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Abstract 

Computational molecular design can yield chemically unreasonable compounds when performed carelessly. A popu-
lar strategy to mitigate this risk is mimicking reference chemistry. This is commonly achieved by restricting the way 
in which molecules are constructed or modified. While it is well established that such an approach helps in designing 
chemically appealing molecules, concerns about these restrictions impacting chemical space exploration negatively 
linger. In this work we present a software library for constrained graph-based molecule manipulation and showcase 
its functionality by developing a molecule generator. Said generator designs molecules mimicking reference chemi-
cal features of differing granularity. We find that restricting molecular construction lightly, beyond the usual positive 
effects on drug-likeness and synthesizability of designed molecules, provides guidance to optimization algorithms 
navigating chemical space. Nonetheless, restricting molecular construction excessively can indeed hinder effective 
chemical space exploration.

Keywords Molecular design, Software library, RDKit, De novo molecule generation, Constraints, Topological 
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Introduction
Many cheminformatics problems can be framed as 
searches through chemical space to find molecules with 
desirable properties. Examples include de novo molecu-
lar design [1, 2] and chemical library design [3, 4]. A 
popular way of exploring chemical space involves itera-
tively designing molecules and assaying them for proper-
ties of interest with one or multiple fitness or objective 
functions. A search or optimization algorithm, guided 
by the aforementioned objective functions, decides the 
regions of chemical space that are probed next based 
on the outcomes of the previous assays. Chemical space 

can be thought of as a multidimensional similarity-based 
arrangement of molecules. A molecule corresponds to a 
point in chemical space, and similar molecules, accord-
ing to some criterion, are close to each other in chemical 
space. Depending on the application, different similar-
ity criteria may be used to define chemical space [5–7]. 
Of interest to us is a chemical space defined based on 
molecular graph similarity, where molecules with simi-
lar topologies are proximal. It is believed that molecules 
with similar structures possess similar properties [8, 9]. 
Indeed, this has become one of the cornerstone theorems 
of molecular design. Hence, it’s common for optimization 
algorithms to wish to explore regions of chemical space 
surrounding reference molecules with promising proper-
ties, with the hopes of finding even more appealing mol-
ecules in their neighborhood. The problem of sampling 
molecules from these regions then becomes that of gen-
erating molecules “neighboring” the reference molecule. 
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Traditionally this has been done by applying small modi-
fications or perturbations to the reference molecule [1].

A fitness landscape describes the fitness of all mol-
ecules in chemical space. The goal of drug discovery is 
to find molecules residing in the extrema of said land-
scape, that is, molecules for which the objective is either 
minimal or maximal. Drug discovery is inherently a 
multi-objective optimization problem, with the primary 
objective of designing biologically active molecules, 
and secondary objectives such as synthesizability and 
drug-likeness. Each of these objectives can be expressed 
explicitly through an individual fitness function, with a 
corresponding fitness landscape. One can optimize these 
objectives explicitly in parallel [10, 11]. However, defin-
ing and optimizing many objectives simultaneously can 
be challenging. Some authors try to evade the challenges 
of multi-objective optimization by considering explicitly 
only the primary objective and capturing the secondary 
objectives implicitly by constraining the molecular gen-
eration process to imitate known and desirable chemis-
try [12–22]. This effectively blocks access to certain areas 
of chemical space (Fig. 1). A large corpus of enumerated 
molecules with desirable secondary objectives exists 
[23–25], and it’s reasoned that constraining the molecu-
lar design process to only generate compounds similar 
to those in the corpus will yield molecules with desirable 
properties.

Many accounts describe the effectiveness of this 
approach to improve the drug-likeness and synthetic 
accessibility of generated molecules [12–22], but it’s not 
without drawbacks. The constraints imposed on mol-
ecule construction manifest themselves as barriers in 
search space, restricting the optimization algorithm’s 

freedom [22, 26]. These barriers may prevent accessing 
undesirable molecules, but inadvertently they may also 
hinder or impede discovering potentially appealing mol-
ecules, especially those that are most novel and resemble 
known chemistry the least.

Consider some molecular generation scheme that can 
modify a reference molecule to yield related molecular 
entities. In this case chemical space can be visualized as 
a transition graph (previously termed a “morph graph” 
[27]), where vertices symbolize accessible molecules, and 
edges symbolize transitions between them (Fig.  2). The 
topology of this graph is dependent on the constraints 
of the chosen molecule generator. Generally speaking, 
atom-based approaches define a more populous graph 
than fragment-based approaches since a larger number 
of chemical states is accessible. The density of the graph 
(that is, the ratio between the existing number of edges 
and the theoretical maximum number of edges) depends 
on the strictness of the perturbation rules. Approaches 
with strict rules will define a sparse graph, while 
approaches with lax rules will define a dense graph.

Suppose that a chemical space search starts at a known 
molecule A. The goal is to find some unknown molecule 
B that exhibits good objective values. The more populous 
the transition graph, the more probable it will be that 
desirable molecules are part of it and therefore discovera-
ble. The perfect optimization algorithm would define the 
shortest path between A and B. Such an ideal algorithm 
would benefit from a very populous and dense transition 
graph, as in these graphs paths between pairs of vertices 
tend to be shorter (Fig. 2).

Sadly, we don’t have access to these utopian search 
algorithms. In absence of omniscient oracles that reveal 

Fig. 1 A section of graph-like chemical space with an excluded area (center). The exclusion stems from molecular construction constraints 
and corresponds to a maximum on an undesirability objective landscape (red)
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B and the path towards it, our algorithms must err on 
the side of exploration. Thorough exploration of very 
populous and dense graphs is computationally intracta-
ble. Trimming the size and density of the search graph 
in a chemically meaningful way could provide guidance 
to algorithms that otherwise would wander around 
unpromising regions of chemical space without a clear 
sense of direction.

