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Abstract 

This article presents a quantitative structure–activity relationship (QSAR) approach for predicting the acid dissociation 
constant (pKa ) of nitrogenous compounds, including those within supramolecular complexes based on cucurbiturils. 
The model combines low-cost quantum mechanical calculations with QSAR methodology and linear regressions 
to achieve accurate predictions for a broad range of nitrogen-containing compounds. The model was developed 
using a diverse dataset of 130 nitrogenous compounds and exhibits excellent predictive performance, with a high 
coefficient of determination (R2 ) of 0.9905, low standard error (s) of 0.3066, and high Fisher statistic (F) of 2142. The 
model outperforms existing methods, such as Chemaxon software and previous studies, in terms of accuracy and its 
ability to handle heterogeneous datasets. External validation on pharmaceutical ingredients, dyes, and supramo-
lecular complexes based on cucurbiturils confirms the reliability of the model. To enhance usability, a script-like tool 
has been developed, providing a streamlined process for users to access the model. This study represents a significant 
advancement in pKa prediction, offering valuable insights for drug design and supramolecular system optimization.
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Graphical Abstract

Introduction
The concepts of acidity and basicity are fundamental to 
the understanding of chemistry and have been defined 
by various theories throughout history [2, 18, 19, 54, 55]. 
One such theory was introduced by Svante Arrhenius in 
1887 [2], who suggested that certain compounds can dis-
sociate into ions in solution and identified acids as those 
that yield a proton (H+ ) and bases as those that yield a 
hydroxide ion (OH− ). Another influential theory, the 
General Acid–Base Theory of Brönsted and Lowry [18, 
19, 55], emerged in 1923, defining acidity and basicity in 
terms of the tendency to donate or accept a H +.

Understanding the strength of a base is crucial in com-
prehending its behavior and acidity plays a pivotal role in 
this regard. The strength of a base is commonly expressed 
by considering the strength of its conjugated acid, with 
a weaker conjugated acid indicating a stronger base. The 
acidity constant (Ka ), which represents the equilibrium 
constant for the reaction between the acid and water, is 
used to quantitatively assess the strength of a base. For 
practical purposes, the pKa value, defined as the nega-
tive logarithm of the K a , is commonly employed [40]. The 
pKa value is an essential tool that serves as an indicator of 
the relative acidity or basicity of a compound and enables 
predictions of its protonation state or protomeric forms 
under different pH conditions [40]. Therefore, accurate 
determination of pKa holds immense significance across 
diverse fields, including medicinal chemistry [22, 29, 41, 
60], biochemistry [11, 23, 62, 68], environmental science 

[12, 15, 48, 50], chemistry of dyes [44, 65, 93] and supra-
molecular chemistry [10, 56, 88].

Recent research has focused on the phenomenon of 
supramolecular pKa shift, which involves a significant 
shift in the pKa value of nitrogenous compounds by 
forming supramolecular complexes with macrocyclic 
molecules such as cucurbiturils [7, 8, 14, 59, 64, 95]. This 
phenomenon is crucial for designing and optimizing 
supramolecular systems, with far-reaching implications 
in materials science [92, 98], catalysis [3, 28, 77] and the 
development of drugs and their delivery methods [26, 31, 
37, 49, 75].

In the pharmaceutical industry, accurate pKa values 
play a critical role in the design process of new drugs, as 
the acid/base character of a substance defines its biophar-
maceutical properties, which have a direct impact on the 
pharmaceutical formulation of the drug [60, 61]. Nitro-
gen-containing heterocycles are of particular interest in 
the pharmaceutical industry due to their diverse biologi-
cal activities [52, 53], with over 75% of FDA-approved 
drugs containing such structures [47]. The pKa values of 
these heterocycles provide information on the absorp-
tion, distribution, metabolism, excretion, and toxicity 
(ADMET) of the drug, which are crucial for the design 
process. Poor ADMET properties have been revealed 
as the cause for high attrition in the development phase 
[84].

