
Medina and White
Journal of Cheminformatics (2023) 15:95
https://doi.org/10.1186/s13321-023-00765-1

SOFTWARE

Bloom filters for molecules
Jorge Medina1 and Andrew D. White1*

Abstract

Ultra-large chemical libraries are reaching 10s to 100s of billions of molecules. A challenge for these libraries
is to efficiently check if a proposed molecule is present. Here we propose and study Bloom filters for testing
if a molecule is present in a set using either string or fingerprint representations. Bloom filters are small enough
to hold billions of molecules in just a few GB of memory and check membership in sub milliseconds. We found string
representations can have a false positive rate below 1% and require significantly less storage than using fingerprints.
Canonical SMILES with Bloom filters with the simple FNV (Fowler-Noll-Voll) hashing function provide fast and accurate
membership tests with small memory requirements. We provide a general implementation and specific filters
for detecting if a molecule is purchasable, patented, or a natural product according to existing databases at https://
github. com/ white ad/ molbl oom.

Keywords Bloom filter, Fingerprint, SMILES, Hashing

Introduction
With the growing scale of molecular screening, which
now involves searching through billions of chemical
structures, the processing times for querying extensive
compound datasets have significantly increased [1, 2]. To
address this, Bloom filters can compact any database just
for membership verification.

The Bloom filter, a space-efficient and probabilistic data
structure, was designed to ascertain whether an element
belongs to a specific set. First proposed by Burton
H. Bloom [3], this data structure has demonstrated
exceptional value for large datasets, where traditional set
membership testing methods would be excessively time-
consuming. At its core, the Bloom filter utilizes a fixed-
size (m) bit array to represent n elements, employing k
hash functions to map each element to k positions within
the array [3–5]. This allows Bloom filters to conduct
set membership tests with low false positive rates while

utilizing less time and space compared to traditional data
retrieval techniques.

Originally applied in dictionaries and spell checkers
[3, 6], Bloom filters allowed for the quick identification
of words within a given vocabulary, where the only
significant drawback was with fake positives when
misspelled words were labeled as being correct. Over
time, the scope of their applications broadened to
encompass web searches such as Google Chrome’s
former implementation of a Bloom filter to detect
malicious URLs [7], among other use cases [8–10].
Concrete examples of the usage of bloom filters in
chemistry workflows include exploration of the chemical
space while asserting either commercial availability or
neglecting patented chemicals, without needing memory
intensive databases or external server dependencies. A
real-life example can be found in ChemCrow[11], where
bloom filters are used in the molecule recommendation
setting, making sure recommended chemicals are
purchasable without intensive memory requirement. As
underscored by the Bloom Filter principle [5], ”Wherever
a list or set is used, and space is at a premium, consider
using a Bloom filter if the effect of false positives can be
mitigated.”

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

*Correspondence:
Andrew D. White
andrew.white@rochester.edu
1 Department of Chemical Engineering, University of Rochester,
Rochester, NY, USA

https://github.com/whitead/molbloom
https://github.com/whitead/molbloom
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00765-1&domain=pdf

Page 2 of 6Medina and White Journal of Cheminformatics (2023) 15:95

Traditionally, molecules have been represented using
structure-based fingerprints [12]. In this study, we built
different bloom filters using the Coconut database [13]
to compare the effectiveness of structure-based hashing
with string hashes in the Bloom filter; we demonstrate
that string hashing consistently outperforms its
counterpart. To provide further context, Table 1 presents
well-known chemistry databases, their approximate
number of compounds, storage size required for text
(SMILES) representation, and a comparison with a
Bloom filter designed to store an equivalent number of
molecules.

This study explores the use of Bloom filters in molecular
databases. Although, we refer alternative data structures
that offer functionalities that can either mitigate some
limitations of Bloom filters or serve entirely different
objectives. For example, Cuckoo filters [14] provide
the capability for dynamic item insertion and deletion,
a feature absent in conventional Bloom filters. Other
alternatives, such as Quotient filters [15] and Count-
Min sketches [16], also offer unique advantages and can
be found in the literature. On a different note, Locality-
Sensitive Hashing (LSH) [17] serves the specialized
purpose of maximizing hash collisions to facilitate
similarity searches. However, LSH techniques often
grapple with computational challenges as data scales,
leading to memory requirements that can quickly exceed
available main memory. In contrast, Bloom filter indices,
even for extensive databases like ZINC, can comfortably
reside in the main memory of everyday household
devices, such as smartwatches or cellphones.