In summary, when it comes to predicting the effect of 
molecular construction constraints on the fitness of the 
designed molecules, we are faced with two opposing 
hypotheses. The constraints may either hinder or facili-
tate chemical space exploration, and what the outcome 
will actually be is poorly understood.

Pieces of the answer lay scattered throughout the 
literature. Unfortunately, every study performs dif-
ferent experiments using different software, making 
it impossible to isolate the effect of any one variable. 
Attempts have been made to standardize experiments 
with benchmark suites [28–30], yet software is rarely 
standardized. Fully standardizing software is an impos-
sible and arguably undesirable task as scientific meth-
odologies are ever evolving. However, when it comes to 

graph-based molecule edition many commonalities can 
be found between different implementations.

We set out to create a software library for graph-
based molecular edition providing the common 
denominator of functionality of previous implementa-
tions [3, 27, 31, 32]. We’ve named this library Molpert. 
Key considerations during the design were flexibility, 
extendibility, interoperability and ease of use. Molecule 
perturbations are atom-based, as fragment-based edi-
tion can be described in function of the former but not 
vice versa. Molecules are treated as graphs and modi-
fied without any sort of chemical considerations. This 
is by design as we didn’t want to impose our own biases 
and ways on others. Instead, users can specify them-
selves the properties the designed molecules ought to 
fulfill through means of arbitrary constraints. Mecha-
nisms are foreseen to extend the functionality of the 
library should the provided functionality not suffice. 
Molpert is built on top of the RDKit, a highly popu-
lar and open-source cheminformatics toolkit [33], and 
integrates well with RDKit molecules. It has no other 
dependencies. A C + + and Python Application Pro-
gramming Interface (API) are both provided.

Fig. 2 Examples of transition graphs of different population and density. The shortest path between two vertices A and B is highlighted in orange. 
Note that the path is shorter if the graph’s population is lower or the density is higher. As the population and density decrease the probability 
of two vertices being connected decreases
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In this paper we describe Molpert and showcase how it 
can be applied to cheminformatics research. Specifically, 
we use it to build an evolutionary algorithm for mol-
ecule design and try to answer the question: “What are 
the consequences of constraining atom-based molecular 
construction?”.

Methods
Property perturbations
Perturbations included in the library can be broadly clas-
sified into those changing the molecular graph’s anno-
tations and those changing the graph’s topology. The 
former are trivial to understand and implement: each 
vertex (i.e. atom) and edge (i.e. bond) have a set of muta-
ble numeric properties that are independent from the 
rest of the graph and can be freely changed. For atoms 
these properties are (1) the atomic number, (2) formal 
charge and (3) number of explicit hydrogens. For bonds 
the only property of interest is the bond type, which in 
most instances is equivalent to the bond order. Each 
property has a list of allowed values and associated sam-
pling weights, both being user specified. By default the 
sampling weights are proportional to the property values’ 
frequencies in ChEMBL31 [23]. All properties have a cor-
responding perturbation to modify it.

Modifying the number of explicit hydrogens may seem 
superfluous as hydrogens are often treated implicitly. 
However, explicit hydrogens can be of importance to 
adjust the perception of implicit hydrogens. They are also 
one of the invariants used in topological fingerprint cal-
culation [34, 35]. Hence, being able to modify the num-
ber of explicit hydrogens is essential for good interplay 
with fingerprint-based scoring functions.

Topological perturbations
Topological perturbations refer to insertions and dele-
tions of atoms and bonds. These operations could be per-
formed by simply creating or destroying a single atom or 
bond. However, the resulting transformations may not 
match a chemist’s expectations about what these pertur-
bations should entail.

Consider a molecular graph G(V,E) with vertices or 
atoms  V and edges or bonds E. Naive implementation 
of topological perturbations may result, among other 
things, in a disconnected graph, that is, a graph in which 
there is a pair of atoms v and w between which no path 
exists. This is commonly undesirable unless the discon-
nected fragments represent salts.

To ensure that the graph remains connected an atom 
insertion requires bond insertions as well. Hence, 
inserting a new atom a involves (1) selecting the atomic 
properties of a, (2) selecting a set of k existing atoms N 
to which a will bond with k new bonds B (N ⊂ V, |N|= k, 

|B|= k) and (3) selecting the bond types of B. Possible 
values for a and B’s properties are sampled from a list 
of allowed values. k ranges between 1 and a user speci-
fied parameter defaulting to 3 to avoid a combinatorial 
explosion in possible outcomes. Up to k−1 cycles may 
be formed during this process. Cycle formation may be 
unwanted. For example, given an alkane one might want 
to extend the length of the chain without creating a 
cycle. In other words, one might want to insert an atom 
between other atoms. To do so we select as N a cen-
tral atom c and some atoms J adjacent to c (J = {j | c ~ j}, 
N = c ∪ J), and define a “dropped” atom p ∈ N. During 
insertion a and B are added and existing bonds between 
p and N – p are deleted. The destruction of some exist-
ing bonds allows the insertion of atoms in acyclic 
regions without the creation of cycles (Fig. 3). This only 
holds true if N is selected as described above such that 
all members of  N are adjacent to p (N = {n | n ~ p}). If 
N comprises arbitrary atoms and two atoms {v,w} ⊂ N 
are separated by a topological distance d(v,w) ≥ 2 a cycle 
necessarily forms. Nonetheless, specifying a dropped 
atom can help in the design of more relaxed topologies 
that aren’t as densely packed with cycles.