Experimental methodologies for pKa determina-
tion have been extensively reviewed [74], but there are 
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still samples that are difficult or impossible to measure 
accurately. To overcome this challenge, computational 
approaches have emerged as a promising alternative, as 
they can simulate virtually any set of working conditions 
without requiring physical samples [81, 83, 94]. Conse-
quently, significant efforts have been directed toward 
developing accurate and reliable computational methods 
for predicting pKa values.

Among the most common computational approaches 
are First Principles and quantitative structure–activity 
relationship (QSAR) methods [81]. However, the accu-
racy of First Principles calculations in predicting pKa 
values relies heavily on the precise determination of the 
Gibbs free energy difference in solution, which poses a 
significant challenge [27, 73, 81]. This is mainly due to the 
difficulty in calculating the Gibbs free energy of the pro-
ton and solvation energies, which can lead to deviations 
in pKa values of up to 3 units [13, 73]. One way to address 
these systematic errors is by using the relative pKa 
approach [73, 81], which has demonstrated high accuracy 
and effectiveness in various solvents [83]. Nevertheless, 
this approach is limited by the availability of accurate pKa 
values for reference systems with structural similarity to 
the sample.

QSAR is a time-efficient and computationally less 
costly approach that predicts physical properties by con-
structing a multiple linear regression equation for a spe-
cific physical property as a function (P) of the selected 
molecular descriptors ( Xi ). The equation, represented as 
Eq. 1, assigns numerical coefficients ( ai ) to each molec-
ular descriptor, which serve as weighting factors to 
determine the respective contributions of the predictor 
variables [25, 81].

Although QSAR models are less costly than First Prin-
ciples, traditional QSAR methods have been hindered 
by lengthy calculation times, especially when quantum-
mechanical electronic descriptors are involved, particu-
larly in large molecules. As a result, the prediction of 
pKa has been impractical. However, the B97-3c method, 
based on density functional theory (DFT), has recently 
emerged as a reliable and low-cost solution [16]. This 
method effectively reduces computational time, thereby 
presenting a viable option for predicting pKa values in 
large molecules and supramolecular complexes.

QSAR models have extensively employed a wide range 
of descriptors to predict crucial properties, including pKa 
values [36, 42, 45, 46, 70, 76, 79, 81, 90]. Some of these 
descriptors include charge [39, 45, 79], electronic energy 
differences ( � E) [5, 6, 42, 79, 97], and the highest occu-
pied molecular orbital energy ( ǫHOMO ) [80, 86]. Despite 
the flexibility in choosing chemical descriptors and their 

(1)P = a0 + a1X1 + a2X2

combinations, reported QSAR models are limited to spe-
cific datasets or structures, resulting in varying levels of 
accuracy and model performance across different subsets 
of data. Such is the case of QSAR models for predicting 
pKa values [96], which show diminished accuracy when 
predicting pKa of basic compounds such as nitrogenous 
compounds [78]. These discrepancies may arise due 
to the lack of appropriate relationship or representa-
tion between the selected descriptors and the structural 
diversity present in the complete dataset. Consequently, 
developing reliable QSAR models for predicting pKa val-
ues in heterogeneous datasets has proven to be a persis-
tent challenge. To improve the generalizability of QSAR 
models and achieve higher precision in predicting pKa 
values, a more careful selection of chemical descriptors 
that effectively capture the structural variability within 
the entire dataset is necessary. This may involve the use 
of more specific descriptors or advanced variable selec-
tion methods.

The present incapacity to efficiently and accurately 
predict basic pKa values from heterogeneous data high-
lights the need for enhanced QSAR methodologies capa-
ble of achieving high accuracy regardless of the size and 
structure of the compound, as well as its inclusion in 
supramolecular host-guest systems. In light of this chal-
lenge, we propose and validate a comprehensive QSAR 
approach that utilizes the B97-3C low-cost density func-
tional theory to predict the basic pKa values of nitrogen-
containing compounds in aqueous solution at 25 ◦ C, 
both independently and within cucurbituril-based supra-
molecular complexes. This proposed approach represents 
a significant advancement toward predicting pKa shifts in 
supramolecular systems.

