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Abstract 

In recent years, drug design has been revolutionized by the application of deep learning techniques, and mol-
ecule generation is a crucial aspect of this transformation. However, most of the current deep learning approaches 
do not explicitly consider and apply scaffold hopping strategy when performing molecular generation. In this work, 
we propose ScaffoldGVAE, a variational autoencoder based on multi-view graph neural networks, for scaffold genera-
tion and scaffold hopping of drug molecules. The model integrates several important components, such as node-
central and edge-central message passing, side-chain embedding, and Gaussian mixture distribution of scaffolds. 
To assess the efficacy of our model, we conduct a comprehensive evaluation and comparison with baseline models 
based on seven general generative model evaluation metrics and four scaffold hopping generative model evalua-
tion metrics. The results demonstrate that ScaffoldGVAE can explore the unseen chemical space and generate novel 
molecules distinct from known compounds. Especially, the scaffold hopped molecules generated by our model are 
validated by the evaluation of GraphDTA, LeDock, and MM/GBSA. The case study of generating inhibitors of LRRK2 
for the treatment of PD further demonstrates the effectiveness of ScaffoldGVAE in generating novel compounds 
through scaffold hopping. This novel approach can also be applied to other protein targets of various diseases, 
thereby contributing to the future development of new drugs. Source codes and data are available at https://​github.​
com/​ecust-​hc/​Scaff​oldGV​AE.
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Introduction
The process of drug discovery is a complex and resource-
intensive endeavor, involving significant human effort, 
material resources, and financial investment. One of 
the major challenges in drug discovery is the vast and 
discrete nature of the chemical space. However, recent 
advancements in artificial intelligence and the utiliza-
tion of big data have begun to reshape this landscape. 
Deep learning approaches have emerged as powerful 
alternatives to traditional brute force methods like high-
throughput screening. In particular, generative models 
have gained significant attention and have been applied to 
the design of de novo drug molecules, enabling the gen-
eration of new molecules with desired properties. Several 
drug molecular generation methods based on genera-
tive models have been developed in recent years. These 
include variations of the variational autoencoder (VAE) 
such as JT-VAE [1], GVAE [2], GraphVAE [3], NEVAE 
[4], and others. Additionally, there are generation meth-
ods based on the generative adversarial network (GAN) 
model, such as MolGAN [5], and ORGANIC [6]. RNN-
based methods like MolRNN [7] and MolecularRNN [8], 
as well as diffusion model methods like GEOLDM [9], 
and MolDiff [10], have also been explored.

Scaffold hopping [11] is a widely employed strategy in 
drug design for traditional medicinal chemists, and when 
combined with artificial intelligence, it becomes a power-
ful tool for molecular optimization and drug design. The 
scaffold of a molecule plays a crucial role in determin-
ing its binding mode and interaction within the pocket 
of the protein. By modifying and optimizing the scaffold 
structure, we can discover more effective and selective 
drug compounds. However, the molecular generative 
models, specifically targeting scaffold hopping are rela-
tively scarce. The primary objective of scaffold hopping 
is to identify compounds with distinct core structures 
while maintaining similar activities. This approach ena-
bles researchers to explore new lead compounds that 
may exhibit improved bioactivity and selectivity, while 
also bypassing existing intellectual property restrictions. 
Despite the potential benefits, the current methods for 
scaffold hopping remain limited and are in their early 
stages of development. The integration of scaffold hop-
ping with artificial intelligence and generative models 
presents an opportunity to address these limitations. By 
leveraging advanced computational techniques and data-
driven approaches, researchers can enhance scaffold-
hopping capabilities and facilitate the discovery of novel 
drug candidates with desirable properties.

The DeepHop [12]method is regarded as a super-
vised translation task involving molecule-to-molecule 
transformations. Its objective is to construct pairs of 
molecules with similar 3D structures but distinct 2D 

structures using activity data sets from 40 kinases. The 
method employs a multimodal Transformer model that 
incorporates molecular sequence information, graph 
information, and protein information. However, this 
approach does not explicitly define the scaffold, mak-
ing it challenging to generate molecules that preserve 
the side chains while solely modifying the scaffold. The 
SyntaLinker [13] and DeLinker [14] approaches are pri-
marily fragment-based drug design methods that focus 
on generating a linker to connect two molecular frag-
ments. While these methods touch upon the concept of 
scaffold hopping, they do not specifically target scaffold 
hopping as their main objective. Consequently, there is 
a lack of experimental validation specifically dedicated 
to scaffold hopping in these methods. The SyntaLinker 
Hybrid [15] method represents a combination of the Syn-
taLinker approach with the molecular fragment of the 
conserved kinase hinge region. By integrating these two 
components, the method aims to create kinase inhibitors 
with novel scaffolds by hybridizing the privileged frag-
ment with the hinge region. This approach fundamentally 
relies on the principles and techniques of fragment-based 
drug design (FBDD). GraphGMVAE [16] is an innovative 
method for scaffold hopping in drug molecular design, 
developed by Tencent Laboratory. This approach lever-
ages a graph-based Gaussian mixture hidden space vari-
ational autoencoder (GMVAE) to enable the generation 
of novel scaffolds with desirable properties. However, 
Tencent Laboratory hasn’t been open-sourced, limiting 
its widespread application.

To enable scaffold hopping in molecule design, we 
propose an algorithm based on the framework of a vari-
ational autoencoder. Our algorithm aims to preserve the 
side chains while modifying the molecular scaffold. To 
achieve this, we adopt a strategy of separating the side-
chain and scaffold embedding of the molecule. Spe-
cifically, we keep the side-chain embedding unchanged, 
while mapping the scaffold embedding to a mixture 
Gaussian distribution. This approach takes both scaf-
fold and side-chain information into consideration dur-
ing the scaffold generation process. Incorporating an 
automatic algorithm of adding side chains, our method 
performed scaffold hopping-guided molecular genera-
tion. To train our model, we perform pre-training on a 
large-scale ChEMBL dataset. We screen over 1 million 
molecules from the ChEMBL dataset and construct pre-
training datasets using the ScaffoldGraph method for 
extracting molecular scaffolds. Additionally, we fine-tune 
the model using ScaffoldGraph extraction on datasets 
specific to molecules that exhibit activity against par-
ticular targets. This fine-tuning process aims to enhance 
the activity of the generated molecules for the target of 
interest. The effectiveness and superiority of our model 



Page 3 of 17Hu et al. Journal of Cheminformatics           (2023) 15:91 	

are demonstrated through various evaluation metrics, 
including those commonly used in the field of drug 
design. Furthermore, we conduct case study analyses to 
provide insightful observations and validate the perfor-
mance of our model.

Materials and methods
Data preparation
We retrieved over 1.9 million small molecules in canoni-
cal SMILES format from the ChEMBL database (ver-
sion 31) [17]for our study. To ensure data quality, we 
performed preprocessing steps, including charge stand-
ardization, removal of small fragments and metals, and 
elimination of duplicates and invalid SMILES. The data-
base was further refined by filtering based on molecular 
weight, heavy atom composition, medicinal chemistry 
filters, and PAINS filters. To extract the molecular scaf-
fold from a molecule, the ScaffoldGraph [18] method 
was employed, though the Bemis-Murcko scaffold (BM 
scaffold) is more commonly utilized. ScaffoldGraph goes 
beyond the simple removal of substituents and performs 
a second-level extraction to capture core structural com-
ponents more comprehensively. It not only enhances 
scaffold separation from the side chains but also ena-
bles a more thorough exploration of diverse scaffolds. 
The extracted scaffolds were then subjected to filtering 
based on well-defined criteria: (1) a minimum require-
ment of at least one ring (excluding benzene rings). The 
decision to remove the benzene ring is due to its ubiqui-
tous occurrence in many molecules. If it were included, 
almost every molecule would contain a benzene ring, (2) 
a maximum limit of 20 heavy atoms, and (3) a constraint 
of no more than three rotatable bonds. Following the 
scaffold extraction and filtering processes on the exten-
sive ChEMBL dataset, it is important to consider that a 
single molecule may correspond to multiple scaffolds. To 
address this, we randomly selected a representative scaf-
fold for each molecule, resulting in the formation of a 
dataset comprising over 800,000 data pairs consisting of 
molecules and the corresponding scaffolds.