A Bloom filter is initialized with an m-length bit vector,
with all positions set to zero, and employs k independent
hashing functions. These hashing functions generate k

values ranging from 0 to m−1, which correspond to the
positions in the bit vector where a ”1” will be assigned.
The hashing functions must exhibit the following
characteristics [23]: (1) Quick computation; (2) An
avalanche effect, where minor input changes result in
substantial and unpredictable output alterations, and (3)
The generation of integers between 0 and m−1.

Bloom filters enable the addition of new members but
do not support individual removals. The filter can be
queried to determine if a particular element has been
added previously. However, this simplicity comes with
certain drawbacks, such as the potential for two or more
elements to be hashed to the same position in the Bloom
filter (i.e., collisions). As a result, removing an element
(by changing its positions from one to zero) could
inadvertently affect other members with overlapping
positions. This issue underscores the importance of
randomness in hashing functions, often referred to as the
avalanche effect. Figures 1 and 2 illustrate the workings
of a Bloom filter and the storage of molecules within such
filters.

For more comprehensive information on Bloom
filter functionality, theoretical limits, and optimal
implementation, refer to the existing literature. [3–5, 24]

Double hashing is employed to minimize the
probability of collisions in the indexing of new members.
Two distinct ”universal hashes,” hα and hβ , are utilized to
obtain k individual indices [25]:

Here, ‘A’ represents an element being hashed, hi refers
to one of the k hash functions generated per element (as
illustrated in Figs. 1 and 2), |m| denotes the fixed size
of the filter, and ”mod” signifies the remainder of the

hi(A) = (hα(A)+ i ∗ hβ(A))mod |m|

Table 1 Examples of Chemical Compounds Databases

a Estimated text file sizes for SMILES based on a 95 M sample; total sizes inferred by linear scaling to avoid loading entire datasets. b Estimated Bloom filter size needed
for a fixed false positive rate of 0.005. c With this specifications, all Bloom filters use 8 hashing functions. d To get the length in bits of the filters transform from GB to
bits with 1GB = 8× 10

9
Bits . Finally, the index time for our Bloom filters is approximately 1 million elements per second

Name Size (# of compounds) Size (GB)a Bloom filter size
needed (GB)b,c,d

ZINC [2] > 2 billion >100 >2.56730

ChemBL [18] 2, 354, 965 0.117 0.003023

Coconut [13] 407, 270 0.0204 0.000522

BindingDB [19] 566, 000 0.0283 0.000727

PubChem [20] 113, 993, 087 5.700 0.146344

SureChemBL [21] 22, 843, 364 1.1422 0.02932

Available Chemical Directory > 3, 2 million > 0.16 >0.004108

ChemNavigator 10, 000, 000 0.5 0.012837

ChemBridge 1,3 million 0.065 0.001668

ChemSpider [22] > 115, 000, 000 >5.75 >0.14763

Page 3 of 6Medina and White Journal of Cheminformatics (2023) 15:95

division. Restrictions that reduce collision probability are
[25]:

• hβ = 0,
• hβ(A) should not be divisible by the size of the filter.

Using the described method, the number of generated
hashing functions can be selected depending on the
number of elements to add (n), the bloom filter size in bits
(M), and the pre-stablished false positive rate (ǫ).

If the false positive rate is specified, M can be calculated
as follows.

(1)M = −
n ln ǫ

(ln 2)2

Conversely, altering M impacts the final false positive
rate. Given M and the number of elements to be added,
the number of hash functions k is calculated as:

This will yield a range from 8 to 64 hashing functions.

Methodology
The Python package MolBloom developed for this work
[26] is an open-source package designed for molecules,
featuring a built-in filter with ZINC-in-stock molecules.
The package permits the creation of custom filters of
varying sizes, which were adjusted in increments of one
order of magnitude. Tests were conducted using the
Coconut dataset [13] (approximately 400,000 molecules).

For comparative purposes, molecular fingerprints
were employed to populate a Bloom filter and measure
the false positive rate for increasing bit-array sizes. The
hashing functions used in this study include Fowler-
Noll-Voll (FNV) [27], as well as message digest 4 and 5
algorithms (MD4 and MD5) [28, 29] for string hashing.
For chemical structure fingerprints, six combination
between MACCS [30], Morgan [31], Atom-pair [32],
and RDKit Fingerprints were utilized. This was done to
investigate how traditional ways to hash molecules would
act in this setting. FNV is a hash function designed for
rapid, non-cryptographic hashing of data, leveraging
prime numbers and bitwise operations to generate hash
values that identify unique data elements. The FNV
algorithm offers variants of different bit sizes and prime
numbers, such as FNV-1 and FNV-1a. MD4 and MD5 are
well-established hashing functions within the computer
science community [33].