Results and discussion
The QSAR model
By employing a comprehensive approach that inte-
grates DFT [30], Conceptual Density Functional The-
ory (CDFT) [30], Molecular Electron Density Theory 
(MEDT) [24], and quantitative analysis of molecular sur-
face, prediction models for estimating pKa values were 
evaluated through statistical analysis. The best perform-
ing model was selected based on the results of this evalu-
ation (see “Methods” section)

The selected prediction model is represented in 
Eq. 2.1 The model was trained using a diverse set of 130 
nitrogenous compounds, which encompassed aromatic 
and non-aromatic cyclic amines as well as aliphatic 
amines (primary, secondary, and tertiary). A coefficient 

1 For the full equation, complete with error coefficients, please refer to 
Additional file 1: Equation S1.
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of determination (R2 ) of 0.9905 indicates an excellent fit 
of the data to the proposed model. The robustness of 
the model is further supported by a high Fisher statistic 
(F) of 2141.9289 and a relatively low standard error (s) 
of 0.3066. The root mean squared error (RMSE), 0.2982, 
and mean absolute error (MAE), 0.2440, provide addi-
tional evidence of the predictive accuracy of the model.

Our model (Eq.  2) includes a variety of descriptors cal-
culated in a vacuum environment and demonstrates 
remarkable performance when applied to a diverse set of 
nitrogenous compounds. The descriptors included in the 
model are the following:

• Energy of deprotonation ( � E) in kcal/mol: this 
descriptor measures the energy required to remove 
a proton from an acid. A higher � E value signifies 
that a greater amount of energy is needed to carry 
out the deprotonation, which results in a higher 
pKa value.

• HOMO–LUMO gap of deprotonation ( �HLGap ) in 
eV: this descriptor represents the change of energy 
gap between the highest occupied and lowest unoc-
cupied orbitals of the acid–base equilibrium. A 
higher �HLGap suggests a less reactive base, hence 
a lower pKa value.

• Mulliken electronegativity ( χM ) in eV: this descrip-
tor quantifies the ability of the base to donate a 
pair of electrons and accept a proton. A lower χM 
indicates a higher basicity, which contributes to a 
higher pKa value.

• Nonpolar surface area percentage ( %NPSA) of the 
base: this descriptor measures hydrophobicity and 
its influence on the solubility of the base in water. 
Bases with a higher %NPSA tend to have lower 
solubility, which leads to increased stability of the 
conjugated acid in a polar environment compared 
to the base. This reduced solubility directly affects 
the ability of the base to donate and accept protons, 
thus altering the acid–base equilibrium and result-
ing in an increase in the pKa value. Notably, the %
NPSA descriptor demonstrates one of the most 
significant individual correlations with the experi-
mental pKa values, as evidenced by its correlation 
coefficient (r) of 0.7514 (refer to Additional file  1: 
Table S1).

• Change in average local ionization energy ( �
ALIEN  ): this descriptor quantifies the energy differ-
ence (in eV) required to remove an electron from 

(2)pKa = 0.1074�E − 0.1422�HLGap − 0.9132χM + 0.0151%NPSA− 1.4887�ALIEN + 3.0608BaseT − 30.7139

n = 130;R2 = 0.9905; s = 0.3066; F = 2141.9289;RMSE = 0.2982;MAE = 0.2440

the nitrogen atom in the acid–base reaction center. 
A smaller �ALIEN  indicates greater stabilization 
of the positive charge in the acid, leading to an 
increased pKa value

• Base type (BaseT): this categorical descriptor takes a 
value of 0 for aromatic amines and 1 for aliphatic or 
non-aromatic amines.