Bond insertion is simple, as it only involves the selec-
tion of two atoms v and w where the topological distance 
between them d(v,w) > 1, the selection of a bond type and 
the creation of the bond. Once again, this necessarily cre-
ates a cycle of d(v,w) + 1 atoms (Fig. 3). A minimum and 
maximum d(v,w) may be specified. This provides the user 
with some control over the size of the resulting cycles 
but more importantly limits the number of possible 
outcomes.

Bonds are defined by a pair of atoms. Consequently, 
deleting one such atom a destroys the bond. Consider a 
set of atoms N adjacent to a (N = {n | a ~ n}). The degree 
g of a is defined as g(a) =|N|. If g(a) ≤ 1 it is peripheral, 
and if g(a) > 1 it is internal. Peripheral atoms and inter-
nal atoms that are members of a cycle can always be 
deleted without disconnecting the graph. Internal atoms 
that aren’t part of a cycle separate two parts of the graph 
through a unique path. Hence, their deletion would result 
in a graph disconnection. To prevent this the atom dele-
tion may be followed by some bond formations. We 
define a “reconnection” atom r ∈ V, and create new bonds 
between r and N - (N ∩ r). This ensures that a path passing 
through r exists between all pairs of atoms of N after the 
deletion of a and that the graph remains connected. Typi-
cally r ∈ N. Intuitively, this corresponds to deleting a and 
one of its neighbors ni ∈ N taking its place by bonding to 
the remainder of the neighbors nj ∈ N - ni (Fig. 3). How-
ever, if the user allows it, one could also sample an arbi-
trary r within a given distance d(a,r) of a. This will result 
in the formation of a cycle of size d(a,r) when d(a,r) ≥ 3.
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Similarly to atom deletions, bond deletions result in 
graph disconnections if the bond isn’t a member of a 
cycle. To delete an acyclic bond without disconnecting 
the graph a new replacement bond vw must be formed. 
Similar operations have been previously described as 
“rerouting” the bond [27]. The newly bonded atoms 
v and w ought to be on opposite sides of the “choke-
point” defined by the deleted bond (Fig. 3). They must 
also be separated by a distance d(v,w) ≥ 2, as otherwise 
the same bond would be recreated. The user can specify 
a maximum distance d(v,w) to alter the topology less 
drastically.

The described perturbations are sufficient to access 
the entirety of chemical space when executed in the 
right order. When sampled randomly specific long 
sequences of perturbations are statistically unlikely. It 
may be of interest to execute some of these sequences 
of perturbations as a unit. For example, one might want 
to insert a fragment corresponding to a specific func-
tional group. It’s possible to combine the above elemen-
tal perturbations to create more complex operations.

Molecule sanitization
Perturbations treat molecular graphs more like mathe-
matical objects than chemical structures. Careless edition 
of the molecular graph is bound to result in chemi-
cally invalid structures. Notorious pain points include 
explicit hydrogen counts, stereochemistry and aromatic-
ity. Cheminformatics toolkits like the RDKit store atom 
and bond properties as integers within atoms and bonds 
themselves. These properties may be sensible when first 
calculated, but can lose their meaning after modifying 
the molecular graph. We employ a post-perturbation 
sanitization procedure that either alters these properties 
to sensible values or deletes them altogether.

A heavy atom’s hydrogen count is modified to the value 
resulting in the lowest valid valence for said atom. The list 
of valid valences per element is provided by the RDKit. 
When no hydrogen count would result in a valid valence 
the count is set to zero. Chiral center stereochemistry 
labels are kept where possible. If a former chiral center 
is no longer chiral after a perturbation its stereochemis-
try label is erased. Newly formed chiral centers are not 

Fig. 3 Examples of topological perturbations. Input and output molecules are depicted on the top and bottom respectively. Deleted atoms 
and bonds are highlighted in red while inserted atoms and bonds are highlighted in blue. In the atom insertion example N = {1, 2, 3} and p = {1}. In 
the atom deletion example N = {2, 3, 4, 5} and r = {2}
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assigned any stereochemistry labels. Bond stereochem-
istry labels are always erased. Aromaticity presents the 
most egregious problem. Bonds may have been flagged 
as aromatic once upon a time, yet these flags are kept 
indefinitely even after modifying the molecule. The naive 
solution would be to convert aromatic bonds to single 
bonds once aromaticity has been broken. In the context 
of editing molecules, aromatic systems are fragile as most 
topological perturbations will cause aromaticity to be 
invalidated. On the other hand, creating an aromatic ring 
system is much more challenging, as it requires atoms 
and bonds of the right types to be placed in the right 
positions simultaneously. When modifying molecules 
stochastically the sequence of events leading to the crea-
tion of an aromatic ring system is highly unlikely. In prac-
tice this means that most designed ring systems won’t be 
aromatic, which is uncharacteristic of organic molecules.