In this study, we carefully selected five distinct kinase 
proteins as cases for fine-tuning the pre-trained model, 
namely cyclin-dependent kinase 2 (CDK2), human epi-
dermal growth factor receptor (EGFR), Janus kinase 1 
(JAK1), Leucine-rich repeat kinase 2 (LRRK2), and Pim-1 
proto-oncogene, serine/threonine kinase (PIM1). To 
obtain compounds with known bioactivity against these 
proteins, we extracted compounds with bioactivity (IC50, 
Ki) smaller than 10 micromoles from ChEMBL. Subse-
quently, scaffold extraction and scaffold filtering opera-
tions were performed on these molecules to isolate the 
underlying scaffolds. Given the limited amount of data 
available in the activity dataset, we retained all scaffolds 

that met the defined conditions, allowing for the possibil-
ity of one molecule corresponding to multiple scaffolds. 
The resulting datasets for the five kinases are summa-
rized in Table 1.

Model architecture
The model architecture in our study is based on the con-
cept of a variational autoencoder. However, unlike tra-
ditional VAE-based molecule generation methods, our 
focus lies specifically on scaffold generation to facilitate 
scaffold hopping in molecule design. To achieve this, 
we propose a novel variational autoencoder specifically 
designed for scaffold generation. The encoder (Fig.  1A) 
utilizes a multi-view graph neural network [19] to encode 
the edges (bonds) and nodes (atoms) of molecules sepa-
rately, that is, perform message passing with nodes and 
edges as the center, respectively. In the readout phase, we 
concatenate the embeddings of nodes and edges together 
to obtain the whole molecular embedding. According 
to the scaffold of the molecule, the molecular embed-
ding can be further divided into two parts, i.e., side-chain 
embedding and scaffold embedding. The scaffold embed-
ding is projected onto a multivariate Gaussian mixture 
distribution, while the side-chain embedding remains 
unchanged. The decoder (Fig.  1B) employs a recurrent 
neural network (RNN) [20] model to concatenate the 
scaffold embedding with the side-chain embedding as the 
initial implicit vector, enabling the reconstruction of the 
scaffold SMILES. This scaffold generation process con-
siders scaffold information and side-chain information of 
the original molecule.

Encoder
The encoder in our model employs a graph messaging 
neural network [21] to effectively encode the molecular 
graph, as depicted in Fig.  1A. Each node in the graph 
is associated with a node eigenvector, which captures 
essential atomic properties such as atomic type, valency, 
and other relevant characteristics. Similarly, each edge in 
the graph is represented by a feature vector that encapsu-
lates bond types.

Table 1  The data set the information of the five kinase proteins

Target protein PDB ID Uniprot ID Number of 
data pairs

CDK2 1H00 P24941 1200

EGFR 2RGP P00533 10,533

JAK1 6PTE P23458 4860

LRRK2 7BJD Q5S007 2436

PIM1 3UMW P11309 3682
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The information transfer process based on molecular 
graph nodes is illustrated by Eq. (1). Here, h0v represents 
the initial eigenvector of the node v , and hl+1

v  represents 
the node feature vector after one iteration. The transfer 
of information from node u to node v is denoted by evu , 
where u ∈ Nv represents that u is a neighbor node of v . 
The activation function σ(·) is applied, and in our case, 
we utilize the rectified linear unit (ReLU), defined as 
ReLU(x) = MAX(0, x) , as the activation function. The 
aggregation function used is concat(a, b) . Equation  (2) 
describes the information propagation among the edges 
of the molecular graph in the encoder network. The 
edge feature vector, hl+1

vw  , undergoes an iterative update 
from its initial value, h0vw . This update process takes 
into account the node features, xu , associated with the 
connected nodes. The aggregation function combines 
relevant features, while the activation function intro-
duces non-linearity to enhance the learning process. 
Equation  (3) illustrates the process of propagating edge 
features to the nodes after L iterations. Equation  (4) 
demonstrates the concatenation of the iterated node fea-
tures with the edge features. This operation results in a 
matrix of size n× (hnode + hedge) , where n represents 
the number of nodes, hnode denotes the dimension of 
node eigenvectors, and hedge represents the dimension 
of edge eigenvectors. These mathematical formulations 
effectively capture the interplay between node and edge 

features, enabling a comprehensive representation of 
molecular structures.

To facilitate scaffold hopping, it is crucial to distin-
guish between the side-chain and scaffold parts within 
the molecule. This entails assigning a value of 1 to nodes 
belonging to the scaffold and 0 to nodes in the side 
chain. Consequently, we obtain a binary list, as depicted 
in Eq. (5), allowing us to separate the node features into 
Hside and Hsca . This segregation enables a targeted focus 
on the scaffold characteristics, facilitating the generation 
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Fig. 1  Model architecture diagram and workflow. A Multi-view graph neural network-based encoder. B RNN-based decoder for scaffold 
reconstruction and sampling. C Scaffold hopping: new scaffold sampling combined with reference molecule’s side chains. D Flowchart depicting 
the training, sampling, and scaffold hopping of the model
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of novel molecules with scaffold hopping techniques. 
To obtain fixed-length graph representations for Hside 
and Hsca , a readout operation is performed. The readout 
function utilizes graph self-attention [22, 23], as illus-
trated in Eqs.  (6) and (7). Equations  (8) and (9) demon-
strate the readout process for scaffold and side-chain 
embedding respectively. In these equations, the learnable 
matrices W1 ∈ Rdattn×dout and W2 ∈ Rdattn×r , with dimen-
sions dattn × dout and dattn × r , respectively, play a cru-
cial role. W1 linearly transforms the node embedding 
from a dimensionality reduction space to a dattn-dimen-
sional space, while W2 provides insights into the impor-
tance of r nodes. The importance values are standardized 
using a softmax function. It is worth noting that W1 and 
W2 parameters are shared across scaffold and side-chain 
embedding. By applying the Flatten(·) function, the 
graph-level embedding for the scaffold and side chain 
was obtained yielding fixed-length representation suit-
able for subsequent scaffold hopping tasks.

Decoder
The decoder component of our model, depicted in 
Fig.  1B, utilizes an RNN-based language model. This 
design choice is inspired by the similarity between scaf-
fold representation in SMILES format and sequential 
language in natural language processing. In language 
models, the ability to extract syntactic and semantic 
information enables the generation of coherent and 
meaningful sequences. Similarly, the RNN model in our 
decoder is capable of reconstructing the scaffold into 
canonical SMILES, considering the side-chain informa-
tion. Additionally, the autoregressive nature of the RNN 
allows for scaffold sampling, facilitating the explora-
tion of novel scaffold variations during the scaffold hop-
ping process. we employ Gated Recurrent Unit (GRU) 
[20] units. These units play a crucial role in handling the 
sequential nature of SMILES strings. In our approach, 
we concatenate the side-chain embedding with the scaf-
fold embedding to form the initial hidden state (h) of the 
RNN. This allows the model to consider both scaffold 
and side-chain information from the beginning of the 

(5)Ssca = [1, if i ∈ scaffold; 0, if i ∈ side]

(6)
Attentionsca = softmax(W1tanh(W2Hnode[Ssca]))

(7)Zsca = Flatten(AttentionTsca ·Hnode[Ssca])

(8)
Attentionside = softmax(W1tanh(W2Hnode[S

−
sca]))

(9)Zside = Flatten(AttentionTside ·Hnode[S
−
sca])

generation process. During the training phase, we extract 
normalized scaffold SMILES and encode them as one-
hot vectors, which serve as the target for reconstruct-
ing the scaffold SMILES. To facilitate the conversion of 
individual tokens into meaningful vector representations, 
we employ an embedding layer with 128 units. This layer 
converts each token into a 128-dimensional vector. The 
GRU component of our model comprises three layers, 
with each layer containing 512 neurons. These layers 
effectively capture the dependencies and patterns within 
the SMILES sequence. Finally, the output from the GRU 
layers is fed into a dense connection layer with the same 
number of neurons as the total number of words, includ-
ing additional tokens indicating the start and end of the 
SMILES string.