By considering such a comprehensive range of independ-
ent parameters (with a correlation between parameters 
≤ |0.7744|, see Additional file  1: Table  S2), our model 
provides valuable insights into the electronic structure, 
stability, solubility, hydrophobicity, and local electronic 
effects during proton transfer in the bases under investi-
gation. This holistic approach contributes to the accurate 
prediction of pKa values and enhances our understanding 
of the underlying factors governing acid–base behavior 
in nitrogenous compounds.

In comparison with the trading software Chemaxon, 
our model shows a higher R 2 (0.9905 versus 0.9583), 
lower s (0.3066 versus 0.6346), and lower RMSE and 
MAE (see Additional file 1: Table S3). These results dem-
onstrate the superiority of the presented approach over 
the widely used Chemaxon software.

Regarding the comparison of our model with the QSAR 
studies previously reported [36, 42, 45, 76, 79, 90], it is 
necessary to note that our approach surpasses all the 
explored QSAR methods in terms of accuracy and versa-
tility. Namely, Tehan’s [90] semi-empirical method using 
AM1, Seybold’s [79] method based on RM1, Juranić’s 
[45] approach with PM6, Gross’s [36] method using Har-
tree-Fock (HF)/6-311  G(d,p), Sandoval-Lira’s [76] DFT 
method based on ωB97X-D/cc-pVDZ, and Holt’s [42] 
approach with B3LYP/6-31+G(d,p). Except for Gross’s 
[36] method, which performs similarly to ours for ani-
lines, all methods reported lower R 2 values and higher 
standard errors (see Fig. 1).

While the cited works focused on a particular class 
of amines (non-heterogeneous data) and selected up to 
three parameters, we have expanded the predictive capa-
bilities to a broader set of nitrogenous compounds by 
incorporating a comprehensive range of descriptors. This 
approach provides a more accurate estimation of the pKa 
value and greatly expands the range of applicability of our 
model.

Yu et al. [96] presented a comparative performance of 
ACD and SPARC software. While the statistical results of 
both software are similar to those of the present work, it 
is important to note that these software are commercial 
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and employ proprietary methodologies, which may limit 
their accessibility and customization. A key advantage of 
our model is its generalizability to diverse types of amines 
and its ability to handle heterogeneous data, which is a 
common challenge in real-world applications.

Model validation
External validation
The performance of our prediction model (Eq.  2), in 
estimating pKa values, was evaluated a total of 40 com-
pounds, which were part of an external validation data-
set comprising pharmaceutical ingredients and dyes. It is 
important to note that the 40 compounds in the external 
validation dataset are not part of the training dataset of 
130 compounds. Additionally, our method was tested on 
6 cucurbituril-based supramolecular complexes, which 
were not included in either of the two previous data-
sets. These results are summarized in Tables  1 and 2, 
respectively.

According to data in Table 1, our model achieved a low 
external RMSE (RMSE_ext) of 0.32 and an external MAE 
(MAE_ext) of 0.28 when predicting pKa values for the 
external validation dataset of 40 pharmaceutical ingre-
dients and dyes. Comparing these values with the corre-
sponding metrics obtained from Chemaxon (RMSE_ext 
of 1.09 and a MAE_ext of 0.79), it is evident that our 
model outperforms Chemaxon in terms of accuracy 
and precision in predicting pKa values, especially when 

estimating pKa for supramolecular complexes, for which 
Chemaxon is currently incompatible.

For the dataset of 6 cucurbituril-based supramolecu-
lar complexes (Table  2), our model exhibited a slightly 
higher RMSE_ext of 0.54, indicating a moderate average 
deviation of the predicted pKa values for this dataset. 
Similarly, the MAE_ext value of 0.42 suggests a moderate 
average error of the estimated pKa values for the supra-
molecular complexes.

Internal validation
Furthermore, an internal validation assessment corrobo-
rates the excellent performance of our model. For inter-
nal validation within the training set of 130 compounds, 
we employed the “leave-one-out” cross-validation model. 
The small difference between the coefficient of determi-
nation (R2 ) and the leave-one-out cross-validation corre-
lation coefficient (Q2loo), indicated by the stability value 
of 0.0013, attests to the robustness of our model and sug-
gests that it is not overfitted.

