
Song et al. Journal of Cheminformatics  (2023) 15:97 
https://doi.org/10.1186/s13321-023-00767-z

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

PMF-CPI: assessing drug selectivity 
with a pretrained multi-functional model 
for compound–protein interactions
Nan Song1,4†, Ruihan Dong3†, Yuqian Pu4, Ercheng Wang5,6*, Junhai Xu1,4* and Fei Guo2* 

Abstract 

Compound–protein interactions (CPI) play significant roles in drug development. To avoid side effects, it is also crucial 
to evaluate drug selectivity when binding to different targets. However, most selectivity prediction models are con-
structed for specific targets with limited data. In this study, we present a pretrained multi-functional model for com-
pound–protein interaction prediction (PMF-CPI) and fine-tune it to assess drug selectivity. This model uses recurrent 
neural networks to process the protein embedding based on the pretrained language model TAPE, extracts molecular 
information from a graph encoder, and produces the output from dense layers. PMF-CPI obtained the best perfor-
mance compared to outstanding approaches on both the binding affinity regression and CPI classification tasks. 
Meanwhile, we apply the model to analyzing drug selectivity after fine-tuning it on three datasets related to specific 
targets, including human cytochrome P450s. The study shows that PMF-CPI can accurately predict different drug 
affinities or opposite interactions toward similar targets, recognizing selective drugs for precise therapeutics.
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Introduction
Compound–protein interactions (CPI) play essential 
roles in biological processes. Since small molecules can 
modulate the protein’s conformation and affect its func-
tions, it is crucial to find drug compounds binding to 
protein targets for drug discovery. High-throughput 
screening in the laboratory is a common approach to 
finding drug candidates for important targets but it is 
time-consuming and costing [1].

Previous experimental assays in drug development 
have accumulated abundant chemoproteomics CPI data. 
Therefore, researchers devote to developing effective CPI 
prediction models with advanced deep learning technol-
ogy [2, 3]. The problem of CPI prediction can be treated 
as two different tasks, binding affinity regression and 
binary interaction classification. Affinity regression uti-
lizes validated continuous values such as the half maxi-
mal inhibitory concentration ( IC50 ). From DeepDTA 
[4] and DeepAffinity [5] to DeepFusionDTA [6] and 
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MFR-DTA [7], various models take advantage of different 
deep neural network modules to improve the fitting abil-
ity. In spite of quantitative measurement, affinity labels 
are likely to suffer the data heterogeneous arising from 
experimental conditions. Classification task considers the 
interaction relationships between compounds and pro-
teins as simple binary labels. Most of the time the label 
is divided by an affinity cutoff [8–10]. This task provides 
a simple and effective way to screen drug candidates, but 
it is still difficult to define the threshold value for inter-
acting or not, especially for targets with scarce samples. 
Meanwhile, there are also several models aiming to pro-
cess both regression and classification tasks with one 
framework [11–13]. In addition, general CPI models have 
the potential to apply to more related scenarios.

When screening the lead compounds, one compound is 
likely to bind to multiple target proteins, especially those 
with similar active sites. Although multi-target molecules 
are favorable drug candidates, this target promiscu-
ity may cause unexpected side effects [14]. Therefore, it 
is essential to focus on drug selectivity when predicting 
compound–protein interactions.

Conventional works on selective drugs are based on 
structural analysis. Docking and molecular dynamics 
simulations help researchers find structural proofs that 
contribute to selectivity [15]. Although machine learning-
assisted methods can process the task of drug selectivity 
as the classification of molecular properties, they can 
only predict selective or non-selective drugs toward one 
target of interest based on available training data. A pos-
sible way to integrate bioactivity data from several targets 
is multi-task learning, which means it can predict drug 
selectivity toward some targets such as human kinases 
through a unified model [16, 17]. Another approach is 
to fit the selectivity window of one drug interacting with 
two specific targets directly [18]. In that event, there is 
a bottleneck for predicting the relation of drug selectiv-
ity: each aforementioned model has to be constructed on 
limited interaction data of specified targets, which is hard 
to generalize to unseen targets.