Pre‑training
The model undergoes a pre-training phase using a data-
set consisting of over 800,000 pairs of molecular scaffolds 
extracted from the ChEMBL dataset. During pre-train-
ing, the model learns both the syntactic and semantic 
information encoded in molecular SMILES. Additionally, 
it enhances its understanding of scaffold-specific infor-
mation and expands the range of scaffold types within 
its hidden representation. Before pre-training, a vocabu-
lary is constructed by extracting words from the dataset, 
resulting in a total of 111 unique words. The standardized 
molecular scaffold SMILES are then one-hot encoded 
using this vocabulary, forming the target variable X . To 
reconstruct the scaffold, the information H encoded by 
the RNN is combined with the target variable to con-
struct the reconstruction loss. The reconstruction loss 
is calculated using the cross-entropy loss function, as 
depicted in Eq.  (14). Furthermore, a Kullback–Lei-
bler (KL) [24] divergence loss function is employed to 
align the scaffold encoding with a multivariate normal 
distribution. This ensures that the scaffold encoding 
remains close to the normal distribution, as illustrated 
in Eq.  (15). The two loss functions are combined using 
a weighted sum, as shown in Eq.  (16), where β repre-
sents the weight assigned to balance the two losses. The 
weight β is adjusted incrementally with each Epoch to 
achieve a better balance between the reconstruction 

(10)ft = σg (Wf xt + Uf ht−1 + bf )

(11)rt = σg (Wrxt +Urht−1 + br)

(12)̂ht = ∅h(Whxt +Uh(rt ⊙ ht−1)+ bh)

(13)ht = (1− ft)⊙ ht−1 + ft ⊙ ̂ht
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and KL divergence losses. Both the encoder and decoder 
are involved in the model training process, enabling the 
model to learn and capture the important features of 
molecular scaffolds.

Fine‑tuning
The model undergoes a fine-tuning process using the 
known bioactive compounds against specific protein 
targets, namely CDK2, EGFR, JAK1, LRRK2, and PIM1. 
Since the number of active compounds is relatively small 
compared to the pre-trained dataset, all scaffolds that 
meet the specified conditions are retained. This means 
that one molecule may correspond to multiple scaf-
folds, which effectively expands the focused fine-tuning 
dataset. During fine-tuning, the learning rate is reduced 
compared to the pre-training phase. This adjustment 
enhances the model’s ability to explore the chemical 
space of active compounds and improve its performance 
in generating novel molecules while maintaining or 
increasing activity. The loss function used in the fine-
tuning procedure remains consistent with that employed 
during the pre-training phase. This ensures continuity 
in the optimization process and allows the model to fur-
ther refine its capabilities in generating desired molecular 
structures.

Sampling
The model performs scaffold sampling based on the 
molecular syntax and semantics learned from the train-
ing set, as well as the spatial distribution of molecules and 
scaffolds. Given a reference molecule and its correspond-
ing scaffold, the model generates novel scaffolds that can 
replace the original one. The molecular scaffold and side 
chain are encoded using a graph-based neural network 
for information transfer. While the side chain remains 
unchanged, the scaffold embedding is resampled from 
the hidden space. In Eq.  (17), the two embeddings are 
input into an RNN as initial hidden vectors. The scaffold 
is then sampled using the autoregressive property of the 
RNN model. Subsequently, the side chain of the reference 
molecule is assembled onto the newly sampled scaffold. 
This process results in a molecule with a novel scaffold. 
The splicing of the side chain is illustrated in Fig. 1C. The 
overall process of scaffold sampling and splicing, leading 
to scaffold hopping, is depicted in Fig. 1D. By leveraging 

(14)Lrecon = cross_entropy(X ,H)

(15)Lkl = Dkl(qϕ(z|X)||p(z))

(16)Loss = Lrecon + βLkl

the molecular syntax and spatial information, the model 
generates diverse scaffold replacements, enabling the 
exploration of novel chemical space for drug design and 
discovery.

Principle of adding side chains
After the decoder outputs a scaffold, side chains need to 
be added back to the scaffold to obtain a complete gener-
ated molecule, as shown in Fig. 1C. Here, we use RDKit 
(https://​rdkit.​org/) tool to combine the scaffold with side 
chains and follow these simple principles: (1) Compare 
the sampled and original scaffold and enumerate all pos-
sible of side chain installation on the sampled scaffold; 
(2) Calculate the similarity of the topological fingerprint 
between the molecule after adding side chain and the 
original molecule; (3) Using the way to add side chain that 
ensures the generated molecule as much as possible simi-
lar to the original molecule; (4) Check the validity of the 
generated molecule, and if there are cases such as incor-
rect valence bonds or inability to connect side chain, the 
molecule is deemed invalid. Following these principles, 
the model ultimately could generate novel molecules 
with a hopped scaffold and invariant side chain.

Baseline models
We compared our approach with the following baselines, 
The model was trained using the hyperparameters from 
the original paper, retrained on the ChEMBL dataset, 
and fine-tuned on corresponding activity datasets for five 
targets.

(1)	 VAE [25] (Variational Autoencoder): The VAE is 
utilized for SMILES generation of molecules. It 
involves training two neural networks, namely the 
encoder and decoder. The encoder is responsible for 
reconstructing the SMILES representation of mole-
cules, while the decoder maps the high-dimensional 
data representation of molecules to a latent space 
that follows a normal distribution. New molecules 
are generated by sampling from this latent space.

(2)	 AAE [26](Adversarial Autoencoder): AAE 
addresses one of the main drawbacks of VAE, 
which is the limited applicability of the KL diver-
gence term due to its closed-form analytical solu-
tion being available only for a few distributions. 
AAE combines the concepts of VAE and adversarial 
training, as seen in Generative Adversarial Net-
works.

(3)	 LatentGAN [27]: LatentGAN combines autoencod-
ers and adversarial neural networks. It involves pre-
training a heterogeneous encoder on a ChEMBL 

(17)h0 = concat(Zside,µ+ σ 2 × N (0, 1))

https://rdkit.org/
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dataset to capture molecular characteristics. Then, 
an adversarial network is trained to generate latent 
vectors that follow a desired distribution. Finally, 
the generated latent vectors are decoded using the 
heterogeneous encoder to obtain molecules.

(4)	 QBMG [28]: QBMG is a drug molecule generation 
method based on a GRU recurrent neural network. 
It leverages the autoregressive property of RNNs 
to generate novel drug molecules. Additionally, it 
undergoes fine-tuning activity data sets specific to 
protein targets, enabling the generation of mole-
cules that exhibit activity against those targets. This 
allows QBMG to generate novel drug candidates 
with desired properties for specific protein targets.

(5)	 SyntaLinker [13]: SyntaLinker is a fragment-based 
drug design method that incorporates deep bar 
transformer neural networks. This approach uti-
lizes the power of transformers to automatically 
establish connections between molecular fragments 
based on the knowledge learned from pharmaceu-
tical chemistry databases. Moreover, the model is 
capable of performing scaffold hopping, enabling 
the generation of structurally diverse compounds.

(6)	 REINVENT2[35]: REINVENT2 is an advanced 
RNN-based molecular design model known for its 
ability to generate diverse and innovative chemi-
cal compounds. In this study, we employed REIN-
VENT2 with a scaffold penalty in the reinforcement 
learning process to generate new molecules refer-
ring to the given reference compounds.