These results validate the effectiveness and reliability 
of our prediction model in estimating basic pKa values of 
nitrogen-containing compounds, both as isolated species 
and as guests in cucurbiturils complexes. Further optimi-
zation and refinement of the model may enhance its per-
formance in predicting pKa values for diverse chemical 
systems, extending beyond nitrogenous compounds.

Fig. 1 Comparative performance of our model against previous QSAR methods [36, 42, 45, 76, 79, 90] based on R 2 values and standard errors (s)
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Table 1 Experimental and predicted basic pKa values for nitrogen compounds in pharmaceutical ingredients and dyes at 25 ◦ C in 
aqueous solution

a Calculated by Eq. 2. RMSE_ext = 0.32
b Calculated by Chemaxon software. RMSE_ext = 1.09
c Does not have a common or short name. The IUPAC name is found in Additional file 1

ID Nitrogenous compounds Experimental
pKa

Predicted
pKa

a
|Error| Chemaxon

pKa b
|Error| References

131 Norephedrine 9.12 9.72 0.60 8.96 0.16 [82]

132 Procaine 9.05 8.59 0.46 8.96 0.09 [82]

133 Terbutaline 8.62 8.14 0.48 9.76 1.14 [91]

134 Quinine 8.60 8.69 0.09 8.55 0.05 [91]

135 Tetracaine 8.50 8.87 0.37 8.42 0.08 [82]

136 Astemizole 8.35 8.25 0.10 9.23 0.88 [91]

137 Nicotine 8.14 8.32 0.18 8.58 0.44 [82]

138 Clozapine 7.94 7.85 0.09 8.16 0.22 [91]

139 Ampicillin 7.25 7.60 0.35 7.23 0.02 [78]

140 Ketoconazole 6.22 6.25 0.03 6.26 0.04 [91]

141 Clotrimazole 5.89 6.17 0.28 6.42 0.53 [43]

142 Benzimidazole 5.50 5.47 0.03 5.79 0.29 [67]

143 Coumarin 7 5.10 5.26 0.16 4.21 0.89 [9]

144 Abacavir 5.04 5.35 0.31 6.87 1.83 [82]

145 Fuberidazole 4.80 5.21 0.41 3.93 0.87 [51]

146 Thiabendazole 4.60 5.00 0.40 4.08 0.52 [51]

147 Carbendazim 4.50 4.98 0.48 4.28 0.22 [51]

148 Omeprazole 4.40 4.71 0.31 4.77 0.37 [91]

149 Cerivastatin 4.38 4.79 0.41 5.58 1.20 [91]

150 Ethionamide 4.37 3.89 0.48 5.00 0.63 [91]

151 Olmesartan medoxomil 4.30 4.48 0.18 3.65 0.65 [4]

152 Lamivudine 4.24 4.01 0.23 2.00 2.24 [82]

153 Picoprazole 3.50 3.78 0.28 2.89 0.61 [63]

154 2-Amino-pentamethylbodipy 3.50 3.77 0.27 0.41 3.09 [38]

155 Diazepam 3.42 3.84 0.42 2.92 0.50 [89]

156 Prodan 3.40 3.14 0.26 4.94 1.54 [21]

157 Timoprazole 3.10 3.41 0.31 2.38 0.72 [63]

158 Benzocaine 2.45 2.39 0.06 2.78 0.33 [91]

159 Metronidazole 2.38 2.65 0.27 3.03 0.65 [82]

160 Acyclovir 2.20 2.62 0.42 2.94 0.74 [82]

161 Sulfacetamide 1.75 1.58 0.17 2.14 0.39 [67]

162 7-Dimethylazacoumarinc 1.30 0.73 0.57 3.67 2.37 [1]