Molpert handles aromaticity in two different ways, 
depending on the user’s preference. The simplest option 
is to work with kekulized molecules only, that is, mol-
ecules where aromatic systems are represented by alter-
nating single and double bonds. Alternatively, one can 
work with “partially aromatic” molecules where the 
aromaticity flags are preserved, irrespective of whether 
they are valid at present time or not. For example, acy-
clic regions may be transiently labelled as aromatic. The 
former aromatic character of bonds is remembered and 
used to reestablish aromaticity in the future whenever 
conditions are right. When a molecule with valid aro-
maticity assignments is required, a sanitization proce-
dure can be applied. Acyclic regions labelled as aromatic 
are kekulized. Rings are defined as components of the 
Smallest Set of Smallest Rings (SSSR) [36]. Rings that 
are correctly flagged as fully aromatic are left untouched. 
Kekulized rings fulfilling aromaticity criteria are aro-
matized. Partially aromatic rings are sorted in descend-
ing order according to their number of aromatic bonds 
and sanitized. If the number of aromatic bonds in the 
ring is greater than half and the ring otherwise meets 
the requirements to be aromatic it’s aromatized. Other-
wise it is kekulized. Starting the sanitization process with 
the most aromatic rings allows aromaticity to propagate 
throughout fused ring systems (Fig. 4).

Modes of operation
Perturbations are implemented as objects specifying how 
a molecule will be modified. These objects are callable 
and can be invoked when the perturbation ought to be 
executed. The user may construct these objects directly 
for fine-grained control over the outcome of a perturba-
tion. For convenience we also provide factory functions 
that abstract away the details of constructing perturba-
tions. Said factories can systematically enumerate all 

possible perturbations that could be applied to a mol-
ecule. Enumeration may be restricted to specific types 
of perturbations and/or atom/bond targets. When used 
deterministically all generated perturbations fulfilling the 
constraints are stored in a queue. When used stochasti-
cally the iteration order is randomized and the first gen-
erated perturbation fulfilling the constraints is returned. 
The randomization relies on a weighted shuffle in such a 
way that perturbations featuring common property val-
ues are most likely to be tried first [37]. This reduces the 
number of perturbations that need to be tried before one 
fulfilling the constraints is found.

Constraints
While we designed the software to be able to generate 
any molecular graph, there may be instances where one 
wishes to use it to generate molecular graphs fulfilling 
specific criteria. This is enabled through constraints. In 
this context constraints are callback functions evaluating 
whether a molecule fulfills some arbitrary requirements. 
They take as input an atom, bond or molecule and return 
as output a boolean. A return value of “true” signals that 
the requirements are satisfied, whereas “false” signals the 
requirements aren’t met. Constraints may apply to one 
specific atom or bond. It’s therefore possible to constrain 
only certain parts of the molecule and to mix constraints 
as desired.

Constraints are enforced through trial and error. A 
queue of compatible perturbations is prepared. The per-
turbation at the front of the queue is applied to a copy of 
the molecule to simulate its outcome. The perturbed mol-
ecule is then forwarded to the constraints for evaluation. 

CH2

CH3

Fig. 4 Aromaticity sanitization example. Aromatic bonds are 
depicted as dashed bonds. Aromatic ring systems where all bonds 
are aromatic are depicted with internal circles. Partially aromatic 
ring systems are either aromatized or kekulized depending on their 
“degree of aromaticity”. Bonds incorrectly labelled as aromatic are 
kekulized
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If any constraint evaluates to “false” the perturbed mol-
ecule is discarded and the next perturbation is simulated. 
This process repeats until a perturbation satisfying all 
constraints is found or the queue is empty. The stricter 
the constraints the higher the perturbation attrition rate 
and with it the computational performance degradation.

For our experiments we explored different variants of 
atom and bond constraints. The most basic constraints 
are valence constraints. Each element is assigned a maxi-
mum allowed valence, and any atoms of said element with 
a lower or equal valence are accepted, under the assump-
tion that hydrogens can be added to pad the valence up to 
the closest valid value. The remainder of the constraints 
are key-based constraints. Atoms and bonds are charac-
terized with atom and bond keys respectively (Table  1, 
Fig. 5). An atom key is a tuple of integer properties char-
acterizing the atom. Depending on the properties used 
to define the key we distinguish between local atom keys 
made up of common atomic invariants [23, 24] (degree 
D, valence V, atomic number Z, formal charge Q and 
number of explicit hydrogens H) and ring-aware (RA) 
atom keys, which on top of the aforementioned atomic 
invariants include the number of SSSR rings the atom is 
involved (R) and the sizes of the smallest and largest SSSR 

rings it is involved in (NR and XR respectively). Bond keys 
are defined through combination of the bonded atoms’ 
keys and the bond’s type (B). Lastly, we also define atomic 
environment keys as the hashes of circular atomic envi-
ronments, akin to the Extended Connectivity Fingerprint 
(ECFP) algorithm [35]. Environments of topological radii 
1 (r = 1) and 2 (r = 2) were studied.

We determined the set of keys found in drug-like mole-
cules, specifically ChEMBL31 [23], and recorded them in 
dictionaries, one for each key type. Given one such dic-
tionary and a query molecule, a key based constraint cal-
culates the same type of keys for the query molecule and 
compares said keys to the dictionary’s keys. If the query 
molecule exhibits keys that aren’t part of the dictionary 
the constraint evaluates to false and the query molecule 
is rejected.

Property and perturbation sampling
Some molecular perturbations, namely property pertur-
bations, atom insertions and bond insertions must sam-
ple atom and/or bond properties. The properties being 
sampled are atomic numbers, formal charges, explicit 
hydrogen counts and bond types. Property values are 
sampled from pre-defined sets of allowed values. When 
perturbations are enumerated deterministically each 
allowed value is used to construct one perturbation. 
When perturbations are generated stochastically a single 
allowed value is randomly sampled to construct a single 
perturbation, with each value having an associated sam-
pling probability.