Evaluation metrics
The performance of these generative models is evalu-
ated using two sets of evaluation metrics. The first set of 
metrics is the same as MOSES [29], which is commonly 
used in the field of molecular generation to evaluate the 
ability to generate valid and chemically diverse druglike 
molecules. We named these metrics as general generative 
model evaluation metrics (GEM) which include:

(1)	 Validity: the proportion of generated molecu-
lar SMILES that can be parsed and validated by 
RDKIT.

(2)	 Uniqueness1K: the proportion of unique and valid 
molecules within the top 1 K generated molecules.

(3)	 Uniqueness5K: the proportion of unique and valid 
molecules within the top 5 K generated molecules.

(4)	 Filter: the proportion of molecules generated by 
the model that can pass through MOSES using 
Filter when constructing data sets: the molecules 
were filtered via custom medicinal chemistry filters 
(MCFs) and PAINS filters etc.

(5)	 Novelty: the proportion of generated molecules that 
are not in the training sets.

(6)	 Scaffold uniqueness: the proportion of unique and 
valid scaffold within the generated molecules.

(7)	 Scaffold novelty: the proportion of scaffolds of gen-
erated molecules that are not in the training sets.

In addition, another more important set of metrics is 
utilized to assess the ability of these models to generate 
new molecules that not only satisfy the scaffold hop-
ping requirement but also retain the desired activity. In 
the context of designing drugs through scaffold hopping, 
medicinal chemists aim to obtain a novel compound with 
a new scaffold while maintaining similar activity, even if 
it is slightly lower. Therefore, it is crucial for these mod-
els to effectively generate molecules that fulfill both cri-
teria to be considered successful tools for drug design. In 
this study, we have made use of both GraphDTA [30] and 
LeDock [31](http://​www.​lephar.​com) to predict activity 
scores. The reason for this is that GraphDTA utilizes a 
deep learning method to predict the activity score, while 
LeDock uses a conventional molecular docking approach. 
By referring to both these two methods, we can obtain a 
more comprehensive understanding of the activity scores 
of the molecules generated by the model. Specifically, 
the following four metrics are used in this work, and we 
named them scaffold hopping generative model evalua-
tion metrics (SEM):

	 (8)	 Active mean: the average activity score of the 
molecules generated by the model.

	 (9)	 Active rate: the proportion of generated mol-
ecules that have activity scores better than the 
corresponding reference compound.

	 (10)	 Hop rate: the proportion of generated molecules 
that satisfy the criteria for scaffold hopping, 
which involves retaining the side chain while 
introducing a hopped scaffold.

	(11)	 Success rate: the proportion of generated mol-
ecules that satisfy both the requirements for scaf-
fold hopping and retaining or increasing activity 
score compared to the reference molecule.

Results and discussion
The complete workflow of our model in this study is 
shown in Fig.  1D. Initially, we collected data from the 
ChEMBL database and followed a rigorous data prepara-
tion procedure to obtain 800,000 molecule-scaffold pairs 
for model pre-training. Additionally, we gathered known 
active compounds against five kinase proteins, namely 
CDK2, EGFR, JAK1, LRRK2, and PIM1, as shown in 
Table 1. Next, we fine-tuned the pre-trained model on the 

http://www.lephar.com
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active compound dataset for each of the five targets. To 
ensure the robustness of the model and obtain a statisti-
cal comparison of its performance, we selected 20 differ-
ent compounds as reference compounds from the known 
active compound dataset for each kinase. We pre-defined 
the scaffold of the reference compound that required 
hopping based on the pharmacophore core structure 
of the compound near the hinge binder. This was done 
because the structure binding to the hinge region is the 
most significant part of the design of kinase inhibitors. 
All the identified scaffolds were provided in the Addi-
tional file 1: Fig. S1–S5. Using the fine-tuned model, we 
sampled 5000 novel scaffolds and installed them to mol-
ecules according to the principle of adding a side chain 
for each reference compound. This resulted in 100,000 
generated molecules obtained for each kinase. Finally, 
we evaluated the generated molecules using established 
eleven metrics, including seven GEM and four SEM.

To ensure a fair comparison, we trained baseline mod-
els and utilized them for molecule generation. The VAE, 
AAE, LatentGAN, and QBMG models were pre-trained 
and fine-tuned on five targets, following the MOSES 
[29] framework’s proposed pipeline. We retrained these 
models using their respective papers’ specified hyper-
parameters. To maintain consistency with our model’s 
generation tasks, we independently sampled these mod-
els 20 times for each target to ensure an equal compari-
son among these baselines. Consequently, we generated 
100,000 molecules against each target for each model. 
The SyntaLinker required inputting two fragments to 
generate the linker. As we aimed to produce new scaf-
folds, we divided the reference compound into two frag-
ments according to the pre-defined scaffold and removed 
it. Following this step, SyntaLinker generated 5000 mol-
ecules for each reference compound.

Model performance on GEM
We first assessed the performance of our model on seven 
GEM, namely Validity, Uniqueness1k, Uniqueness5k, 
Novelty, Filtering, Scaffold Uniqueness, and Scaffold 
Novelty. We evaluated the model against five targets, 
with a total of 100,000 molecules sampled and tested for 

each target. The results were obtained by averaging the 
performance across 20 reference compounds for each 
target. As shown in Table  2, our model demonstrated 
acceptable validity and uniqueness metrics of 90% and 
60%, respectively, indicating that it has learned the rep-
resentation of chemical molecules well and can be used 
for de novo design. Furthermore, our model’s robust-
ness across different targets highlights its reliability. Our 
multi-view graph network variational autoencoder model 
for a molecular generation was also shown to achieve a 
validity and uniqueness of 99% in an ablation experi-
ment. Additionally, our model’s novelty of scaffold and 
molecule was better than most baseline models, with the 
novelty of molecule reaching 100% for all targets. These 
results demonstrate that our model is capable of explor-
ing the unseen chemical space and generating novel mol-
ecules that are distinct from known compounds. Overall, 
our model’s performance on various metrics highlights 
its ability to generate valid and novel molecules through 
scaffold hopping.

To better understand the estimation of how similar the 
proposed novel scaffolds are to the molecules the known 
compounds for the targets (CDK2, JAK1, EGFR, LRRK2, 
and PIM1) in the ChEMBL database. we evaluated the 
chemical space coverage by calculating the ECFP finger-
print used as a t-distributed Stochastic Neighbor Embed-
ding (t-SNE) visualization. As Additional file  1: Fig. S6 
shows in the t-SNE plot, the generated molecules are not 
only capable of scaffold hopping around the reference 
molecules but also exploring the chemical space of scaf-
folds to select appropriate scaffolds for hopping.

Model performance on SEM
The main task of this study is molecular generation 
through scaffold hopping, thus, the model performance 
on SEM is especially significant. Here, we conduct a more 
comprehensive performance comparison between our 
model and baseline models, involving the activity scores 
of generated molecules. As introduced in the section 
of Materials and Methods, SEM includes four metrics, 
namely active mean, active rate, hop rate, and success 
rate. The activities of molecules are evaluated using two 

Table 2  The performance of our model on general generative model evaluation metrics (GEM) among five distinct targets: CDK2, 
EGFR, JAK1, LRRK2, and PIM1

Protein Validity ↑ Uniqueness1K ↑ Uniqueness5K ↑ Filter ↑ Scaffold 
uniqueness ↑

Scaffold novelty ↑ Novelty ↑

CDK2 0.9047 0.5989 0.4423 0.8186 0.4880 0.4853 1.0000

EGFR 0.9017 0.6279 0.4762 0.5976 0.5220 0.4989 1.0000

JAK1 0.8967 0.5987 0.4434 0.9059 0.4937 0.4921 1.0000

LRRK2 0.9022 0.6021 0.4457 0.8957 0.4932 0.4748 1.0000

PIM1 0.8949 0.5982 0.454 0.8208 0.5028 0.4898 1.0000
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prediction methods: GraphDTA [29] and LeDock [31] 
(http://​www.​lephar.​com). GraphDTA predicts drug-tar-
get activity based on the protein sequence using a deep 
learning method, while LeDock utilizes the protein struc-
ture and conducts molecular docking to predict the bind-
ing affinity score. As a validation, we utilized GraphDTA 
to predict the activity scores (IC50 or Ki) of the reference 
compounds against five targets, and the RMSE of pre-
diction is 0.88 (Additional file  1: Fig. S7) which is well 
acceptable. Thus, by referring to both these two meth-
ods, we can obtain a more comprehensive understanding 
of the activity scores of the molecules generated by the 
model. Only the molecule that satisfies both the require-
ments for scaffold hopping and retaining or increasing 
activity score compared to the reference molecule is con-
sidered a success molecule, so we underline that the suc-
cess rate is the most important metric to evaluate model 
performance for scaffold hopping of molecule.