Typical CPI models follow a Y-shaped architecture, 
consisting of compound and protein-encoded branches. 
This indicates that CPI model can detect multiple inter-
actions between different compounds and targets. 
Recently, the development of CPI framework with gener-
alization ability has raised attention, and pretraining is a 
desirable technique. There are two ways to introduce pre-
training. On the one hand, we can generate embeddings 
from encoders pretrained on millions of known com-
pounds or protein sequences [19, 20]. Pretrained protein 
language models such as TAPE [21] and ESM [22] pro-
vide a more direct way to transfer associate knowledge 
for more protein targets and they show capability in CPI 

prediction [23, 24]. On the other hand, pretraining on 
large set helps transfer the associated knowledge to spe-
cific tasks with the fine-tuning step [25]. Thus, we can 
exploit these characteristics of pretrained CPI model to 
detect drug selectivity.

In this paper, we build a novel pretrained multi-func-
tional model for compound–protein interaction predic-
tion (PMF-CPI) and use it for assessing drug selectivity. 
We introduce the pretrained TAPE module as protein 
sequence embedding, then take LSTM to process 
sequences with variant lengths. Meanwhile, we choose 
GraphSAGE to extract compound features from their 
topological representations. Kronecker product is used 
to merge the compound and protein representations. 
Our model obtained excellent performance on both the 
regression and classification tasks. In addition, we vali-
dated it on CPI activation or inhibition prediction tasks. 
Finally, we transferred our model to evaluate drugs with 
target selectivity on three different data sets. Results 
demonstrate that PMF-CPI has great performance on 
multiple CPI-related prediction tasks, providing a useful 
tool for drug discovery.

Methods
Data sets
We consider that the problem of compound–protein 
interaction prediction is related to a wide type of proteins 
and small molecules, which is not limited to some drugs 
or protein targets belonging to a specified family. There-
fore, we selected two large benchmark datasets with CPI 
pairs collected from BindingDB database [26].

The first dataset is curated by Karimi et al. [5] for the 
binding affinity regression task. The pairs are labeled 
with the negative logarithmic form of the half maximal 
inhibitory concentration ( pIC50 ). The binding affin-
ity IC50 values are in molar units. This dataset contains 
376,751 compound-protein pairs in total. For the binary 
classification of CPI, we utilized a benchmark dataset 
created by Gao et  al. [27]. They identified 33,777 posi-
tive interactions whose IC50 values are less than 100 nM, 
and 27,493 negative pairs with IC50 > 10,000 nM. We fol-
lowed the same training, validation, and testing splits as 
creators of the two sets. Besides, Zhang et  al. collected 
a dataset including 11,198 activating or inhibiting drug-
target interactions by filtering validated interactions [28]. 
We also tested the performance of our proposed model 
on this activation/inhibition mechanism dataset after 
removing redundancies.

Furthermore, we chose three reported datasets on drug 
selectivity. The first dataset consists of 1106 compounds 
with validated activity for A1 and A2A adenosine recep-
tors (AR) [18]. The second one is about four subtypes of 
Janus kinases (JAK) and we only curated 920 validated 
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inhibitors with pIC50 activity values against four JAKs 
[17]. Third, Xu et al. characterized a series of compounds 
targeting human cytochrome P450 (CYP). We filtered 
the compounds with two validated pIC50 activity values 
against CYP3A7 and CYP3A4 for regression, including 
3494 interactions. And 7719 interactions with binary 
labels from curve ranks are used for classification [29].

Collectively, Table  1 presents the numbers of pro-
teins, compounds, and interaction pairs for all the data-
sets used in the study. The distributions of input lengths, 
regression values and other statistical descriptions are in 
Additional file 1: Fig. S1.

Data representation
Our proposed model takes the sequences of proteins 
and the simplified molecular-input line-entry system 
(SMILES) of compounds as primary inputs. First, we 
transformed the amino acid strings into numerical rep-
resentations with pretrained module TAPE to vectorize 
protein sequences. And as for compounds, we converted 
them to graphs with topological information.

Protein sequence
Protein embedding methods are vital for transform-
ing protein sequences into feature-rich representations. 
In this work, we compared four approaches: one-hot 
encoding, ProtVec, Tasks Assessing Protein Embeddings 
(TAPE), and Evolutionary Scale Modeling (ESM).

ProVec, an extension of the Word2Vec algorithm, 
captures the local sequence information by generating 
continuous embeddings for fixed-length protein subse-
quences (also called k-mers) [30]. TAPE is a semi-super-
vised pretrained framework on protein sequences. This 
approach allows for the representation of not only indi-
vidual amino acids but also their context within the pro-
tein sequence [21]. ESM is a family of pretrained models 
that employ the transformer architecture, like BERT, to 
learn contextual embeddings of protein sequences. These 
models are trained on large-scale evolutionary data and 

can capture both local and long-range interactions within 
the protein [22].