While the user may provide their own sampling values 
and probabilities, we provide some reasonable defaults. 
For each property we recorded the frequency of occur-
ring values in ChEMBL31 [23], as well as the mode (i.e. 
the most frequent value). Property values occurring with 
a frequency larger than 0.01% are considered allowed and 

Table 1 Overview of the molecular keys used to characterize 
molecules and constrain molecular perturbation

Molecular key Key structure

Local atom key (D, V, Z, Q, H)

Ring-aware atom key (R, XR, NR, D, V, Z, Q, H)

Local bond key (LB) (D1,  V1,  Z1,  Q1,  H1,  D2,  V2,  Z2,  Q2,  H2, B)

Ring-aware bond key (RAB) (R1,  XR1,  NR1,  D1,  V1,  Z1,  Q1,  H1,  R2, 
 XR2,  NR2,  D2,  V2,  Z2,  Q2,  H2, B)

Local environment key Hash ({LB1,  LB2 …  LBn})

Ring-aware environment key Hash ({RAB1,  RAB2 …  RABn})

Fig. 5 Example molecular keys. The color highlighted atoms are characterized with atom keys, and the color highlighted bond between them 
characterized with a bond key. The nitrogen’s circular atomic environment of radius 1 is shown as a dotted outline and characterized with the hash 
of its bonds’ keys, resulting in seemingly random numbers. For the meaning of each integer see Table 1
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may be sampled with probabilities proportional to the 
values’ frequencies. The mode is taken as a default prop-
erty value and, at the discretion of the user, may replace 
the list of allowed values to reduce the number of pertur-
bations resulting from deterministic enumeration.

Property values for a specific atom or bond are sampled 
independently from the rest of the atom’s or bond’s prop-
erties and independently from their surrounding chemi-
cal environment. As an exception one may opt to sample 
atomic numbers and bond types with different probabili-
ties depending on whether the atom/bond is part of a 
ring or not. The main motivation behind this exception 
is to preferentially place aromatic and double bonds in 
rings, and triple bonds in acyclic structures.

When generating perturbations stochastically the user 
may or may not specify the type of the perturbation. 
Should they choose to not do so the library will randomly 
sample a perturbation type for them. Property perturba-
tions have sampling probabilities that are proportional 
to how often the property deviates from the mode. For 
example, since it’s rare to encounter charged atoms the 
probability of sampling a “formal charge change” pertur-
bation is low. Conversely, since it’s relatively common to 
encounter non-carbon atoms the probability of sampling 
an “atomic number change” perturbation is compara-
tively high.

Weighted property sampling is supposed to reduce 
the probability of stochastically generating a constraint-
infringing perturbation. To verify this assumption we 
took a subset of 10,000 ChEMBL molecules of varying 
sizes and generated 10 perturbations of each type for 
each molecule. We repeated the process twice sampling 
property values from either a uniform distribution or 
from the aforementioned ChEMBL-derived distribu-
tion. We then measured the perturbation rejection rate 
according to different molecular constraints.

Chemical space connectivity
Stricter constraints are associated with sparser chemi-
cal spaces (Fig. 2). One can quantify the stringency of a 
set of constraints by calculating the average degree of the 
corresponding chemical transition graph. We stratified 
ChEMBL31 [23] according to the molecules’ heavy atom 
counts (HAC), and sampled 1000 random molecules 
every 5 HAC between 10 and 50 HAC. Two molecules 
are considered to be neighbors in chemical space if they 
are separated by a single edge in the chemical transition 
graph, that is, a single perturbation. Molpert was used to 
deterministically enumerate all perturbations applicable 
to each molecule of the aforementioned ChEMBL sub-
sets. Said perturbations were subsequently executed to 
enumerate the molecule’s neighbors. Different perturba-
tions may result in the same neighbor, but only unique 

neighbors were kept. The process was repeated using 
different sets of constraints, and the number of pertur-
bations resulting in constraint-infringing neighbors was 
recorded. The average number of neighboring molecules, 
equal to the average degree of the transition graph, was 
taken as a measure of the constraints’ stringency.

Benchmark
Two experiments were performed to evaluate the effects 
constraints have on atom-based chemical space explo-
ration. To evaluate the effects constraints have on mol-
ecule fitness we developed an evolutionary algorithm 
using Molpert to mutate and recombine molecules. The 
algorithm was modelled after LEADD [22], a previously 
published evolutionary algorithm. Recombination isn’t a 
core part of Molpert, but simple digestion-based recom-
bination operators [31, 38] are made available as addons. 
Every time a molecule is mutated we check if the result-
ing molecule satisfies the constraints. If it doesn’t the 
mutated molecule is discarded. The algorithm was tasked 
to design molecules maximizing the scores of GuacaMol 
goal-directed benchmark scoring functions [28]. Briefly, 
the GuacaMol goal-directed benchmark suite consists of 
20 benchmarks with corresponding ligand-based objec-
tive functions that score molecules in the [0, 1] range, 
with higher scores being better. Some benchmarks 
demand the generation of a population of molecules, in 
which case the total benchmark score is calculated as a 
population weighted average. We opted out of this last 
step and took as score the fitness of the top molecule 
only. In our algorithm population diversity is enforced 
through means of a topological similarity threshold [22]. 
Due to this filter the remainder of the population is by 
design subpar and present solely to facilitate the evolu-
tion of the top molecule. Since evolutionary algorithms 
are stochastic one will presumably want to run multiple 
independent replicas anyways, sourcing the top molecule 
of each run. We ran the benchmark 50 times for each 
type of constraint recording the top molecule of each 
replica. Jobs were given a maximum of 72 h core hours. 
Some jobs for strict constraints failed to complete within 
this time, reducing the sample size (Additional file  1: 
Table  S1). Differences in molecule fitness between the 
“no constraints” control group and constraints groups 
were analyzed using the non-parametric Kruskal–Wallis 
H-test [39] followed by pairwise Mann–Whitney U-tests 
[40] with Šidák correction [41]. α = 0.05 was taken as sig-
nificance level and family-wise error rate.

