconstrained molecular construction can
seem like a maze with many “false paths”. Gradient-based

Fig. 12 Celecoxib (A), troglitazone (C) and examples of molecules
designed during their rediscovery benchmark using local bond
constraints. The designed molecules (B) and (D) score relatively high
(0.62 and 0.69 respectively) due to the presence of common chemical
features albeit in different positions. Note that the 10-membered
cycles in (B) and (D) are deemed aromatic by Hückel’s rule [48]
and the RDKit, despite not being aromatic due to ring strain [49]

Fig. 13 Number of molecules designed to reach convergence (left) and the number of perturbations executed per second (right) stratified
per constraint type. Performance numbers are for a single-threaded workload on an AMD Epyc 7452 CPU clocked at 2.35 GHz

Page 15 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

optimization algorithms do have a sense of direction and
may benefit from unconstrained molecular design.

Versatility was a major consideration when designing
the Molpert. Unfortunately, in software development
versatility often comes at the cost of computational effi-
ciency. Molpert is efficient at unconstrained molecular
design, but this efficiency decreases with constraint strin-
gency. Despite the decreased efficiency molecular design
remained a tractable task. If one were to settle on an
immutable set of constraints that molecules must fulfill
it would indubitably be possible to write more specialized
and performant algorithms. Should one wish to do so we
would recommend using Molpert to build a prototype
and confirm the effect of the envisioned algorithm and/
or constraints before committing resources to develop-
ing a performant solution. We wanted to be able to re-
use the code base in projects with differing requirements.
Anecdotally during the development of the software we
went through multiple iterations of more efficient yet less
flexible constraint implementations, but kept encounter-
ing use cases that couldn’t be covered by those alternative
systems. This cemented our conviction to support truly
arbitrary constraints.

In lieu of using constraints one could embrace uncon-
strained molecular design. When using stochastic mol-
ecule generators molecule fitness follows a distribution.
While unconstrained molecular design may yield less fit
molecules on average, it still may occasionally result in
high scoring molecules (Fig. 11). Sampling more times
from a distribution with a lower median may be a supe-
rior strategy to sampling fewer times from a distribu-
tion with a higher median, provided that the variance is
large enough (Fig. 11). The faster unconstrained molecu-
lar generation allows one to roll the dice more often in
the same amount of time. Biasing the design towards
synthesizable molecules remains possible in absence of
constraints by incorporating synthesizability into the
objective function [50, 51]. Ideally the objective function
should be able to evaluate the fitness of potentially inva-
lid molecules resulting from unconstrained molecular
design. Our benchmark shows that at least some scor-
ing functions are able to do so, and we hypothesize that
most ligand-based scoring functions will share this abil-
ity. Machine learning models may excel at this task given
their interpolation capabilities. Structure-based scoring
functions requiring conformation generation or rely-
ing on knowledge-based parameters, such as molecular
mechanics, might be less suited for this purpose. Even
then one could return null or negative fitness values
when a molecule can’t be evaluated, in which case the
objective function acts as a constraint itself. Lastly, while
it’s usually undesirable to design difficult to synthesize
or even chemically invalid molecules some readers may

find use in expressly generating these sorts of unreason-
able molecules, for example as negative training data for
machine learning models [52].

Conclusion
Imposing moderate constraints on molecule construc-
tion techniques has a net positive effect, as it improves
both the fitness and chemical appeal of the constructed
molecules. One must care to not use excessively strict
constraints as doing so would have a negative effect on
molecule fitness. We demonstrated how Molpert can
be used to develop molecular design applications. We
believe Molpert is a useful tool for cheminformatics soft-
ware development, especially for prototyping, and hope
it will relieve researchers from the burden of reinventing
molecular graph edition.

Abbreviations
API Application Programming Interface
SSSR Smallest Set of Smallest Rings
RA Ring-aware
ECFP Extended Connectivity FingerPrint
HAC Heavy atom count
RDM Randomly designed molecules
QED Quantitative estimation of drug-likeness
ANOVA Analysis of Variance
PCA Principal Component Analysis

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321- 023- 00761-5.

Additional file 1: Statistical test results, per-benchmark molecular fit-
ness analysis, and synthesizability, drug-likeness and novelty analyses of
benchmark-optimized molecules.

Acknowledgements
We would like to thank our colleague Joep Wals for useful discussions regard-
ing data visualization.

Author contribution
AK developed and benchmarked the software. HDW supervised the research.
Both authors contributed to writing the publication. Both authors read and
approved the final manuscript.

Funding
This work was supported by a PhD Grant to Alan Kerstjens from the Research
Foundation Flanders (FWO) (FWO-project 39461). The computational
resources and services used in this work were provided by the Flemish Super-
computer Center (VSC), funded by the FWO and the Flemish Government.

