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Abstract 

Ultra-large chemical libraries are reaching 10s to 100s of billions of molecules. A challenge for these libraries 
is to efficiently check if a proposed molecule is present. Here we propose and study Bloom filters for testing 
if a molecule is present in a set using either string or fingerprint representations. Bloom filters are small enough 
to hold billions of molecules in just a few GB of memory and check membership in sub milliseconds. We found string 
representations can have a false positive rate below 1% and require significantly less storage than using fingerprints. 
Canonical SMILES with Bloom filters with the simple FNV (Fowler-Noll-Voll) hashing function provide fast and accurate 
membership tests with small memory requirements. We provide a general implementation and specific filters 
for detecting if a molecule is purchasable, patented, or a natural product according to existing databases at https:// 
github. com/ white ad/ molbl oom.
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Introduction
With the growing scale of molecular screening, which 
now involves searching through billions of chemical 
structures, the processing times for querying extensive 
compound datasets have significantly increased [1, 2]. To 
address this, Bloom filters can compact any database just 
for membership verification.

The Bloom filter, a space-efficient and probabilistic data 
structure, was designed to ascertain whether an element 
belongs to a specific set. First proposed by Burton 
H.  Bloom [3], this data structure has demonstrated 
exceptional value for large datasets, where traditional set 
membership testing methods would be excessively time-
consuming. At its core, the Bloom filter utilizes a fixed-
size (m) bit array to represent n elements, employing k 
hash functions to map each element to k positions within 
the array [3–5]. This allows Bloom filters to conduct 
set membership tests with low false positive rates while 

utilizing less time and space compared to traditional data 
retrieval techniques.

Originally applied in dictionaries and spell checkers 
[3, 6], Bloom filters allowed for the quick identification 
of words within a given vocabulary, where the only 
significant drawback was with fake positives when 
misspelled words were labeled as being correct. Over 
time, the scope of their applications broadened to 
encompass web searches such as Google Chrome’s 
former implementation of a Bloom filter to detect 
malicious URLs [7], among other use cases [8–10]. 
Concrete examples of the usage of bloom filters in 
chemistry workflows include exploration of the chemical 
space while asserting either commercial availability or 
neglecting patented chemicals, without needing memory 
intensive databases or external server dependencies. A 
real-life example can be found in ChemCrow[11], where 
bloom filters are used in the molecule recommendation 
setting, making sure recommended chemicals are 
purchasable without intensive memory requirement. As 
underscored by the Bloom Filter principle [5], ”Wherever 
a list or set is used, and space is at a premium, consider 
using a Bloom filter if the effect of false positives can be 
mitigated.”
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Traditionally, molecules have been represented using 
structure-based fingerprints [12]. In this study, we built 
different bloom filters using the Coconut database [13] 
to compare the effectiveness of structure-based hashing 
with string hashes in the Bloom filter; we demonstrate 
that string hashing consistently outperforms its 
counterpart. To provide further context, Table 1 presents 
well-known chemistry databases, their approximate 
number of compounds, storage size required for text 
(SMILES) representation, and a comparison with a 
Bloom filter designed to store an equivalent number of 
molecules.

This study explores the use of Bloom filters in molecular 
databases. Although, we refer alternative data structures 
that offer functionalities that can either mitigate some 
limitations of Bloom filters or serve entirely different 
objectives. For example, Cuckoo filters [14] provide 
the capability for dynamic item insertion and deletion, 
a feature absent in conventional Bloom filters. Other 
alternatives, such as Quotient filters [15] and Count-
Min sketches [16], also offer unique advantages and can 
be found in the literature. On a different note, Locality-
Sensitive Hashing (LSH) [17] serves the specialized 
purpose of maximizing hash collisions to facilitate 
similarity searches. However, LSH techniques often 
grapple with computational challenges as data scales, 
leading to memory requirements that can quickly exceed 
available main memory. In contrast, Bloom filter indices, 
even for extensive databases like ZINC, can comfortably 
reside in the main memory of everyday household 
devices, such as smartwatches or cellphones.

A Bloom filter is initialized with an m-length bit vector, 
with all positions set to zero, and employs k independent 
hashing functions. These hashing functions generate k 

values ranging from 0 to m−1, which correspond to the 
positions in the bit vector where a ”1” will be assigned. 
The hashing functions must exhibit the following 
characteristics  [23]: (1) Quick computation; (2) An 
avalanche effect, where minor input changes result in 
substantial and unpredictable output alterations, and (3) 
The generation of integers between 0 and m−1.