The performance comparison between our model and 
baseline models on SEM among five distinct targets is 
shown in Table  3 (For aesthetic purposes, Table  3 does 
not include the portion with standard deviations. A table 
with the standard deviation part, like Additional file  1: 
Table  S6, is available.). It is highlighted that our model 
reaches the highest success rate for all five targets either 
evaluated by GraphDTA or evaluated by LeDock. Specifi-
cally, the hop rate of our model is near 100% for all tar-
gets, while the other methods are all smaller than 40%. 
Although REINVENT2 with a scaffold penalty in the 
reinforcement learning can generate a greater variety of 
novel molecular scaffolds, its success rate remains low 
due to the difficulty in satisfying side-chain constraints 
with the generated molecules. Even the linker design 
method, SyntaLinker, only has a hop rate of approxi-
mately 30%. We speculate that it is the multi-view graph 
neural network and Gaussian mixture sampling in our 
model that facilitates good performance for scaffold hop-
ping. And for the activity evaluations, the ligand-based 
methods such as VAE, AAE, and QBMG perform bet-
ter not surprisingly, because their feature of generating 
molecules is to imitate known active molecules and can 
only generate molecules within similar chemical space 
(the fact of lack of novelty can prove this point). Com-
pared to these methods, the performance of our model 
and SyntaLinker are slightly inferior, because of the 
additional molecular side chains constraints when gen-
erating molecules. Nevertheless, our model presents the 
active rate better than 60%, and for LRRK2 and PIM1 the 
active rate even reaches 92.4% and 94.3, respectively. The 
impressive active rate is probably contributed by the joint 
embedding of the scaffold and side chain. In our model, 
we have leveraged the concatenated embedding of scaf-
fold and side chain to enable our variational autoencoder 

to efficiently sample potential scaffold while simultane-
ously considering the side chain. Without the side-chain 
embedding, the model performs not that well, as shown 
in the subsection of the ablation experiment (Model 3).

The results of our model are highly encouraging. Not 
only does it exhibit acceptable activity performance, but 
it also outperforms the baseline models in terms of scaf-
fold hopping performance. As a result, the overall success 
rate of our model is significantly better than that of the 
baseline models. Figure  2 shows it more vividly, while 
other methods show a success rate near zero except Syn-
taLinker and REINVENT2, and our model has the best 
success rate among five distinct targets. Additionally, we 
also assess the synthetic difficulty of the generated mol-
ecules through SA score calculated by RDKit, the results 
demonstrate that all these molecular generative models 
are capable of generating easy-to-synthesize molecules 
(the average SA scores are all smaller than 4 as shown 
in Table3). These findings are a testament to the effec-
tiveness of our approach and the potential it holds for 
future research in the field. However, there is still room 
for improvement in our current model. For example, 
although the overall success rate is high, there are still 
some reference compounds with low success rates. Fur-
ther improvement may extend its capabilities to deal with 
those special reference compounds.

Ablation experiment
In this subsection, we conducted ablation experiments 
on our model to investigate the impact of different com-
ponents on success rates. Specifically, our model is based 
on a multi-view graph neural network, namely combines 
the node-central message passing network (node-central 
MPN) and edge-central message passing network (edge-
central MPN), which enables information propagation 
from both the edge and node perspectives. The remove 
of node-central MPN (Model 1) and edge-central MPN 
(Model 2) will be adopted as the ablation experiments, 
respectively. Additionally, the variational autoencoder in 
our model is used to encode the molecule and decode the 
scaffold, which is different from the general molecule-to-
molecule generative methods. There are two reasons that 
we adopted this strategy but did not choose scaffold-to-
scaffold or molecule-to-molecule encode-decode strate-
gies. Firstly, scaffold to scaffold encode-decode strategy 
will lose the information of side chains, and it is hard to 
ensure generating scaffolds that are suitable for the side 
chains. Secondly, molecule to molecule encode-decode 
strategy could not promise scaffold hopping and retain-
ing the side chain simultaneously. As for comparison, 
these two strategies were also tested in our ablation 
experiments, corresponding without side-chain embed-
ding (Model 3) and without side-chain adding (Model 

http://www.lephar.com
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4), respectively. Finally, the Gaussian mixture distribu-
tion involved in our model is significantly important for 
scaffold hopping. Model 5 is the ablate model without the 
Gaussian mixture distribution, namely a general graph-
based VAE. And Model 6 is our model that involves all 
these components.

The ablation experiments conducted in this study are 
summarized in Table  4. The results reveal that the per-
formance of the model with a missing node-central 
MPN (Model 1), edge-central MPN (Model 2), or side-
chain embedding (Model 3) is slightly inferior to that of 
the complete model (Model 6). Furthermore, the direct 

Table 3  The performance comparison between our model and baseline models on scaffold hopping generative model evaluation 
metrics (SEM) among five distinct targets: CDK2, JAK1, EGFR, LRRK2, and PIM1

The best 10% of molecules generated by each model were evaluated. For each metric, the best result among all baseline models is represented as bold format

Protein Model SAscore GraphDTA Ledock

Active mean Active rate Hop rate Success rate Active mean Active rate Hop rate Success rate

CDK2 AAE 2.796 7.559 0.787 0.005 0.007 − 9.522 0.950 0.016 0.012

VAE 2.934 8.006 0.992 0.003 0.003 − 9.335 0.928 0.014 0.009

LatentGAN 3.226 7.610 0.863 0.007 0.005 − 9.182 0.882 0.009 0.009

QBMG 2.860 7.873 0.971 0.003 0.003 − 9.339 0.911 0.010 0.008

SyntaLinker 2.933 6.753 0.469 0.296 0.113 − 8.164 0.559 0.314 0.176

REINVENT2 3.230 7.205 0.595 0.128 0.085 − 8.966 0.866 0.027 0.027

our 3.042 7.151 0.676 1.000 0.676 − 8.208 0.622 1.000 0.622
EGFR AAE 2.672 8.295 0.929 0.007 0.006 − 10.880 0.947 0.003 0.003

VAE 2.738 8.304 0.948 0.008 0.008 − 10.960 0.945 0.002 0.002

LatentGAN 2.866 7.901 0.872 0.003 0.003 − 10.320 0.913 0.002 0.002

QBMG 2.720 8.221 0.941 0.006 0.006 − 10.980 0.952 0.002 0.001

SyntaLinker 2.764 6.895 0.506 0.337 0.167 − 8.480 0.721 0.366 0.331

REINVENT2 2.890 7.187 0.703 0.208 0.156 − 9.505 0.878 0.213 0.212

our 2.949 7.018 0.613 1.000 0.613 − 8.874 0.923 1.000 0.923
JAK1 AAE 3.106 8.014 0.627 0.001 0.001 − 8.979 0.996 0.001 0.001