163 CHEMBL1689126c 7.00 7.07 0.07 6.54 0.46 [63]

164 CHEMBL1689112c 6.90 6.68 0.22 5.94 0.96 [63]

165 CHEMBL47529c 5.50 5.48 0.02 4.96 0.54 [63]

166 CHEMBL1349378c 4.64 4.90 0.26 4.49 0.15 [63]

167 CHEMBL432733c 4.37 4.72 0.35 7.39 3.02 [63]

168 CHEMBL271703c 4.20 4.26 0.06 3.46 0.74 [63]

169 CHEMBL191553c 3.20 2.89 0.31 2.80 0.40 [63]

170 CHEMBL1405150c 2.50 2.86 0.36 3.64 1.14 [63]

MAE_ext: 0.28 MAE_ext: 0.60
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Script‑like tool description
To enhance user experience with our model, we have 
developed a script-like tool that automates the deter-
mination of descriptors and pKa values for nitrogenous 
compounds. Users can easily access the estimation pro-
cess through our tool by inputting the structures of the 
base and the conjugate acid. The tool is available at the 
following link: https:// github. com/ Jacks onalc azar/ Basic- 
pKa- Estim ation- Nitro gen- Compo unds. This streamlined 
process provided by our tool offers users a more conveni-
ent and efficient way to utilize our model.

Conclusion
The comprehensive QSAR approach presented in this 
article offers a powerful tool for rapidly and accurately 
predicting pKa values of nitrogenous compounds, includ-
ing those within supramolecular complexes based on 
cucurbiturils. Our model, which combines quantum 
mechanical calculations and QSAR methodology, exhib-
its excellent predictive performance and provides valu-
able insights into various molecular properties relevant 
to proton transfer. The superiority of our approach over 
existing methods has been demonstrated through exten-
sive comparisons. Furthermore, we have developed a 
user-friendly script-like tool that streamlines the deter-
mination of descriptors and pKa values, enhancing the 
accessibility and practicality of our model. This work 
represents a significant advancement in the field of pKa 
prediction and holds great potential for applications in 
drug discovery, supramolecular chemistry, and other 
related disciplines. Through further optimization and 
refinement, the model can extend its predictive capa-
bilities to diverse chemical systems beyond nitrogenous 
compounds.

Methods
Prediction of pKa values of nitrogenous compounds 
using QSAR approach requires the calculation of rel-
evant descriptors related to basicity or acidity. Chemical 
descriptors can be local or global, depending on whether 
they are related to a specific atom or group of atoms 
within the molecule or to the molecule as a whole. How-
ever, obtaining a comprehensive understanding of the 
electronic structure of a molecule and its acidity requires 
an advanced computational approach able to provide a 
detailed picture of the molecular parameters and prop-
erties relevant for predicting pKa values. In this section, 
we describe a comprehensive methodology for predicting 
basic pKa values of nitrogenous compounds.

Prediction of pKa values using chemical descriptors
We employed a multi-faceted approach, using DFT as a 
fundamental computational method to determine elec-
tronic properties. DFT is widely used in quantum chem-
istry, since it is regarded as a reliable approach to predict 
molecular properties and structures [20].

However, DFT alone may not provide a complete pic-
ture of the molecular electronic structure. Therefore, 
additional post-processing techniques were employed. 
CDFT [30] was used to obtain a broader perspective 
of the molecular electronic structure by making use of 
global and local descriptors based on the conceptualiza-
tion of electron density. Moreover, MEDT [24] and quan-
titative analysis of the molecular surface [58] were used 
to obtain properties that account for the electronic distri-
bution of the molecule.