To evaluate the chemical appeal and novelty of mole-
cules we designed 1000 random molecules using each set 
of constraints. Said molecules, hereon forward referred 
to as Randomly Designed Molecules (RDM), were con-
structed through successive atom and bond insertions, 
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aiming to create a molecule of 29 heavy atoms and 32 
bonds, which corresponds to the average number of 
heavy atoms and bonds of molecules in ChEMBL31 [23]. 
Synthesizability and drug-likeness were assessed through 
means of the SAScore [42] and Quantitative Estimation 
of Drug-likeness (QED) [43] respectively. ChEMBL31 
was used as reference synthesizable chemistry for SAS-
core calculations. Differences between distributions were 
analyzed with one-way Analysis Of Variance (ANOVA) 
[44] followed by Dunnett’s test [45]. α = 0.05 was taken 
as significance level and family-wise error rate. Chemi-
cal novelty was evaluated qualitatively by embedding 
the molecules into a 2D continuous chemical space and 
studying their location. Said chemical space was defined 
by characterizing molecules as binary 2048-bit ECFP4 
fingerprints [35] and reducing their dimensionality with 
Principal Component Analysis (PCA) [46].

Optimizing molecules according to some objective 
function by design biases the regions of chemical space 
that are sampled. This is particularly true for the Gua-
caMol scoring functions, many of which incorporate 
topological similarity to some reference molecule as a 
component [22, 28]. We chose to study the chemical 
appeal and novelty of RDM as opposed to that of the opti-
mized molecules resulting from the benchmark because 

we wanted to distinguish which effects are attributable 
to the constraints and which ones to the scoring func-
tion. Nonetheless, for completeness’ sake we repeated all 
analyses on the optimized molecules as well. Interested 
readers can find the corresponding results in the supple-
mentary material (Additional file 1: Figures S2–S6, Tables 
S6–S7).

Results
To rationalize the effects constraints have on molecular 
design it is important to study the extent to which they 
trim the chemical space transition graph. Figure  6A 
shows the average degree of said graph for different types 
of constraints. A higher average degree is indicative of a 
denser graph and therefore laxer constraints, whereas a 
lower average degree is indicative of sparser graphs and 
stricter constraints. The differences in graph density can 
be explained by discrepancies in the number of pertur-
bations or moves that are rejected by the constraints 
Fig. 6B).

Generally speaking, constraints are stricter the more 
variables define the corresponding key. Accordingly, 
ring-aware (RA) constraints are stricter than local con-
straints, environment constraints are stricter than bond 
constraints, and bond constraints are stricter than atom 

Fig. 6 A Average number of neighboring molecules for molecules in ChEMBL based on their size and molecular constraints. The lower the number 
of neighbors the sparser the chemical transition graph. B Fraction of accepted perturbations broken down by perturbation type. The remainder 
of the perturbations were rejected by the molecular constraints
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constraints. Counterintuively valence constraints appear 
to be stricter than certain key-based constraints that 
encompass valence. This stems from differences in the 
definitions of valid valences. For valence constraints a 
rather conservative list of allowed valences hard coded 
within the RDKit is used. For key-based constraints 
allowed values are extracted from a large library of ref-
erence molecules. Should one find within this library a 
few examples of atoms with unusual valences this would 
suffice for said valences to be considered valid. Moving 
forward results will be color coded according to the con-
straint stringency order described in Fig. 6.

It is well established that constraining the way in which 
molecules are constructed increases the likelihood of 
designing chemically appealing molecules [12–22]. Fig-
ure  7 shows how the synthetic accessibility of RDM, as 
measured with the SAScore [42], increases with design 
constraints becoming stricter. Our constraints restrict 
the designed molecules to topological features present in 
reference molecules, with the differences between them 
being in the granularity of these features. As the granu-
larity increases so does the algorithm’s ability to mimic 
the topology of reference molecules. Since the SAScore 
is partially calculated based on topological similarity to 
reference chemistry this result is to be expected.

Figure  8 shows some examples of molecules designed 
using different types of constraints. While subjective, 

molecules designed using stricter constraints are chemi-
cally more appealing. It has been noted that one of the 
main factors explaining chemists’ willingness to pursue 
synthesis or further development of a compound is the 
molecule’s ring complexity [47]. The use of ring-aware 
constraints discourages the design of complex ring sys-
tems. One could argue that the use of strict constraints 
leads to the design of “plain” molecules, rich in carbons 
and single bonds yet poor in functional groups. This fore-
shadows that excessively restricting molecular construc-
tion may be undesirable. Regardless of the constraints 
used, RDM are unlikely to contain aromatic systems 
(Fig.  8, Additional file  1: Table  S4). As discussed previ-
ously, the creation of aromatic rings requires very spe-
cific arrangements of single and double bonds that are 
unlikely to occur by chance. This illustrates the value of 
the proposed partial aromaticity treatment.