Availability of data and materials
Project name: Molpert, Project home page: https:// github. com/ AlanK erstj
ens/ Molpe rt, Archived version: Molpert_0.0.1, Operating system(s): Platform
independent, Programming language(s): C + + , Python, Other requirements:
RDKit cheminformatics toolkit [33], License: AGPL 3.0

Declarations

Ethics approval and consent to participate
Not applicable.

https://doi.org/10.1186/s13321-023-00761-5
https://doi.org/10.1186/s13321-023-00761-5
https://github.com/AlanKerstjens/Molpert
https://github.com/AlanKerstjens/Molpert

Page 16 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 July 2023 Accepted: 15 September 2023

References
 1. Schneider G, Fechner U (2005) Computer-based de novo design of drug-

like molecules. Nat Rev Drug Discov 4:649–663. https:// doi. org/ 10. 1038/
nrd17 99

 2. Meyers J, Fabian B, Brown N (2021) De novo molecular design and
generative models. Drug Discov Today 26:2707–2715. https:// doi. org/ 10.
1016/j. drudis. 2021. 05. 019

 3. Virshup AM, Contreras-García J, Wipf P et al (2013) Stochastic voyages
into uncharted chemical space produce a representative library of all
possible drug-like compounds. J Am Chem Soc 135:7296–7303. https://
doi. org/ 10. 1021/ ja401 184g

 4. Yuan W, Jiang D, Nambiar DK et al (2017) Chemical Space Mimicry for
Drug Discovery. J Chem Inf Model 57:875–882. https:// doi. org/ 10. 1021/
acs. jcim. 6b007 54

 5. Oprea TI, Gottfries J (2001) Chemography: The art of navigating in chemi-
cal space. J Comb Chem 3:157–166. https:// doi. org/ 10. 1021/ cc000 0388

 6. Renner S, van Otterlo WAL, Dominguez Seoane M et al (2009) Bioactivity-
guided mapping and navigation of chemical space. Nat Chem Biol
5:585–592. https:// doi. org/ 10. 1038/ nchem bio. 188

 7. Osolodkin DI, Radchenko EV, Orlov AA et al (2015) Progress in visual
representations of chemical space. Expert Opin Drug Discov 10:959–973.
https:// doi. org/ 10. 1517/ 17460 441. 2015. 10602 16

 8. Johnson MA, Maggiora GM (1991) Concepts and applications of molecu-
lar similarity, 1st edn. Wiley

 9. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in
medicinal chemistry. J Med Chem 57:3186–3204. https:// doi. org/ 10. 1021/
jm401 411z

 10. Nicolaou CA, Brown N (2013) Multi-objective optimization methods in
drug design. Drug Discov Today Technol 10:1–9. https:// doi. org/ 10. 1016/j.
ddtec. 2013. 02. 001

 11. Fromer JC, Coley CW (2023) Computer-aided multi-objective optimiza-
tion in small molecule discovery. Patterns 4:100678. https:// doi. org/ 10.
1016/j. patter. 2023. 100678

 12. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP—Retrosyn-
thetic combinatorial analysis procedure: a powerful new technique for
identifying privileged molecular fragments with useful applications in
combinatorial chemistry. J Chem Inf Comput Sci 38:511–522. https:// doi.
org/ 10. 1021/ ci970 429i

 13. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of
molecular architectures by evolutionary assembly of drug-derived
building blocks. J Comput Aided Mol Des 14:487–494. https:// doi. org/ 10.
1023/A: 10081 84403 558

 14. Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for
fragment-based de novo design. J Chem Inf Model 46:699–707. https://
doi. org/ 10. 1021/ ci050 3560

 15. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of
compiling and using “drug-like” chemical fragment spaces. ChemMed-
Chem 3:1503–1507. https:// doi. org/ 10. 1002/ cmdc. 20080 0178

 16. Kutchukian PS, Lou D, Shakhnovich EI (2009) FOG: fragment optimized
growth algorithm for the de novo generation of molecules occupying
druglike chemical space. J Chem Inf Model 49:1630–1642. https:// doi.
org/ 10. 1021/ ci900 0458

 17. Hartenfeller M, Zettl H, Walter M et al (2012) Dogs: reaction-driven de
novo design of bioactive compounds. PLoS Comput Biol 8:e1002380.
https:// doi. org/ 10. 1371/ journ al. pcbi. 10023 80

 18. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo
design through deep reinforcement learning. J Cheminformatics 9:48.
https:// doi. org/ 10. 1186/ s13321- 017- 0235-x

 19. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS
Cent Sci 4:120–131. https:// doi. org/ 10. 1021/ acsce ntsci. 7b005 12

 20. Polishchuk P (2020) CReM: chemically reasonable mutations framework
for structure generation. J Cheminformatics 12:28. https:// doi. org/ 10.
1186/ s13321- 020- 00431-w