To obtain a comprehensive set of chemical descriptors, a 
combination of DFT, CDFT, MEDT, and quantitative anal-
yses of molecular surface was used. Subsequently, a predic-
tive model for pKa values was developed, using a diverse set 

Table 2 Predicted pKa values of nitrogen compounds in CB7-complexed states at 25◦ C in aqueous solution (Predicted pKa CB7 ) and 
their respective pKa shift

a Calculated by Eq. 2. RMSE_ext = 0.54
b Calculated pKa Shift using the Eq. 2 for both the free and complexed substrate. RMSE_ext = 0.50

ID Nitrogenous compounds Exp. Predicteda |Error| Exp. Predictedb |Error| References

pKa CB7 pKa CB7 pKa pKa

Shift Shift

C1 Coumarin 7 9.70 9.36 0.34 4.60 4.06 0.54 [9]

C2 Thiabendazole 8.60 8.62 0.02 3.96 3.60 0.36 [51]

C3 Fuberidazole 8.60 8.41 0.19 3.80 3.17 0.63 [51]

C4 Carbendazim 7.00 7.31 0.31 2.50 2.35 0.15 [51]

C5 Prodan 6.60 6.02 0.58 3.20 2.84 0.36 [21]

C6 2-Amino-pentamethylbodipy 4.80 5.87 1.07 1.30 2.03 0.73 [38]

MAE_ext: 0.42 MAE_ext: 0.46

https://github.com/Jacksonalcazar/Basic-pKa-Estimation-Nitrogen-Compounds
https://github.com/Jacksonalcazar/Basic-pKa-Estimation-Nitrogen-Compounds
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of 130 training compounds in aqueous solution at 25  ◦ C, 
which included cyclic amines (aromatic and non-aromatic) 
and aliphatic amines (primary, secondary, and tertiary).

The most relevant descriptors for the prediction of pKa 
values were identified using QSARINS software for sta-
tistical analysis [32, 33]. QSARINS is a powerful tool for 
identifying the molecular descriptors that contribute 
most significantly to the predictive power of the model. 
QSARINS uses iterative techniques to add or remove 
descriptors from a multivariable linear equation, based on 
their statistical significance, to create a set of models from 
which the most suited is selected. The performance of the 
selected model was evaluated by testing it on a set of 40 
validation compounds, which were not part of the training 
set of 130 compounds. This set included pharmaceutical 
ingredients and dyes with known pKa values.

Determination of selected descriptors for pKa prediction
This section outlines the methodology for calculating the 
parameters involved in determining the pKa values accord-
ing to Eq.  2 in the main section. The parameters include 
deprotonation energy ( �E), HOMO–LUMO deprotona-
tion gap ( �HLGap ), Mulliken electronegativity ( χM ), the 
percentage of nonpolar surface area ( %NPSA), and the 
change in average local ionization energy at the nitrogen 
atom ( �ALIEN).

To calculate these parameters swiftly and reliably, DFT 
calculations were run on optimized geometries under vac-
uum conditions. The B97-3c low-cost Density Functional 
Method [16] and the ORCA software package (Program 
Version 5.0.3) [66] were employed for this purpose. A more 
detailed description of the methodology used for each 
parameter is provided in the following sections.

Energy of deprotonation ( �E)
The electronic structure optimization and energy calcu-
lation for determining the energy of deprotonation ( � E) 
were carried out using the ORCA software package [66] 
with the B97-3c low-cost functional to obtain the most sta-
ble conformation at a local minimum of the base and con-
jugate acid, swiftly and reliably [16]. Protocol tightSCF was 
employed to ensure convergence. The total energy of the 
molecule was calculated, taking into account the Becke–
Johnson dispersion damping (DFT-D3BJ) [34, 35] and 
short-range basis incompleteness SRB correction of the 
basis set [16, 87]. The energy change during the deprotona-
tion process of the conjugate acid was calculated as the dif-
ference between the total energy of the base and the total 
energy of the conjugate acid:

(3)
�E = Total energy of base− Total energy of conjugate acid

It is important to note that this methodology requires the 
base to have a net charge of zero and the conjugate acid 
tohave a net charge of + 1. If the base is an ion, it should 
be neutralized with its respective counterion (Cl− or Na+).