To assess false positive rates in each filter with different
sizes, a fifty-fifty split was performed. The first half was
added to empty filters, followed by membership testing

(2)k = max

(

8,min

(

64,
M

n ∗ log(2)

))

Fig. 1 Scheme of Bloom Filters. In this generic Bloom filter example,
we start with an empty bit array of zeros and four elements: A, B,
C, and D. The first two elements (A and B) are added to the filter,
while the latter two (C and D) are queried. The process utilizes
three distinct hashing functions, represented by colored arrows. To
verify if elements C and D have been previously added to the filter,
they are checked using these hashing functions. For element
C, one of the hashing functions points to a zero bit, indicating
that the element has not been added to the filter. However, all three
hashing functions for element D point to bits already set to one,
resulting in a false positive

Fig. 2 Illustrative Example for Bloom Filter with Molecules. When populating a Bloom filter, a set of molecules is initially stored in either a text
format such as SMILES or SELFIES, or as fingerprints. Subsequently, distinct hashing functions generate indices (three in this example) for each
element to fill the filter

Page 4 of 6Medina and White Journal of Cheminformatics (2023) 15:95

in the second half. Any molecules from the second half
classified as part of the set were counted as false positives.

An evaluation was conducted to compare the speed of
Bloom filters and traditional methods in searching for
elements within a dataset (using the dataset’s native API).

Results and discussion
All six possible fingerprint combinations across eight
distinct orders of magnitude for the Bloom filter and
string hash implementations were examined. Figure 3
provide a comprehensive summary of the results.

As illustrated in Fig. 3, two key observations can
be made. First, as anticipated, the false positive rate
of Bloom filters approaches zero as the ratio between
the filter size and dataset size increases. Second, the
hashing of string SMILES representation outperforms
most chemical structure fingerprints by over an order of
magnitude in terms of false positive rate (combinations 7
& 8). Only the Morgan-MACCS and Atompair-MACCS
fingerprint (combinations 3 & 5) hashing achieve false
positive rates comparable to strings while requiring half
an order of magnitude more bits of space.

Message Digest and FNV hashing (7 & 8) of strings
yielded nearly identical and seemingly smooth curves,
suggesting a well-randomized hashing of the elements.
In contrast, other methods exhibit a “noisy” pattern,
which serves as evidence of inadequate randomization.
By design, these alternative methods are not highly
randomized, as similar molecules tend to have

comparable chemical fingerprints. This characteristic
is the basis for their use in numerous optimization
methods, as they can measure the distance between
molecules. Consequently, their performance is
suboptimal, as similar molecules have a higher likelihood
of collisions within the Bloom filter.

In terms of the time required for Bloom filters to verify
whether a molecule is part of a set or not, Fig. 4 clearly
illustrates that Bloom filters demand up to three orders
of magnitude less time compared to the native API, and
one order of magnitude less than B-Tree indexing search.
Even the “slower” Python implementation using RDKit
for fingerprints necessitates two orders of magnitude
less time for membership checks with an online server.
To showcase the effect of latency in this test, a locally
installed PostgreSQL database with a B-Tree index with
400,000 members was used. Assuming the Internet
Search uses another efficient search method, the
difference can be consider as latency.

Conclusion
We demonstrate that string hashing (FNV and MD4–
5) for Bloom filters outperform and approximate
the theoretical limit of these structures, confirming
that strings are sufficient for molecule storage. Even
taking into account the time spent on canonicalizing
SMILES, Bloom filter retrieval is still more than two
orders of magnitudes faster than using an internet
search. We also show that FNV, despite its simplicity

Fig. 3 False Positive Rate (FPR) vs. filter size for different hash methods. Although all hashing variations follow similar trends, both string hashes FNV
and MD4-5 are identical. “Noisy” peaks can be seen, which result from hashing functions being divisible by the size of the bloom filter

Page 5 of 6Medina and White Journal of Cheminformatics (2023) 15:95

and speed, is as effective as MD5. Employing other
string representations, such as InChI and SELFIES, is
expected to yield similar results. Potential applications
for the Bloom filter are to quickly determine if a
molecule is purchasable in ZINC[2], patented according
to SureChembl [34], or a natural product [13].