The use of constraints also seems to improve the drug-
likeness of the designed molecules as measured with the 
QED [43] (Fig.  9). QED is calculated based mostly on 
physicochemical descriptors, yet our constraints don’t 
consider physicochemical descriptors explicitly. Further 
analysis reveals that the main driver for QED improve-
ments is a reduction in the number of undesirable 
substructures (i.e. structural alerts) (Additional file  1: 
Table S4). A drop-off in QED is observed for RA environ-
ment (r = 2). This is explained by the designed molecules 

Fig. 7 SAScore distributions of RDM using different types of constraints. Medians are shown as black lines. Lower SAScores are indicative 
of an easier synthesis. Stars on top of the distributions indicate statistically significant differences with the “no constraints” control group. A more 
detailed statistical analysis can be found in Additional file 1: Table S2
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having over double the number of rotatable bonds one 
might expect to find in molecules designed with other 
constraints or drug-like molecules (Additional file  1: 
Table S4). RA environment (r = 2) constraints are so strict 
that oftentimes the only allowed atom insertion is that 
of carbons in existing hydrocarbon features, resulting in 
long and flexible molecules (Fig. 8).

We would like to clarify that within Molpert the only 
dependable source of molecule correctness are the 
molecular constraints. Weighted property sampling 
reduces the probability of stochastically generating per-
turbations that would infringe upon the constraints, but 
doesn’t prevent it (Additional file 1: Figure S7). Weighted 
sampling should thus be seen more as an algorithmic 
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Page 12 of 17Kerstjens and De Winter  Journal of Cheminformatics           (2023) 15:89 

efficiency optimization than a strategy to design reason-
able molecules.

One could be concerned that imitating reference chem-
istry stifles chemical innovation. To investigate this con-
cern, we visualized the positions of designed molecules in 
a 2D chemical space, using ChEMBL [23] as a reference 
space (Fig. 10). There is some overlap between ChEMBL 
and designed molecules, but the latter are skewed 
towards the less densely populated areas of chemical 
space, regardless of the constraints used. It should be 
noted that a 2D projection of chemical space is overly 
simplistic, with distances between molecules appear-
ing to be smaller than they truly are. Hence the designed 
molecules are more distinct from ChEMBL than what 
Fig. 10 might indicate. We believe that the designed mol-
ecules are sufficiently novel.

The effect constraints have on compound fitness during 
molecular optimization is poorly understood. Figure  11 
shows the optimization power of a Molpert-based evolu-
tionary algorithm in the GuacaMol benchmark suite [28] 
using different types of constraints. As a reminder, con-
straints are enforced every time a molecule is mutated. 
Using mild constraints, that is, anything between local 
and RA bond constraints, leads to significantly improved 
molecule fitness over unconstrained molecular design. 
RA bond constraints performed best, followed closely by 
local environment (r = 1) and RA atom constraints. RA 

Fig. 9 QED distributions of RDM using different types of constraints. Medians are shown as black lines. Higher values are indicative of more 
drug-like molecules. Stars on top of the distributions indicate statistically significant differences with the “no constraints” control group. A more 
detailed statistical analysis can be found in Additional file 1: Table S3

Fig. 10 Positions of RDM in 2D PCA space. The grayscale grid 
represents the density of ChEMBL molecules in chemical space 
on a linear scale, with darker cells being more densely populated
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environment (r = 1) constraints are equivalent to uncon-
strained molecular design in terms of molecule fitness. 
Stricter constraints, namely environment (r = 2) con-
straints are markedly worse.

The results in Fig. 11 suggest that there is a constraint 
stringency sweet spot that trims the search graph in 
just the right way to facilitate the optimization process. 
Upsettingly the exact location of this sweet spot depends 
on the individual benchmark (Additional file  1: Figure 
S1). The most common pattern is a fitness maximum 
at some constraint stringency middle point such as RA 
bond constraints, with laxer and stricter constraints 
both performing worse. Even in the cases where fitness 
is unaffected by constraint choice most constraints seem 
to be tolerated. This is an encouraging result as the pri-
mary use of constraints in molecular design is to increase 
the likelihood of designing drug-like and synthesizable 
molecules.

Two peculiar cases are those of Celecoxib and Trogl-
itazone rediscovery, where very pronounced fitness dif-
ferences are observed between local and RA constraints 
(Additional file  1: Figure S1). Visual inspection of the 
designed molecules reveals that when using local con-
straints the algorithm correctly rediscovers many of 

the reference molecule’s features, but proposes alterna-
tive ring systems. In rediscovery benchmarks the goal is 
to re-design a reference molecule, with the score being 
given by the topological similarity to the reference mol-
ecule. Topological similarity is assessed through means 
of ECFP4 fingerprints similarity [35], with two mole-
cules being similar if they share many chemical features. 
Crucially, it is not required for the features to be in the 
same position for two molecules to be deemed similar. 
Celecoxib and troglitazone possess multiple benzene 
rings, with paths of aromatic carbons as features. The 
algorithm is rewarded for designing molecules with aro-
matic carbons, but this reward is the same regardless of 
the topology and size of the ring systems. Limiting the 
sizes of designed rings with RA constraints can prevent 
the algorithm from being led astray and towards macro-
cycles by the scoring function (Fig. 12).