VAE 3.502 8.972 1.000 0.063 0.063 − 8.797 0.996 0.010 0.010

LatentGAN 4.003 7.984 0.613 0.001 0.001 − 8.778 0.970 0.001 0.001

SyntaLinker 3.460 7.196 0.283 0.215 0.053 − 7.331 0.498 0.233 0.109

QBMG 3.439 8.920 1.000 0.053 0.053 − 8.957 1.000 0.012 0.012

REINVENT2 3.307 6.862 0.300 0.077 0.062 − 8.504 0.871 0.001 0.001

our 3.510 7.739 0.510 0.952 0.462 − 7.861 0.721 0.955 0.676
LRRK2 AAE 2.682 7.109 1.000 0.062 0.062 − 8.471 0.992 0.064 0.064

VAE 2.722 7.177 1.000 0.033 0.033 − 7.888 0.991 0.065 0.065

LatentGAN 2.880 6.981 0.988 0.042 0.042 − 7.878 0.986 0.072 0.072

SyntaLinker 2.872 6.542 0.860 0.355 0.295 − 6.980 0.839 0.373 0.336

QBMG 3.396 7.485 1.000 0.072 0.072 − 8.562 0.950 0.028 0.022

REINVENT2 2.938 6.836 0.973 0.245 0.244 − 8.400 1.000 0.242 0.242

our 2.915 6.663 0.924 1.000 0.924 − 7.205 0.928 1.000 0.928
PIM1 AAE 2.684 8.179 0.893 0.007 0.007 − 7.869 0.988 0.005 0.005

VAE 2.803 9.012 0.971 0.013 0.011 − 7.582 0.986 0.016 0.015

LatentGAN 2.949 8.059 0.885 0.016 0.015 − 7.454 0.956 0.014 0.014

SyntaLinker 2.938 7.329 0.622 0.239 0.129 − 6.626 0.645 0.242 0.142

QBMG 2.779 8.648 0.949 0.013 0.012 − 7.661 0.991 0.012 0.012

REINVENT2 3.095 7.930 0.834 0.193 0.154 − 7.699 0.992 0.172 0.172

our 3.172 8.310 0.943 1.000 0.943 − 6.879 0.796 1.000 0.796
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Fig. 2  The success rate of the best 10% molecules evaluated by GraphDTA and LeDock represented as a swarm plot. Swarm plot of success rate 
evaluated by GraphDTA for 20 reference compounds among the target of A CDK2; C EGFR; E JAK1; G LRRK2; I PIM1. Swarm plot of success rate 
evaluated by LeDock for 20 reference compounds among the target of B CDK2; D EGFR; F JAK1; H LRRK2; J PIM1. The points denote the success rate 
of generated molecules, and the gray bars are the average success rate for 20 reference compounds
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molecule-to-molecule generative model without the side-
chain-adding strategy (Model 4) exhibits poorer perfor-
mance compared to our molecule-to-scaffold model that 
incorporates a side-chain-adding step (Model 6). Nota-
bly, Model 5 performs worse than all other ablate models, 
with a success rate of only about 10%, which is compa-
rable to the baseline models of VAE, AAE, etc. This is 
because Model 5 is essentially a graph VAE model. These 
findings provide valuable insights into the importance of 
each component in our proposed model and highlight 
the significance of incorporating a side-chain adding step 
in the molecule to scaffold the generation process.

De novo molecular design via scaffold hopping
In this study, we introduced a novel method for de novo 
molecular design via scaffold hopping, termed ScaffoldG-
VAE. The previous model performance on GEM and 
SEM, and the comprehensive comparison between the 
baseline models have demonstrated the potential of our 
proposed model in de novo molecular generation tasks. 
In this section, for each target, we took one reference 
compound as an example to further analyze the quali-
ties of the generated molecules from the perspective of 
3D-structure docking poses. As represented in Fig. 3, five 
randomly selected generated molecules and the reference 
compound are displayed. The docking poses of the gen-
erated compounds are almost aligned with the reference 
compound, and the binding pocket is conserved. Fur-
thermore, most of the generated new compounds exhib-
ited better binding affinity as evaluated by the LeDock 
docking score and GraphDTA score. Notably, all the 
molecules generated in this study have different scaffolds 
from the reference compound. The ability to preserve or 
even enhance the activity of the molecule with a different 
scaffold demonstrates the superiority of our method.

Design of LRRK2 inhibitors based on multiple reference 
compounds
Parkinson’s disease (PD) [32] is a neurodegenerative 
disorder that affects millions of people worldwide, and 

current treatments only provide symptomatic relief. 
LRRK2 has been identified as a key player in the patho-
genesis of PD, and inhibiting its activity has the potential 
to slow or even halt disease progression [33]. Thus, the 
development of potent and selective inhibitors is of great 
importance. To achieve this goal, we utilized ScaffoldG-
VAE, our new method for generating small molecules via 
scaffold hopping, aimed to design some potential inhibi-
tors of LRRK2.

To evaluate the effectiveness of ScaffoldGVAE in gen-
erating LRRK2 inhibitors, we compared the docking and 
GraphDTA scores of reference compounds with those 
of the top1 generated molecule. The results, as shown in 
Fig. 4A, demonstrate that ScaffoldGVAE was able to gen-
erate compounds with higher scores than the reference 
compounds. This suggests that our method is capable of 
generating novel compounds with potential inhibitory 
activity against LRRK2.

To further validate our approach, we depicted ten 
example compounds using the 6th compound of LRRK2 
as a reference, which is listed in Fig.  4B. These com-
pounds were randomly selected for display and were not 
necessarily the top molecules by ranking. However, the 
statistical analysis of their docking and GraphDTA scores 
(see Table 3) showed that most of these generated com-
pounds have similar or better scores compared to the ref-
erence compounds. This demonstrates the effectiveness 
of ScaffoldGVAE in generating novel compounds with 
potential inhibitory activity against LRRK2.

It is worth noting that the aminopyridine pyrrole struc-
ture is the core scaffold of the reference compound that 
binds to the hinge of the LRRK2 [34] kinase domain. 
The reference compound has bioactivities of 471  nM 
and 69.18 nM for inhibiting human LRRK2 A2016T and 
G2019S mutant phosphorylation at ser935 transfected in 
HEK293 cells. Additional file 1: Fig. S8 displays the bind-
ing poses of the reference compound, which show that 
it binds to the hinge with three hydrogen bonds. Fur-
thermore, Fig.  4B demonstrates that the new scaffolds 
identified from scaffold hopping are mostly bioisosteres, 

Table 4  shows the results of the ablation experiments

For each metric, the best result among all baseline models is represented as bold format

Model Node-central 
MPN

Edge-central 
MPN

Side-chain 
embedding

Side-chain 
adding

Gaussian mixture 
distribution

LeDock
Success rate

GraphDTA
Success rate

1 √ √ √ √ 0.458 ± 0.206 0.536 ± 0.299

2 √ √ √ √ 0.656 ± 0.240 0.604 ± 0.339

3 √ √ √ √ 0.565 ± 0.378 0.721 ± 0.350

4 √ √ √ √ 0.259 ± 0.231 0.250 ± 0.248

5 √ √ √ 0.014 ± 0.043 0.019 ± 0.070

6 √ √ √ √ √ 0.720 ± 0.326 0.776 ± 0.333
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consistent with the principles of medicinal chemistry. 
These results demonstrate the effectiveness of Scaf-
foldGVAE in generating novel compounds with potential 
inhibitory activity against LRRK2. The ability to generate 
new compounds with different scaffolds while retain-
ing potential interaction with the hinge binder provides 
a promising approach for designing potential LRRK2 
inhibitors.