HOMO–LUMO gap of deprotonation ( �HLGap)
The HOMO–LUMO gap (HLGap ) is a crucial parameter 
for characterizing the electronic properties of a system. 
The HOMO and LUMO energies were automatically 
determined at the end of the electronic structure optimi-
zation in the previous step. Specifically, the HOMO and 
LUMO energies were obtained from the eigenvalues of 
the highest occupied and lowest unoccupied molecular 
orbitals, respectively. Subsequently, the HOMO–LUMO 
gap energy was calculated by subtracting the LUMO 
energy from the HOMO energy.

Thus, the variation of the HLGap in the deprotonation 
process of the conjugate acid was calculated as:

Mulliken electronegativity ( χM)
Quantifies the ability of the base to donate a pair of elec-
trons and accept a proton. χM was determined by Eq. 6 
[69, 72]

Thus, the variation of the HLGap in the deprotonation 
process of the conjugate acid was calculated as:

Were VIP and VEA are the vertical ionization potential 
and vertical electron affinity of the base, respectively. The 
energy of the neutral molecule was calculated by sin-
gle point from optimized base using the same quantum 
chemistry software package and level of theory employed 
in the preceding calculations. Next, the energy of the cat-
ion (N − 1) was obtained by removing an electron from 
the neutral molecule (N) using the same software pack-
age and level of theory, setting the charge of the mole-
cule to + 1 in the input file. The VIP was calculated as the 
energy difference between the cation (EN−1 ) and the neu-
tral molecule (EN ) [17],

The energy of the anion (N + 1) was obtained by adding 
an electron to the neutral molecule (N) using the same 

(4)HLGap = ǫLUMO − ǫHOMO

(5)
�HLGap = HLGap of base −HLGap of conjugate acid

(6)χM =
1

2
(VIP + VEA)

(7)VIP = EN−1 − EN
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software package and level of theory, setting the charge 
of the molecule to − 1 in the input file. The VEA was cal-
culated as the energy difference between the neutral mol-
ecule (EN ) and the anion (EN+1 ) [17],

Nonpolar surface area percentage ( %NPSA)
The percentage of nonpolar surface area of the base was 
calculated using Multiwfn version 3.8 [57], a software pack-
age for post-processing wavefunction analysis, with an 
improved Marching Tetrahedra algorithm [58]. The molec-
ular structure of the base was loaded into the software in 
Gaussian Binary Wavefunction format (.gbw) and analyzed 
using the “quantitative analysis of molecular surface” func-
tion with electrostatic potential (ESP) as the mapped func-
tion. The analysis was conducted under default settings, 
with an electron density contour value of 0.00100 used to 
define the isovalue of the electron density surface. The grid 
point spacing of 0.250000 was selected for generating the 
molecular surface, and the ratio of van der Waals radius 
was set to 1.7000 to extend the spatial region of cubic 
grids, which determines the size of the molecular surface 
by expanding the van der Waals radii of the atoms in the 
molecule.

Change in average local ionization energy at nitrogen atom 
( �ALIEN)
The reactivity of the acid–base reaction center was investi-
gated using the concept of Average Local Ionization Energy 
(ALIE) [71, 85]. To compute the ALIE values for the nitro-
gen atoms in both the base and conjugate acid, Eq. 9 was 
employed.

where ρi(N) denotes the density of the i-th orbital of 
the nitrogen atom, ǫi refers to the corresponding orbital 
energy, and ρ(N) denotes the total electron density on the 
nitrogen atom. The calculations were performed using 
Multiwfn software (version 3.8) [57] by importing the 
optimized molecular structures in.gbw format.

The difference between the ALIEN of the conjugate acid 
and the ALIEN of the base was calculated to determine 
�ALIEN , which provides a quantitative measure of the 
change in the electronic structure and potential energy 
of the nitrogen atom upon the acid–base reaction. The 
parameter �ALIEN was calculated using the following 
equation:

(8)VEA = EN − EN+1

(9)ALIEN =
∑

i

ρi(N )
|ǫi|

ρ(N )

(10)�ALIEN = ALIEN of base − ALIEN of acid
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