 21. Ghiandoni GM, Bodkin MJ, Chen B et al (2021) RENATE: a pseudo-ret-
rosynthetic tool for synthetically accessible de novo design. Mol Inform
2100207:1–8. https:// doi. org/ 10. 1002/ minf. 20210 0207

 22. Kerstjens A, De Winter H (2022) LEADD: Lamarckian evolutionary algo-
rithm for de novo drug design. J Cheminformatics 14:3. https:// doi. org/
10. 1186/ s13321- 022- 00582-y

 23. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactiv-
ity database for drug discovery. Nucleic Acids Res 40:1100–1107. https://
doi. org/ 10. 1093/ nar/ gkr777

 24. Irwin JJ, Tang KG, Young J et al (2020) ZINC20-a free ultralarge-scale
chemical database for ligand discovery. J Chem Inf Model 60:6065–6073.
https:// doi. org/ 10. 1021/ acs. jcim. 0c006 75

 25. Kim S, Chen J, Cheng T et al (2023) PubChem 2023 update. Nucleic Acids
Res 51:D1373–D1380. https:// doi. org/ 10. 1093/ nar/ gkac9 56

 26. Reeves S, DiFrancesco B, Shahani V et al (2020) Assessing methods and
obstacles in chemical space exploration. Appl AI Lett 1:e17. https:// doi.
org/ 10. 1002/ ail2. 17

 27. Hoksza D, Škoda P, Voršilák M, Svozil D (2014) Molpher: A software
framework for systematic chemical space exploration. J Cheminformatics
6:1–13. https:// doi. org/ 10. 1186/ 1758- 2946-6-7

 28. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: bench-
marking models for de novo molecular design. J Chem Inf Model
59:1096–1108. https:// doi. org/ 10. 1021/ acs. jcim. 8b008 39

 29. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) molecular sets
(MOSES): a benchmarking platform for molecular generation models.
Front Pharmacol. https:// doi. org/ 10. 3389/ fphar. 2020. 565644

 30. García-Ortegón M, Simm GNC, Tripp AJ et al (2022) DOCKSTRING: easy
molecular docking yields better benchmarks for ligand design. J Chem
Inf Model 62:3486–3502. https:// doi. org/ 10. 1021/ acs. jcim. 1c013 34

 31. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic
algorithm and its application to the multiobjective evolution of median
molecules. Chem Inform 35:1079–1087. https:// doi. org/ 10. 1002/ chin.
20043 1198

 32. Leguy J, Cauchy T, Glavatskikh M et al (2020) EvoMol: a flexible and
interpretable evolutionary algorithm for unbiased de novo molecu-
lar generation. J Cheminformatics 12:55. https:// doi. org/ 10. 1186/
s13321- 020- 00458-z

 33. RDKit: Open-source cheminformatics. https:// doi. org/ 10. 5281/ zenodo.
78806 16

 34. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for
generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101.
https:// doi. org/ 10. 1021/ ci000 62a008

 35. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf
Model 50:742–754. https:// doi. org/ 10. 1021/ ci100 050t

 36. Downs GM, Gillet VJ, Holliday JD, Lynch MF (1989) Review of ring percep-
tion algorithms for chemical graphs. J Chem Inf Comput Sci 29:172–187.
https:// doi. org/ 10. 1021/ ci000 63a007

 37. Efraimidis PS, Spirakis PG (2006) Weighted random sampling with a reser-
voir. Inf Process Lett 97:181–185. https:// doi. org/ 10. 1016/j. ipl. 2005. 11. 003

 38. Globus AI, Lawton J, Wipke T (1999) Automatic molecular design using
evolutionary techniques. Nanotechnology 10:290–299. https:// doi. org/
10. 1088/ 0957- 4484/ 10/3/ 312

 39. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analy-
sis. J Am Stat Assoc 47:583–621. https:// doi. org/ 10. 1080/ 01621 459. 1952.
10483 441

 40. Mann HB, Whitney DR (1947) On a test of whether one of two random
variables is stochastically larger than the other. Ann Math Stat 18:50–60

 41. Šidák Z (1967) Rectangular confidence regions for the means of multivari-
ate normal distributions. J Am Stat Assoc 62:626–633. https:// doi. org/ 10.
1080/ 01621 459. 1967. 10482 935