In silico validation of the generated LRRK2 inhibitors through 
MM/GBSA
Molecular mechanics/generalized Born surface area 
(MM/GBSA) is a widely used method for predicting 
the binding free energy of protein–ligand complexes. 
This method involves the calculation of the potential 
energy of the protein–ligand complex using molecular 
mechanics force fields and the solvation energy using 
a continuum solvent model. This subsection aimed 
to use the in silico MM/GBSA method to validate the 
compounds generated by ScaffoldGVAE. We wanted 
to determine whether the generated compounds have 

favorable binding energies and whether they are likely 
to bind to the LRRK2 protein. The results are shown 
in Fig.  5. As can be seen from the figure, most of the 
generated compounds have favorable binding ener-
gies, ranging from − 40 to − 60 kcal/mol. This indicates 
that these compounds are likely to bind to the LRRK2 
protein with high affinity. We also analyzed the bind-
ing modes of Cpd 2 and Cpd 4 with lower and higher 
binding energies compared to the reference compound, 
respectively. As shown in Fig. 5B, C, the results showed 
that these compounds interact with the key residues of 
the LRRK2 protein, such as Glu85, Leu86, and Ala87. 
These residues are known to be important for the bind-
ing of LRRK2 inhibitors and are often targeted by exist-
ing drugs. Notably, Cpd 4 share the same binding mode 
as the reference compound, while Cpd 2 induce a new 
binding mode that mainly interacts with Ala87 through 
two strong hydrogen bonds, and the side chains totally 
turnover compared to Cpd 4. These illustrated that 
ScaffoldGVAE can not only generate compounds that 
preserve the original binding mode but also is capable 

Fig. 3  De novo molecular design via scaffold hopping for the target of CDK2, EGFR, JAK1, LRRK2, and PIM1. The last five columns are generated 
molecules, and the first column is the reference molecule
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of identifying new bind modes. Our results show that 
most of the generated compounds have favorable bind-
ing energies and are likely to bind to the LRRK2 pro-
tein with high affinity. These compounds can be further 
optimized and synthesized for in  vitro testing, which 
may lead to the discovery of novel drugs for treating 
Parkinson’s disease and other related disorders.

Conclusion
In this study, we proposed the ScaffoldGVAE model, an 
advanced model specifically designed for drug molecule 
scaffold hopping. The model is based on the architecture 
of a variational autoencoder, where the encoder compo-
nent utilizes a state-of-the-art multi-view graph neural 
network. This neural network considers both edge-cen-
tral message passing and node-central message passing, 
thereby enhancing the information propagation capabil-
ity of the encoder. The decoder employs an RNN model 

Fig. 4  The performance of ScaffoldGVAE in generating LRRK2 inhibitors and the example generated compounds. A Comparison of the reference 
compound and the corresponding top1 generated molecule on the performance of LeDock docking score and GraphDTA score. The blue 
and orange bars represent the docking score of LeDock, while the green and red bars represent the GraphDTA score. A total of 20 different 
reference compounds for scaffold hopping were tested, and B listed ten example compounds generated via scaffold hopping using the 6th 
compound as a reference
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to decode the latent vectors into scaffold SMILES repre-
sentations. Additionally, we introduced an algorithm for 
automatically adding the side chain.

The ScaffoldGVAE model, along with several base-
lines, was pre-trained on the ChEMBL dataset and then 
fine-tuned on five target activity datasets: CDK2, EGFR, 
LRRK2, JAK1, and PIM1. The model performances were 
evaluated on seven general generative model evaluation 
metrics (GEM) and four scaffold hopping generative 
model evaluation metrics (SEM). The results demon-
strate that our proposed model is capable of exploring the 
unseen chemical space and generating novel molecules 
that are distinct from known compounds. Additionally, 
our model not only exhibits acceptable activity perfor-
mance but also outperforms the baseline models in terms 
of scaffold hopping performance. Further ablation exper-
iments provide valuable insights into the importance of 
each component in our proposed model and highlight 

the significance of incorporating a side-chain adding step 
in the molecule to scaffold the generation process.

These findings are a testament to the effectiveness of 
our approach. Further investigation of the performance 
from the perspective of 3D-structure docking poses, 
illustrated the model’s ability to generate molecules that 
preserve or even enhance the activity of the molecule 
with a different scaffold. Considering the good perfor-
mance of our model mentioned above, we employed 
it in the design of LRRK2 inhibitors, and the designed 
molecules were in silico validated by MM/GBSA. These 
compounds can be further optimized and synthesized for 
in vitro testing, which may lead to the discovery of novel 
drugs for treating Parkinson’s disease and other related 
disorders. As a result, it demonstrates the effectiveness 
of ScaffoldGVAE in generating novel compounds with 
potential inhibitory activity against LRRK2. This novel 

Fig. 5  Binding free energy modeling of the generated LRRK2 inhibitors. (A) The MM/GBSA binding free energy of the reference compound (green 
bar) and the corresponding ten example-generated compounds (red bar). B, C are the binding modes of Cpd 2 and Cpd 4, respectively. The 
residues of the hinger binder are shown as sticks, and the yellow dot line represents the hydrogen bond interaction
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approach we developed can be applied to other proteins 
and diseases, thereby contributing to the future develop-
ment of new drugs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00766-0.
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Reference molecules and scaffolds on the PIM1 protein. Table S1. The 
result of the AAE model on general generative model evaluation metrics 
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(GEM). Table S5. The result of the SyntaLinker model on general genera-
tive model evaluation metrics (GEM). Fig. S6. Chemical space of gener-
ated molecules and bioactive ligands of five distinct targets: (A) CDK2, (B) 
JAK1, (C) EGFR, (D) LRRK2, and (E) PIM1 visualized by t-SNE dimensionality 
reduction. Fig. S7. Correlation between the experimental activity values of 
100 reference molecules and the activity values predicted by GraphDTA. 
Table S6 and S7. The performance comparison between our model 
and baseline models on scaffold hopping generative model evaluation 
metrics (SEM) among five distinct targets: CDK2, JAK1, EGFR, LRRK2, and 
PIM1. The best 10% and 30% molecules generated by each model were 
evaluated. Fig. S8. The success rate of the best 30% molecules evaluated 
by GraphDTA and LeDock represented as a swarm plot. Swarm plot of 
success rate evaluated by GraphDTA for 20 reference compounds among 
the five targets. Fig. S9. The binding poses of the reference compound 
against LRRK2. The yellow dot line denotes the hydrogen bond.)

Author contributions
LH and HL designed and supervised the project. CH and SL contributed 
equally to this work. CH designed and implemented the deep learning model 
and test part of the baselines. CH is responsible for models and experiments. 
SL tests the baseline of the SyntaLinker and is responsible for the case study. 
SL and CHXY are responsible for the side-chain adding algorithm. SL wrote the 
manuscript of the case study. CH wrote the manuscript for the other part. LH, 
HL, and GSHF revised the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(11974239), the Innovation Program of Shanghai Municipal Education Com-
mission (2019-01-07-00-02-E00076), the Student Innovation Center at Shang-
hai Jiao Tong University, and the Shanghai Artificial Intelligence Laboratory.

Availability of data and materials
Demo, instructions, and codes for ScaffoldGVAE are available at https://​github.​
com/​ecust-​hc/​Scaff​oldGV​AE

Declarations

Competing interests
Chenxing Yang, Hao Liu, and Jun Chen are employees of Shanghai Matwings 
Technology Co., Ltd., Shanghai. Other authors declare no competing interests.

Author details
1 School of Physics and Astronomy and Institute of Natural Sciences, Shanghai 
Jiao Tong University, Shanghai 200240, China. 2 Shanghai Matwings Tech-
nology Co., Ltd., Shanghai 200240, China. 3 School of Information Science 
and Engineering, East China University of Science and Technology, Shang-
hai 200237, China. 4 School of Life Sciences and Biotechnology, Shanghai Jiao 

Tong University, Shanghai 200240, China. 5 Zhangjiang Institute for Advanced 
Study, Shanghai Jiao Tong University, Shanghai 201203, China. 