Bloom filters enable the addition of new members but 
do not support individual removals. The filter can be 
queried to determine if a particular element has been 
added previously. However, this simplicity comes with 
certain drawbacks, such as the potential for two or more 
elements to be hashed to the same position in the Bloom 
filter (i.e., collisions). As a result, removing an element 
(by changing its positions from one to zero) could 
inadvertently affect other members with overlapping 
positions. This issue underscores the importance of 
randomness in hashing functions, often referred to as the 
avalanche effect. Figures 1 and 2 illustrate the workings 
of a Bloom filter and the storage of molecules within such 
filters.

For more comprehensive information on Bloom 
filter functionality, theoretical limits, and optimal 
implementation, refer to the existing literature. [3–5, 24]

Double hashing is employed to minimize the 
probability of collisions in the indexing of new members. 
Two distinct ”universal hashes,” hα and hβ , are utilized to 
obtain k individual indices [25]:

Here, ‘A’ represents an element being hashed, hi refers 
to one of the k hash functions generated per element (as 
illustrated in Figs.  1 and 2), |m| denotes the fixed size 
of the filter, and ”mod” signifies the remainder of the 

hi(A) = (hα(A)+ i ∗ hβ(A))mod |m|

Table 1 Examples of Chemical Compounds Databases

a Estimated text file sizes for SMILES based on a 95 M sample; total sizes inferred by linear scaling to avoid loading entire datasets. b Estimated Bloom filter size needed 
for a fixed false positive rate of 0.005. c  With this specifications, all Bloom filters use 8 hashing functions. d To get the length in bits of the filters transform from GB to 
bits with 1GB = 8× 10

9
Bits . Finally, the index time for our Bloom filters is approximately 1 million elements per second

Name Size (# of compounds) Size (GB)a Bloom filter size 
needed (GB)b,c,d

ZINC [2] > 2 billion >100 >2.56730

ChemBL [18] 2, 354, 965 0.117 0.003023

Coconut [13] 407, 270 0.0204 0.000522

BindingDB [19] 566, 000 0.0283 0.000727

PubChem [20] 113, 993, 087 5.700 0.146344

SureChemBL [21] 22, 843, 364 1.1422 0.02932

Available Chemical Directory > 3, 2 million > 0.16 >0.004108

ChemNavigator 10, 000, 000 0.5 0.012837

ChemBridge 1,3 million 0.065 0.001668

ChemSpider [22] > 115, 000, 000 >5.75 >0.14763
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division. Restrictions that reduce collision probability are 
[25]:

• hβ  = 0,
• hβ(A) should not be divisible by the size of the filter.

Using the described method, the number of generated 
hashing functions can be selected depending on the 
number of elements to add (n), the bloom filter size in bits 
(M), and the pre-stablished false positive rate ( ǫ).

If the false positive rate is specified, M can be calculated 
as follows.

(1)M = −
n ln ǫ

(ln 2)2

Conversely, altering M impacts the final false positive 
rate. Given M and the number of elements to be added, 
the number of hash functions k is calculated as:

This will yield a range from 8 to 64 hashing functions.

Methodology
The Python package MolBloom developed for this work 
[26] is an open-source package designed for molecules, 
featuring a built-in filter with ZINC-in-stock molecules. 
The package permits the creation of custom filters of 
varying sizes, which were adjusted in increments of one 
order of magnitude. Tests were conducted using the 
Coconut dataset [13] (approximately 400,000 molecules).

For comparative purposes, molecular fingerprints 
were employed to populate a Bloom filter and measure 
the false positive rate for increasing bit-array sizes. The 
hashing functions used in this study include Fowler-
Noll-Voll (FNV) [27], as well as message digest 4 and 5 
algorithms (MD4 and MD5) [28, 29] for string hashing. 
For chemical structure fingerprints, six combination 
between MACCS [30], Morgan [31], Atom-pair [32], 
and RDKit Fingerprints were utilized. This was done to 
investigate how traditional ways to hash molecules would 
act in this setting. FNV is a hash function designed for 
rapid, non-cryptographic hashing of data, leveraging 
prime numbers and bitwise operations to generate hash 
values that identify unique data elements. The FNV 
algorithm offers variants of different bit sizes and prime 
numbers, such as FNV-1 and FNV-1a. MD4 and MD5 are 
well-established hashing functions within the computer 
science community [33].