 42. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and fragment
contributions. J Cheminformatics 1:1–11. https:// doi. org/ 10. 1186/
1758- 2946-1-8

https://doi.org/10.1038/nrd1799
https://doi.org/10.1038/nrd1799
https://doi.org/10.1016/j.drudis.2021.05.019
https://doi.org/10.1016/j.drudis.2021.05.019
https://doi.org/10.1021/ja401184g
https://doi.org/10.1021/ja401184g
https://doi.org/10.1021/acs.jcim.6b00754
https://doi.org/10.1021/acs.jcim.6b00754
https://doi.org/10.1021/cc0000388
https://doi.org/10.1038/nchembio.188
https://doi.org/10.1517/17460441.2015.1060216
https://doi.org/10.1021/jm401411z
https://doi.org/10.1021/jm401411z
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1021/ci970429i
https://doi.org/10.1021/ci970429i
https://doi.org/10.1023/A:1008184403558
https://doi.org/10.1023/A:1008184403558
https://doi.org/10.1021/ci0503560
https://doi.org/10.1021/ci0503560
https://doi.org/10.1002/cmdc.200800178
https://doi.org/10.1021/ci9000458
https://doi.org/10.1021/ci9000458
https://doi.org/10.1371/journal.pcbi.1002380
https://doi.org/10.1186/s13321-017-0235-x
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1002/minf.202100207
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1186/s13321-022-00582-y
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1021/acs.jcim.0c00675
https://doi.org/10.1093/nar/gkac956
https://doi.org/10.1002/ail2.17
https://doi.org/10.1002/ail2.17
https://doi.org/10.1186/1758-2946-6-7
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1021/acs.jcim.1c01334
https://doi.org/10.1002/chin.200431198
https://doi.org/10.1002/chin.200431198
https://doi.org/10.1186/s13321-020-00458-z
https://doi.org/10.1186/s13321-020-00458-z
https://doi.org/10.5281/zenodo.7880616
https://doi.org/10.5281/zenodo.7880616
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci00063a007
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1088/0957-4484/10/3/312
https://doi.org/10.1088/0957-4484/10/3/312
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8

Page 17 of 17Kerstjens and De Winter Journal of Cheminformatics (2023) 15:89

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 43. Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the chemical
beauty of drugs. Nat Chem 4:90–98. https:// doi. org/ 10. 1038/ nchem. 1243

 44. Fisher RA (1992) Statistical methods for research workers. In: Kotz S, John-
son NL (eds) Breakthroughs in Statistics: methodology and distribution.
springer, New York, NY, pp 66–70

 45. Dunnett CW (1955) A Multiple comparison procedure for comparing
several treatments with a control. J Am Stat Assoc 50:1096–1121. https://
doi. org/ 10. 1080/ 01621 459. 1955. 10501 294

 46. Pearson K (1901) LIII. On lines and planes of closest fit to systems of
points in space. Lond Edinb Dublin Philos Mag J Sci 2:559–572. https://
doi. org/ 10. 1080/ 14786 44010 94627 20

 47. Kutchukian PS, Vasilyeva NY, Xu J et al (2012) Inside the mind of a medici-
nal chemist: the role of human bias in compound prioritization during
drug discovery. PLoS ONE 7:e48476. https:// doi. org/ 10. 1371/ journ al. pone.
00484 76

 48. Hückel E (1937) Grundzüge der theorie ungesättigter und aromatischer
verbindungen. Z Für Elektrochem Angew Phys Chem 43:752–788.
https:// doi. org/ 10. 1002/ bbpc. 19370 430907

 49. Lepetit C, Chermette H, Gicquel M et al (2007) Description of carbo-
oxocarbons and assessment of exchange-correlation functionals for the
DFT description of carbo-mers. J Phys Chem A 111:136–149. https:// doi.
org/ 10. 1021/ jp064 066d

 50. Gao W, Coley CW (2020) The synthesizability of molecules proposed by
generative models. J Chem Inf Model 60:5714–5723. https:// doi. org/ 10.
1021/ acs. jcim. 0c001 74

 51. Steinmann C, Jensen JH (2021) Using a genetic algorithm to find mol-
ecules with good docking scores. PeerJ Phys Chem 3:e18. https:// doi. org/
10. 7717/ peerj- pchem. 18

 52. Voršilák M, Svozil D (2017) Nonpher: computational method for design of
hard-to-synthesize structures. J Cheminformatics 9:1–7. https:// doi. org/
10. 1186/ s13321- 017- 0206-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/nchem.1243
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1371/journal.pone.0048476
https://doi.org/10.1371/journal.pone.0048476
https://doi.org/10.1002/bbpc.19370430907
https://doi.org/10.1021/jp064066d
https://doi.org/10.1021/jp064066d
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.7717/peerj-pchem.18
https://doi.org/10.1186/s13321-017-0206-2
https://doi.org/10.1186/s13321-017-0206-2

	A molecule perturbation software library and its application to study the effects of molecular design constraints
	Abstract
	Introduction
	Methods
	Property perturbations
	Topological perturbations
	Molecule sanitization
	Modes of operation
	Constraints
	Property and perturbation sampling
	Chemical space connectivity
	Benchmark

	Results
	Discussion
	Conclusion
	Anchor 16
	Acknowledgements
	References