Each of these methods has its advantages and limita-
tions, and the choice of embedding technique depends 
on the specific problem and the desired level of complex-
ity in the representation. Eventually, we used TAPE to 
produce 768-dimensionl sequence embeddings.

Compound graph
Graph helps in handling the topological structures 
of compounds. Here, we construct the correspond-
ing molecular map, which clearly reflects the interac-
tion between the internal atoms of the compound [31]. 
The graph construction and atomic feature extraction 
process is performed using an open-source cheminfor-
matics software, RDKit (www.rdkit.org). We adopt the 
atomic feature design of DeepChem [32]. Specifically, the 
node feature vector is composed of five types of atomic 
features: atom symbol, atom degree number of bonded 
neighbors plus the number of hydrogen, the total num-
ber of hydrogen, the implicit value of atom, and whether 
the atom is aromatic. These atomic attributes constitute 
a multi-dimensional binary feature vector. If there is a 
bond between them, the edge is set as a pair of atoms. As 
a result, an indirect binary graph with attribute nodes is 
constructed for each input SMILES string, which is illus-
trated in Table 2.

Model architecture
Figure 1 shows the framework of PMF-CPI. We carefully 
choose the encoders of both the protein and compound 
branches. A variable-length recurrent neural network 
(RNN) and graph sample and aggregate (GraphSAGE) 
encoders are adopted for exploiting the features of pro-
teins and compounds, respectively. Then we use the Kro-
necker product to merge the vectors from two parallel 
encoders. Finally, the fused vector is fed into two dense 
layers to produce an output. The output is a continuous 
value representing pIC50 for affinity regression tasks, or 

Table 1 Detailed information of compounds, proteins, and interaction pairs in seven datasets

Datasets Proteins Compounds Label Pairs Positive pairs Negative pairs

BindingDB 2780 265627 pIC50 376751 – –

AR 2 1106 pEC50 2212 – –

JAK 4 920 pIC50 3804 – –

CYP 2 1724 pIC50 3494 – –

BindingDB 813 49752 Interaction 61270 33777 27493

DrugAI 1376 2183 Mechanism 11198 3307 7891

CYP 2 4333 Interaction 7719 4534 3185
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a binary value when predicting interactions. Details are 
as follows.

Protein feature encoder
Considering the enriched feature information from 
embedding the protein sequences, we applied several 
RNN models to integrate these features in a straightfor-
ward manner. Moreover, since the lengths of different 
sequences vary, we introduced a variable-length RNN 
module to perform calculations on sequences of different 
lengths. Given a protein sequence consisting of L resi-
dues, the node features of the protein graph can be rep-
resented by a set Vp = {vi|vi ∈ Rh(1 ≤ i ≤ L)} , where h 
is the length of the embedding vector vi produced by the 
aforementioned embedding methods.

(1)hp = Mean

n∑

t=1

RNNsenc(xt , ht−1)

where hp is the mean hidden state of protein feature, ht is 
the hidden variable output of each input amino acid vec-
tor ( xt ) in the recurrent neural network. We evaluated 
the performance of different RNNs involving the long-
short term memory (LSTM) and gated recurrent unit 
(GRU), and we chose LSTM at last to extract the deep 
semantic features of proteins.

Compound feature encoder
There are different networks of graph neural networks 
(GNNs). Graph convolutional network (GCN) can effec-
tively extract features of chemical compounds [33]. For-
mally, denote a built compound graph as G = (V ,E) , 
where V ∈ RN×F is the set of N nodes each represented 
by a F-dimensional vector and E is the set of edges repre-
sented as an adjacency matrix A ∈ RN×N . A GCN layer is 
defined as:

(2)H (l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2H (l)W (l)

)

Table 2 Node features of molecular atoms

No. Feature Dimension

1 One-hot encoding of the atom element 44

2 One-hot encoding of the degree of the atom in the molecule, which is the 11 number of directly-
bonded neighbors (atoms)