To assess false positive rates in each filter with different 
sizes, a fifty-fifty split was performed. The first half was 
added to empty filters, followed by membership testing 

(2)k = max

(

8,min

(

64,
M

n ∗ log(2)

))

Fig. 1 Scheme of Bloom Filters. In this generic Bloom filter example, 
we start with an empty bit array of zeros and four elements: A, B, 
C, and  D. The first two elements (A and B) are added to the filter, 
while the latter two (C and D) are queried. The process utilizes 
three distinct hashing functions, represented by colored arrows. To 
verify if elements C and D have been previously added to the filter, 
they are checked using these hashing functions. For element 
C, one of the hashing functions points to a zero bit, indicating 
that the element has not been added to the filter. However, all three 
hashing functions for element D point to bits already set to one, 
resulting in a false positive

Fig. 2 Illustrative Example for Bloom Filter with Molecules. When populating a Bloom filter, a set of molecules is initially stored in either a text 
format such as SMILES or SELFIES, or as fingerprints. Subsequently, distinct hashing functions generate indices (three in this example) for each 
element to fill the filter
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in the second half. Any molecules from the second half 
classified as part of the set were counted as false positives.

An evaluation was conducted to compare the speed of 
Bloom filters and traditional methods in searching for 
elements within a dataset (using the dataset’s native API).

Results and discussion
All six possible fingerprint combinations across eight 
distinct orders of magnitude for the Bloom filter and 
string hash implementations were examined. Figure  3 
provide a comprehensive summary of the results.

As illustrated in Fig.  3, two key observations can 
be made. First, as anticipated, the false positive rate 
of Bloom filters approaches zero as the ratio between 
the filter size and dataset size increases. Second, the 
hashing of string SMILES representation outperforms 
most chemical structure fingerprints by over an order of 
magnitude in terms of false positive rate (combinations 7 
& 8). Only the Morgan-MACCS and Atompair-MACCS 
fingerprint (combinations 3 & 5) hashing achieve false 
positive rates comparable to strings while requiring half 
an order of magnitude more bits of space.

Message Digest and FNV hashing (7 & 8) of strings 
yielded nearly identical and seemingly smooth curves, 
suggesting a well-randomized hashing of the elements. 
In contrast, other methods exhibit a “noisy” pattern, 
which serves as evidence of inadequate randomization. 
By design, these alternative methods are not highly 
randomized, as similar molecules tend to have 

comparable chemical fingerprints. This characteristic 
is the basis for their use in numerous optimization 
methods, as they can measure the distance between 
molecules. Consequently, their performance is 
suboptimal, as similar molecules have a higher likelihood 
of collisions within the Bloom filter.

In terms of the time required for Bloom filters to verify 
whether a molecule is part of a set or not, Fig. 4 clearly 
illustrates that Bloom filters demand up to three orders 
of magnitude less time compared to the native API, and 
one order of magnitude less than B-Tree indexing search. 
Even the “slower” Python implementation using RDKit 
for fingerprints necessitates two orders of magnitude 
less time for membership checks with an online server. 
To showcase the effect of latency in this test, a locally 
installed PostgreSQL database with a B-Tree index with 
400,000 members was used. Assuming the Internet 
Search uses another efficient search method, the 
difference can be consider as latency.

Conclusion
We demonstrate that string hashing (FNV and MD4–
5) for Bloom filters outperform and approximate 
the theoretical limit of these structures, confirming 
that strings are sufficient for molecule storage. Even 
taking into account the time spent on canonicalizing 
SMILES, Bloom filter retrieval is still more than two 
orders of magnitudes faster than using an internet 
search. We also show that FNV, despite its simplicity 

Fig. 3 False Positive Rate (FPR) vs. filter size for different hash methods. Although all hashing variations follow similar trends, both string hashes FNV 
and MD4-5 are identical. “Noisy” peaks can be seen, which result from hashing functions being divisible by the size of the bloom filter
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and speed, is as effective as MD5. Employing other 
string representations, such as InChI and SELFIES, is 
expected to yield similar results. Potential applications 
for the Bloom filter are to quickly determine if a 
molecule is purchasable in ZINC[2], patented according 
to SureChembl [34], or a natural product [13].
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Fig. 4 Comparison of Time Consumption Using Bloom Filters (BF), B-tree Indexing and Direct Server Search in a Commercial Database. The analysis 
for Bloom filters is broken down into individual steps: a) Conversion of SMILES notation to an RDKit Mol object, b) Canonicalization of the string. 
B-tree index was created with PostgreSQL. The time requirements for each step are displayed in the first and third columns. Bars 3 and 4, showcase 
how the Direct Server Search time is influenced by network latency, a common concern when relying on remote, online resources
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