It’s worth noting that molecular design constraints 
can add considerable computational overhead (Fig.  13). 
This is especially true for Molpert since constraints are 
enforced in a naive fashion. The slow down stems from a 
higher perturbation rejection rate for stricter constraints, 
prolonging the search for a suitable perturbation. Inter-
estingly the number of molecules designed before the 

Fig. 11 Distributions of top molecule scores, as assessed by the GuacaMol goal-directed scoring functions. Medians are shown as black lines. Only 
the best molecule of each population is included. The benchmark suite consists of 20 individual benchmarks, but for clarity’s sake the results of all 
benchmarks were aggregated. A per-benchmark breakdown can be found in Additional file 1: Figure S1. Stars on top of the distributions indicate 
statistically significant differences with the “no constraints” control group. A more detailed statistical analysis can be found in Additional file 1: 
Table S5
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algorithm reaches convergence is moderately lower 
for stricter constraints. For the vast majority of objec-
tive functions this decrease is insufficient to offset the 

increased perturbation cost. Nonetheless, when working 
with very expensive objective functions the cost of per-
turbing molecules can be negligible compared to the cost 
of scoring them, making the use of constraints as conver-
gence acceleration strategy an appealing proposition.

Discussion
Our results indicate that moderately constraining molec-
ular construction has a net positive effect as it increases 
both the synthesizability and fitness of designed mol-
ecules. Nonetheless one must care to not choose 
excessively strict constraints as this can cause a sharp 
degradation of molecule fitness. As a guideline we recom-
mend constraining bond or small environment proper-
ties and, if necessary, ring topologies. However, while the 
results presented herein apply to atom-based evolution-
ary algorithms, they may not be extrapolatable to alter-
native molecular optimization schemes. Evolutionary 
algorithms are powerful optimizers capable of navigat-
ing complex search spaces. Other algorithms such as tree 
searches may be less tolerant of barriers in search space 
and therefore construction constraints. We developed a 
simple tree search algorithm to test this hypothesis but 
found the fitness of the designed molecules too poor to 
extract any useful conclusions. Evolutionary algorithms 
are heuristic gradient-free optimization algorithms. They 
wander around chemical space until they stumble upon 
good solutions by chance. For an algorithm lacking a 
sense of direction the very dense chemical spaces char-
acteristic of unconstrained molecular construction can 
seem like a maze with many “false paths”. Gradient-based 

Fig. 12 Celecoxib (A), troglitazone (C) and examples of molecules 
designed during their rediscovery benchmark using local bond 
constraints. The designed molecules (B) and (D) score relatively high 
(0.62 and 0.69 respectively) due to the presence of common chemical 
features albeit in different positions. Note that the 10-membered 
cycles in (B) and (D) are deemed aromatic by Hückel’s rule [48] 
and the RDKit, despite not being aromatic due to ring strain [49]

Fig. 13 Number of molecules designed to reach convergence (left) and the number of perturbations executed per second (right) stratified 
per constraint type. Performance numbers are for a single-threaded workload on an AMD Epyc 7452 CPU clocked at 2.35 GHz
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optimization algorithms do have a sense of direction and 
may benefit from unconstrained molecular design.

Versatility was a major consideration when designing 
the Molpert. Unfortunately, in software development 
versatility often comes at the cost of computational effi-
ciency. Molpert is efficient at unconstrained molecular 
design, but this efficiency decreases with constraint strin-
gency. Despite the decreased efficiency molecular design 
remained a tractable task. If one were to settle on an 
immutable set of constraints that molecules must fulfill 
it would indubitably be possible to write more specialized 
and performant algorithms. Should one wish to do so we 
would recommend using Molpert to build a prototype 
and confirm the effect of the envisioned algorithm and/
or constraints before committing resources to develop-
ing a performant solution. We wanted to be able to re-
use the code base in projects with differing requirements. 
Anecdotally during the development of the software we 
went through multiple iterations of more efficient yet less 
flexible constraint implementations, but kept encounter-
ing use cases that couldn’t be covered by those alternative 
systems. This cemented our conviction to support truly 
arbitrary constraints.

In lieu of using constraints one could embrace uncon-
strained molecular design. When using stochastic mol-
ecule generators molecule fitness follows a distribution. 
While unconstrained molecular design may yield less fit 
molecules on average, it still may occasionally result in 
high scoring molecules (Fig.  11). Sampling more times 
from a distribution with a lower median may be a supe-
rior strategy to sampling fewer times from a distribu-
tion with a higher median, provided that the variance is 
large enough (Fig. 11). The faster unconstrained molecu-
lar generation allows one to roll the dice more often in 
the same amount of time. Biasing the design towards 
synthesizable molecules remains possible in absence of 
constraints by incorporating synthesizability into the 
objective function [50, 51]. Ideally the objective function 
should be able to evaluate the fitness of potentially inva-
lid molecules resulting from unconstrained molecular 
design. Our benchmark shows that at least some scor-
ing functions are able to do so, and we hypothesize that 
most ligand-based scoring functions will share this abil-
ity. Machine learning models may excel at this task given 
their interpolation capabilities. Structure-based scoring 
functions requiring conformation generation or rely-
ing on knowledge-based parameters, such as molecular 
mechanics, might be less suited for this purpose. Even 
then one could return null or negative fitness values 
when a molecule can’t be evaluated, in which case the 
objective function acts as a constraint itself. Lastly, while 
it’s usually undesirable to design difficult to synthesize 
or even chemically invalid molecules some readers may 

find use in expressly generating these sorts of unreason-
able molecules, for example as negative training data for 
machine learning models [52].

Conclusion
Imposing moderate constraints on molecule construc-
tion techniques has a net positive effect, as it improves 
both the fitness and chemical appeal of the constructed 
molecules. One must care to not use excessively strict 
constraints as doing so would have a negative effect on 
molecule fitness. We demonstrated how Molpert can 
be used to develop molecular design applications. We 
believe Molpert is a useful tool for cheminformatics soft-
ware development, especially for prototyping, and hope 
it will relieve researchers from the burden of reinventing 
molecular graph edition.
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