11

3 One-hot encoding of the total number of H bound to the atom 11

4 One-hot encoding of the number of implicit H bound to the atom 11

5 Whether the atom is aromatic 1

All 78
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Fig. 1 The framework of PMF-CPI. For a compound-protein pair, the protein sequence is transformed into context embedding via pretrained TAPE 
and then fed into LSTM. And a compound SMILES is turned into a molecular graph by RDKit and encoded with graph neural networks. After that, 
two encoding vectors are merged through the Kronecker product, and MLP provides a final output. PMF-CPI can process two task types, regression 
for CPI binding affinities or classification for interactions
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where H (l) ∈ RN×F is the output of the previous GCN 
layer l, Ã is the graph adjacency matrix with added 
self-loop, D̃ is the graph diagonal degree matrix, and 
W (l) ∈ RN×C is the trainable parameter matrix. Subse-
quent to the three GCN layers, we added a linear layer to 
map its output to the same space as the protein branch.

Another graph-based algorithm is GraphSAGE [34]. 
GraphSAGE generates embeddings for new nodes via 
sampling and aggregating features learned from a node’s 
local neighborhood. This algorithm consists of the fol-
lowing steps: 

1. Sample a fixed-size neighborhood S for each node 
v ∈ V .

2. Aggregate the features of the sampled neighbors 
using an aggregation function AGGREGATE(·) : 

 where h(k−1)
u  is the feature vector of node u at layer 

k − 1.
3. Update the node features at layer k using the aggre-

gated features: 

 where σ(·) is an activation function, W (k) is a train-
able weight matrix, and CONCAT (·) is a concatena-
tion operation.

4. Repeat steps 2 and 3 for K layers to obtain the final 
node embeddings.

The employment of GraphSAGE facilitates the proficient 
acquisition and learning of intricate associations among 
nodes within a specified graph. We adopted the mean 
aggregator function in our model. The mean aggregator 
calculates the arithmetic average of the feature values 
associated with neighbor nodes, thus efficiently encapsu-
lating the local information and retaining the structural 
information inherent to the graph.

Joint module
After encoding two features in the previous section, we 
constructed a joint representation using the Kronecker 
product to explicitly capture significant interactions of 
the compound and protein features.

By employing the Kronecker product, we compute the 
deep binding representations for protein sequences and 
compounds, and subsequently concatenate the hidden 

(3)a(k)v = AGGREGATE(k)({h(k−1)
u |u ∈ S(v)})

(4)h(k)v = σ

(
W (k) · CONCAT (h(k−1)

v , a(k)v )

)

(5)hK =

[
hp
1

]⊗[
hc
1

]⊗[
hc

⊕
p

1

]

layers of proteins and compounds to form a new vec-
tor, denoted as hK  . Then a two-layer neural network is 
utilized to obtain the final output of compound–protein 
interactions.

This network’s structure is as described in the above for-
mula. To better exploit the subtle signals of compound–
protein interactions, we employ LeakyReLU as the 
activation function σ(·).

Implementation
Our model is implemented in PyTorch [35]. We 
searched for the best hyperparameters including the 
batch size in {32, 64, 128} and the learning rate in 
{1e − 4, 1e − 3} . And the best combination of batch size 
and learning rate is 32 and 1e-4. The number of training 
epochs is 100, and we adopt the early stopping strategy 
if no improvement within 10 epochs. We set Adam as 
the optimizer, and dropout rate to be 0.2.

In the compound feature extraction part, we set up 
three consecutive graph neural network layers. These 
layers are eventually mapped to 128-dimensional vec-
tors through the mean pooling operation and a linear 
layer. As for the protein feature encoder, we set the hid-
den layer dimension of RNNs as 128 as well. Addition-
ally, we utilize different loss functions to accomplish 
various protein-compound interaction prediction tasks. 
We adopt the mean squared error (MSE) loss function 
for regression tasks, while the cross entropy loss func-
tion for binary classification.

To evaluate the performance of our proposed model, 
we take a series of metrics for the regression and classi-
fication task. We utilize the MSE, Pearson’s correlation 
coefficient, and r2m to measure the performance of the 
proposed model. MSE calculates the difference between 
the predicted values and true labels as follows.

where pi is the predicted value, and yi is the correspond-
ing true value.

In this equation, cov(·) is the covariance between the 
predicted value p and the real value y, and s(·) indicates 
the standard deviation. Another regression metric is r2m , 
which have been used in some binding affinity models to 
evaluate the external predictive performance [4, 7].