Received: 11 August 2023   Accepted: 25 September 2023

References
	1.	 Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational autoencoder 

for molecular graph generation. In: Proceedings of the 35th international 
conference on machine learning. PMLR, pp 2323–2332

	2.	 Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational 
autoencoder. In: Proceedings of the 34th international conference on 
machine learning—vol 70. JMLR.org, Sydney, NSW, Australia, pp 1945–1954

	3.	 Simonovsky M, Komodakis N (2018) GraphVAE: towards generation of small 
graphs using variational autoencoders. In: Kůrková V, Manolopoulos Y, Ham-
mer B et al (eds) Artificial neural networks and machine learning—ICANN 
2018. Springer International Publishing, Cham, pp 412–422

	4.	 Samanta B, De A, Jana G et al (2020) NEVAE: a deep generative model for 
molecular graphs. J Mach Learn Res 21:114:4556-114:4588

	5.	 De Cao N, Kipf T (2022) MolGAN: an implicit generative model for small 
molecular graphs. arXiv preprint. https://​arxiv.​org/​abs/​1805.​11973

	6.	 Optimizing distributions over molecular space. An Objective-Reinforced 
Generative Adversarial Network for Inverse-design Chemistry (ORGANIC). 
ChemRxiv. https://​chemr​xiv.​org/​engage/​chemr​xiv/​artic​le-​detai​ls/​60c73​
d9170​2a9be​ea718​9bc2.

	7.	 Li Y, Zhang L, Liu Z (2018) Multi-objective de novo drug design with condi-
tional graph generative model. J Cheminform 10:33

	8.	 Popova M, Shvets M, Oliva J, Isayev O (2019) MolecularRNN: generating 
realistic molecular graphs with optimized properties. arXiv preprint. https://​
arxiv.​org/​abs/​1905.​13372

	9.	 Xu M, Powers A, Dror R et al (2023) Geometric latent diffusion models for 3D 
molecule generation. arXiv preprint. https://​arxiv.​org/​abs/​2305.​01140

	10.	 Peng X, Guan J, Liu Q, Ma J (2023) MolDiff: addressing the atom-bond 
inconsistency problem in 3D molecule diffusion generation. arXiv preprint. 
https://​arxiv.​org/​abs/​2305.​07508

	11.	 Bajorath J (2017) Computational scaffold hopping: a cornerstone for the 
future of drug design? Fut Med Chem 9:629–631

	12.	 Zheng S, Lei Z, Ai H et al (2021) Deep scaffold hopping with multimodal 
transformer neural networks. J Cheminform 13:87

	13.	 Yang Y, Zheng S, Su S et al (2020) SyntaLinker: automatic fragment linking 
with deep conditional transformer neural networks. Chem Sci 11:8312–8322

	14.	 Imrie F, Bradley AR, van der Schaar M, Deane CM (2020) Deep generative 
models for 3D linker design. J Chem Inf Model 60:1983–1995

	15.	 Hu L, Yang Y, Zheng S et al (2021) Kinase inhibitor scaffold hopping with 
deep learning approaches. J Chem Inf Model 61:4900–4912

	16.	 Yu Y, Xu T, Li J et al (2021) A novel scalarized scaffold hopping algorithm 
with graph-based variational autoencoder for discovery of JAK1 inhibitors. 
ACS Omega 6:22945–22954

	17.	 Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. 
Nucleic Acids Res 45:D945

	18.	 Scott OB, Edith Chan AW (2020) ScaffoldGraph: an open-source library for 
the generation and analysis of molecular scaffold networks and scaffold 
trees. Bioinformatics 36:3930–3931

	19.	 Ma H, Bian Y, Rong Y et al (2020) Multi-view graph neural networks for 
molecular property prediction. arXiv preprint. https://​arxiv.​org/​abs/​2005.​
13607

	20.	 Chung J, Gülçehre Ç, Cho K, Bengio Y (2014) Empirical evaluation of gated 
recurrent neural networks on sequence modeling. arXiv preprint https://​
arxiv.​org/​abs/​1412.​3555

	21.	 Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message passing for 
quantum chemistry. In: Proceedings of the 34th international conference on 
machine learning—vol 70. JMLR.org, Sydney, NSW, Australia, pp 1263–1272

	22.	 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. 
arXiv preprint. https://​arxiv.​org/​abs/​1710.​10903

https://doi.org/10.1186/s13321-023-00766-0
https://doi.org/10.1186/s13321-023-00766-0
https://github.com/ecust-hc/ScaffoldGVAE
https://github.com/ecust-hc/ScaffoldGVAE
https://arxiv.org/abs/1805.11973
https://chemrxiv.org/engage/chemrxiv/article-details/60c73d91702a9beea7189bc2
https://chemrxiv.org/engage/chemrxiv/article-details/60c73d91702a9beea7189bc2
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/2305.01140
https://arxiv.org/abs/2305.07508
https://arxiv.org/abs/2005.13607
https://arxiv.org/abs/2005.13607
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1710.10903


Page 17 of 17Hu et al. Journal of Cheminformatics           (2023) 15:91 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Li J, Rong Y, Cheng H et al (2019) Semi-supervised graph classification: a 
hierarchical graph perspective. In: The World Wide Web conference. Associa-
tion for Computing Machinery, New York, NY, USA, pp 972–982

	24.	 Blaschke T, Olivecrona M, Engkvist O et al (2018) Application of generative 
autoencoder in de novo molecular design. Mol Inf 37:1700123

	25.	 Gómez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic chemical 
design using a data-driven continuous representation of molecules. ACS 
Cent Sci 4:268–276

	26.	 Kadurin A, Aliper A, Kazennov A et al (2016) The cornucopia of meaningful 
leads: Applying deep adversarial autoencoders for new molecule develop-
ment in oncology. Oncotarget 8:10883–10890

	27.	 Prykhodko O, Johansson SV, Kotsias P-C et al (2019) A de novo molecular 
generation method using the latent vector-based generative adversarial 
network. J Cheminform 11:74

	28.	 Zheng S, Yan X, Gu Q et al (2019) QBMG: quasi-biogenic molecule generator 
with deep recurrent neural network. J Cheminform 11:5

	29.	 Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) Molecular sets 
(MOSES): a benchmarking platform for molecular generation models. Front 
Pharmacol 11:565644

	30.	 Nguyen T, Le H, Quinn TP et al (2021) GraphDTA: predicting drug-target 
binding affinity with graph neural networks. Bioinformatics 37:1140–1147

	31.	 Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking 
programs on a diverse set of protein–ligand complexes: the prediction 
accuracy of sampling power and scoring power. Phys Chem Chem Phys 
18:12964–12975

	32.	 Cabreira V, Massano J (2019) Doença de Parkinson: Revisão Clínica e Atual-
ização. Acta Med Port 32:661–670

	33.	 Hu J, Zhang D, Tian K et al (2023) Small-molecule LRRK2 inhibitors for PD 
therapy: current achievements and future perspectives. Eur J Med Chem 
256:115475

	34.	 Williamson DS, Smith GP, Mikkelsen GK et al (2021) Design and synthesis of 
Pyrrolo[2,3-d]pyrimidine-derived leucine-rich repeat kinase 2 (LRRK2) inhibi-
tors using a checkpoint kinase 1 (CHK1)-derived crystallographic surrogate. 
J Med Chem 64:10312–10332

	35.	 Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, Papa-
dopoulos K, Patronov A (2020) REINVENT 2.0: an AI tool for de novo drug 
design. J Chem Inf Model 60(12):5918–5922

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
	Abstract 
	Introduction
	Materials and methods
	Data preparation
	Model architecture
	Encoder
	Decoder
	Pre-training
	Fine-tuning
	Sampling
	Principle of adding side chains
	Baseline models
	Evaluation metrics

	Results and discussion
	Model performance on GEM
	Model performance on SEM
	Ablation experiment
	De novo molecular design via scaffold hopping
	Design of LRRK2 inhibitors based on multiple reference compounds
	In silico validation of the generated LRRK2 inhibitors through MMGBSA

	Conclusion
	Anchor 23
	References