Acknowledgements
We thank the Center for Integrated Research Computing (CIRC) at the
University of Rochester for providing computational resources and technical
support.

Author contributions
ADW is the lead developer and conceptualizer of the ”molbloom” package
and is responsible for the software, methodology, and manuscript review and
editing. JM updated the package, conducted a literature review, performed
experiments, and wrote the initial manuscript draft under ADW’s guidance.
Both authors read and approved the final manuscript.

Funding
This work has been supported by funds from the Robert L. and Mary L. Sproull
Fellowship gift and U.S. Department of Energy, Grant No. DE-SC0023354.

Availability of data and materials
Molbloom package is an open source project and the code implementation
in python for the experiments can be found in the corresponding repositories
[26, 35]

Declarations

Ethics approval and consent to participate
Not Applicable

Consent for publication
Not Applicable

Competing interests
The authors have no competing interests to declare.

Received: 14 June 2023 Accepted: 25 September 2023

Fig. 4 Comparison of Time Consumption Using Bloom Filters (BF), B-tree Indexing and Direct Server Search in a Commercial Database. The analysis
for Bloom filters is broken down into individual steps: a) Conversion of SMILES notation to an RDKit Mol object, b) Canonicalization of the string.
B-tree index was created with PostgreSQL. The time requirements for each step are displayed in the first and third columns. Bars 3 and 4, showcase
how the Direct Server Search time is influenced by network latency, a common concern when relying on remote, online resources

Page 6 of 6Medina and White Journal of Cheminformatics (2023) 15:95

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

References
 1. Rester Ulrich (2008) From virtuality to reality - virtual screening in lead

discovery and lead optimization: a medicinal chemistry perspective. Curr
Opinion Drug Disc Devel 11(4):559–568

 2. Irwin John J, Tang Khanh G, Jennifer Young, Chinzorig Dandarchuluun,
Wong Benjamin R, Munkhzul Khurelbaatar, Moroz Yurii S, John Mayfield,
Sayle RA (2020) Zinc20-a free ultralarge-scale chemical database for
ligand discovery. J Chem Inform Model 60(12):6065–6073

 3. Bloom Burton H (1970) Space/time trade-offs in hash coding with
allowable errors. Commun ACM 13(7):422–426

 4. Tarkoma Sasu, Rothenberg Christian Esteve, Lagerspetz Eemil (2012)
Theory and practice of bloom filters for distributed systems. IEEE
Commun Surv Tutor 14(1):131–155

 5. Broder Andrei, Mitzenmacher Michael (2004) Network applications of
bloom filters: a survey. Internet Mathemat 1(4):485–509

 6. McIlroy M (1982) Development of a spelling list. IEEE Trans Commun
30(1):91–99

 7. Yakunin Alex (2010) Nice bloom filter application
 8. Dasgupta Sanjoy, Sheehan Timothy C, Stevens Charles F, Navlakha Saket

(2018) A neural data structure for novelty detection. Proc Natl Acad Sci
115(51):13093–13098

 9. Talbot Jamie (July 2015) What are Bloom filters?
 10. Goodwin Bob, Hopcroft Michael, Luu Dan, Clemmer Alex, Curmei

Mihaela, Elnikety Sameh, He Yuxiong (August 2017) BitFunnel: Revisiting
Signatures for Search. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 605–614, Shinjuku Tokyo Japan, ACM

 11. Bran Andres M, Cox Sam, White Andrew D (2023) and Philippe Schwaller.
Chemcrow: Augmenting large-language models with chemistry tools

 12. Muegge Ingo, Mukherjee Prasenjit (2016) An overview of molecular
fingerprint similarity search in virtual screening. Expert Opin Drug Disc
11(2):137–148

 13. Sorokina Maria, Merseburger Peter, Rajan Kohulan, Yirik MehmetAziz,
Steinbeck Christoph (2021) COCONUT online: collection of open natural
products database. J Cheminform 13(1):2

 14. Fan Bin, Andersen Dave G., Kaminsky Michael, Mitzenmacher Michael D.
(2014) Cuckoo filter: Practically better than bloom. In: Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’14, page 75-88, New York, NY,
USA. Association for Computing Machinery