(6)Interaction = σ(σ (hkW1 + b)W2 + b)

(7)MSE =
1

n

n∑

i=1

(
pi − yi

)2

(8)Pearson =
cov(p, y)

s(p)s(y)
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where r2 and r2
0
 are the squared correlation coefficients 

with and without intercept, respectively.
For classification, the area under the receiver operat-

ing characteristic curve (AUC) is the main measurement. 
Other metrics are the area under the precision-recall 
curve (AUPR), accuracy, precision, recall, and F1.

Results and discussion
Binding affinity regression
We investigated the performance of PMF-CPI under dif-
ferent compound–protein interaction scenarios, and the 
foremost task is binding affinity prediction. We com-
pared the performance of different modules with the 
BindingDB regression dataset as the benchmark, then 
evaluated the predictive capability of our model with 
other three outstanding models.

Evaluation on different modules
We conducted several comparative experiments to com-
pare the performance of various modules, including the 
embedding methods of protein sequence, feature encod-
ers, and joint module strategies. The results are listed in 
Table 3, where the standard errors are estimated by boot-
strapping over 10 times. Our final used modules and best 
metric values are marked in bold.

We compared four different protein sequence embed-
ding methods, which have been introduced in the sec-
tion  Data representation. Among them, the simplest 
one-hot sequence embedding shows the highest MSE of 
0.578 and ProtVec performs better. Two pretrained lan-
guage models TAPE and ESM contribute to improved 
MSE and Pearson compared with one-hot and Prot-
Vec. Based on large amounts of sequences, pretrained 

(9)r2m = r2 ∗ (1−

√
r2 − r2

0
)

models have learned abundant associations in protein 
repertoires that are useful for embeddings. Although 
the model with ESM performed slightly better than 
which with TAPE for 0.001 improvements on the Pear-
son, we decided to use TAPE for the final architecture of 
PMF-CPI. This is because TAPE produced a lighter rep-
resentation (768-dimension) than ESM (1280-dimen-
sion), which means less storage and higher computing 
speed.

As for encoders, we tested the combinations of two 
GNNs for compounds (GCN and GraphSAGE) and three 
variants of RNNs for protein embeddings. Table 3 shows 
the regression results of these six architectures. Graph-
SAGE is more effective in extracting features from chem-
ical compounds in comparison to GCN, with lower MSE 
and higher Pearson. Three RNN variants do not show 
significant differences, while LSTM is slightly better than 
the naive RNN and GRU; thus, we took the GraphSAGE 
and LSTM as final encoders of PMF-CPI. Most CPI mod-
els use simple concatenation to fuse compounds and pro-
tein embedding vectors. Here we selected the Kronecker 
product as the joint module to enrich interaction infor-
mation between a compound-protein pair. The compari-
son results of these two fusion approaches suggest that 
the Kronecker product can improve the fitting results 
greatly. For instance, the MSE value improves from 0.570 
to 0.474.

Comparison with other methods
To benchmark the performance of our proposed method 
against existing approaches, we assessed our model on 
the BindingDB regression dataset and compared the 
results with representative models DeepAffinity, Deep-
DTA, and MONN. DeepAffinity is a unified RNN-
CNN model to predict compound-protein affinity, and 

Table 3 Performance of different modules on the BindingDB regression dataset

Modules Methods MSE ↓ Pearson ↑ r
2
m

 ↑

 Protein embedding one-hot 0.578± 0.003 0.856± 0.000 0.734± 0.002

ProtVec 0.496± 0.003 0.879± 0.000 0.773± 0.001

TAPE 0.474± 0.003 0.884± 0.001 0.782± 0.001

ESM 0.474± 0.003 0.885± 0.001 0.783± 0.001

 Feature encoder GCN-RNN 0.485± 0.002 0.882± 0.001 0.778± 0.001

GCN-GRU 0.490± 0.003 0.880± 0.001 0.775± 0.001

GCN-LSTM 0.485± 0.004 0.883± 0.001 0.780± 0.002

GraphSAGE-RNN 0.477± 0.003 0.884± 0.001 0.782± 0.002

GraphSAGE-GRU 0.477± 0.004 0.884± 0.001 0.782± 0.002

GraphSAGE-LSTM 0.474± 0.003 0.884± 0.001 0.782± 0.001

 Joint module Concatenate 0.570± 0.004 0.859± 0.001 0.738± 0.002

Kronecker product 0.474± 0.003 0.884± 0.001 0.782± 0.001
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DeepDTA utilizes two CNN encoders for compound 
SMILES and protein sequences. MONN extracts the 
non-covalent interactions from available complex struc-
tures. With pretrained sequence context embeddings and 
the graph neural network, our proposed model obtained 
an MSE of 0.474 and Pearson correlation coefficient 
0.884. Table  4 shows the results in comparison to the 
aforementioned methods, and PMF-CPI demonstrates a 
significant improvement.