 15. Bender Michael A, Farach-Colton Martin, Johnson Rob, Kuszmaul
Bradley C, Medjedovic Dzejla, Montes Pablo, Shetty Pradeep, Spillane
Richard P, Zadok Erez (2011) Don’t thrash: how to cache your hash
on flash. In: 3rd Workshop on Hot Topics in Storage and File Systems
(HotStorage 11)

 16. Cormode Graham (2009) Count-min sketch
 17. Rajaraman Anand, Ullman Jeffrey David (2011) Mining of massive

datasets. Cambridge University Press; Cambridge
 18. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light

Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012)
ChEMBL: a large-scale bioactivity database for drug discovery. Nucl Acids
Res 40(D1):D1100–D1107

 19. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-
accessible database of experimentally determined protein-ligand
binding affinities. Nucl Acids Res 35(Database):D198–D201

 20. Kim Sunghwan, Chen Jie, Cheng Tiejun, Gindulyte Asta, He Jia, He Siqian,
Li Qingliang, Shoemaker Benjamin A, Thiessen Paul A, Bo Yu, Zaslavsky
Leonid, Zhang Jian, Bolton Evan E (2023) PubChem 2023 update. Nucl
Acids Res 51(D1):D1373–D1380

 21. Papadatos George, Davies Mark, Dedman Nathan, Chambers Jon,
Gaulton Anna, Siddle James, Koks Richard, Irvine Sean A, Pettersson Joe,
Goncharoff Nicko, Hersey Anne, Overington John P (2016) SureChEMBL: a
large-scale, chemically annotated patent document database. Nucl Acids
Res 44(D1):D1220–D1228

 22. Pence Harry E, Williams Antony (2010) ChemSpider: an online chemical
information resource. J Chem Educ 87(11):1123–1124

 23. St Denis Tom, Johnson Simon (2007) Chapter 5 - hash functions. In: St
Denis Tom, Johnson Simon (eds) Cryptography for Developers, pages
203–250. Syngress, Burlington

 24. Wikipedia contributors (2023) Bloom filter, 2

 25. Dillinger Peter C, <peterd@cc.gatech.edu> Manolios Panagiotis <
manolios@cc.gatech.edu> (2004) Bloom filters in probabilistic
verification. International Conference on Formal Methods in Computer-
Aided Design

 26. White Andrew D (2022) molbloom: quick assessment of compound
purchasability with bloom filters url = https:// github. com/ white ad/ molbl
oom, Dic 2022

 27. Fowler Glenn, Noll Landon Curt, Vo Kiem-Phong, Eastlake Donald E
3rd, Hansen Tony (2023) The FNV Non-Cryptographic Hash Algorithm.
Internet-Draft draft-eastlake-fnv-19, Internet Engineering Task Force,
January 2023. Work in Progress

 28. Rivest Ronald L (April 1992) The MD4 Message-Digest Algorithm. RFC
1320

 29. Rivest Ronald L (April 1992) The MD5 Message-Digest Algorithm. RFC
1321

 30. Durant Joseph L, Leland Burton A, Henry Douglas R, Nourse James G
(2002) Reoptimization of mdl keys for use in drug discovery. J Chem
Inform Comp Sci 42(6):1273–1280 (PMID: 12444722)

 31. Morgan HL (1965) The generation of a unique machine description for
chemical structures-a technique developed at chemical abstracts service.
J Chem Document 5(2):107–113

 32. Capecchi Alice, Probst Daniel, Reymond Jean-Louis (2020) One molecular
fingerprint to rule them all: drugs, biomolecules, and the metabolome. J
Cheminform 12(1):43

 33. Bosselaers Antoon (2005) Md4-Md5, pages 378–379. Springer US, Boston,
MA

 34. Papadatos George, Davies Mark, Dedman Nathan, Chambers Jon,
Gaulton Anna, Siddle James, Koks Richard, Irvine Sean A, Pettersson
Joe, Goncharoff Nicko et al (2016) Surechembl: a large-scale,
chemically annotated patent document database. Nucl acids Res
44(D1):D1220–D1228

 35. Medina Jorge (March 2023) molbloom: quick assessment of compound
purchasability with bloom filters url = https:// github. com/ Jgmed ina95/
molbl oom- paper

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/whitead/molbloom
https://github.com/whitead/molbloom
https://github.com/Jgmedina95/molbloom-paper
https://github.com/Jgmedina95/molbloom-paper

	Bloom filters for molecules
	Abstract
	Introduction
	Methodology
	Results and discussion
	Conclusion
	Acknowledgements
	References