In addition, we employed an ensemble technique by 
integrating diverse sets of parameters identified dur-
ing the training stage. The results are also recorded in 
Table 4. Following the ensemble strategy of MONN, the 
“parameter ensemble” is the average result of the last ten 
epochs, and “NN ensemble” means the average of three 
networks with different hyperparameters [11]. We found 
that the ensemble approach led to a better predictive per-
formance on the BindingDB regression dataset. And our 
model still performs best among these approaches, with 
an MSE of 0.416 and a Pearson of 0.899. This indicates 
that PMF-CPI has an excellent performance in predicting 
compound-protein binding affinities.

Compound–protein interaction classification
We set two different classification tasks for compound–
protein interactions. First, we trained and evaluated our 
proposed model on conventional CPI prediction, which 
means to predict whether the molecule pairs interact or 
not. Then we tested it on the DrugAI dataset which cat-
egorizes compound–protein interactions into activation 
or inhibition mechanisms. PMF-CPI obtained good per-
formance on these two classification tasks.

Interacting/non‑interacting prediction
Using the parameters that contributed to the best per-
formance in the regression experiments, our model 
also showed reliable performance on the BindingDB 

classification dataset, achieving an AUC of 0.991. Besides, 
our model demonstrated strong performance on other 
metrics. The AUPR reaches 0.990, the accuracy is 0.966, 
the precision is 0.965, and the recall is 0.968. We repre-
sent the two-dimensional feature space by t-distributed 
stochastic neighbor embedding (t-SNE) [36] in Fig.  2a. 
Our model can effectively distinguish the active interac-
tions and the inactive samples.

Figure  2b shows the results of PMF-CPI in compari-
son with other state-of-the-art CPI models. Our AUC 
value of 0.991 is significantly higher than which of other 
models. Notably, DrugVQA and MINN-DTI have used 
the protein distance map, which is the simplified repre-
sentation of protein structures. And the rest baselines 
designed different attention-based layers to capture the 
connections between molecules [37]. However, PMF-
CPI is an attention-free framework without adding pro-
tein structural information, and it still reached such an 
AUC value. This indicates the contribution of pretrained 
protein language model TAPE in the part of feature 
characterization.

Meanwhile, we tested the performance of PMF-CPI 
under four different split settings to evaluate the gener-
alization of the model. The cold-protein setting means 
dividing the interactions into training and test sets 
according to their proteins, for proteins that appear in 
the test set are absent in the training set. Likewise, every 
compound in the test set of the cold-compound setting 
is absent from the training set. For blind splitting, both 
the compounds and proteins in the test set are unseen by 
the model during the training stage [19, 38]. Fig. 3 shows 
the five-fold cross-validation results on the BindingDB 
classification dataset. The settings of cold-protein, cold-
compound, and blind split are more challenging scenar-
ios for the CPI model, and their performances decrease 
in varying degrees. Since the number of compounds in 
used datasets is far larger than that of proteins, the per-
formance of cold-protein split declined drastically. This 
trend also appeared in the regression task (Additional 
file 1: Table S1). To some extent, cold-protein and blind 
split displayed fluctuations on five folds (Fig.  3a and c), 
while cold-compound and random split obtained high 
and stable metrics, including mean AUCs of 0.986 and 
0.990, respectively (Fig.  3b,   d, and Additional file  1: 
Table  S2). PMF-CPI still got an AUC of 0.845 and an 
AUPR of 0.891 on average under the blind split, indicat-
ing it can be applied to the prediction of entirely new 
interactions.

Activating/inhibiting prediction
Most CPI prediction works focus on the binding relation-
ship between compounds and proteins. Specifically, the 
modulation role of drugs play on protein can be divided 

Table 4 Regression performance of PMF-CPI in comparison with 
three representative methods

Methods MSE ↓ Pearson ↑

DeepAffinity 0.548 0.840

DeepDTA 0.612 0.848

MONN 0.584 0.858

PMF-CPI 0.474 0.884
DeepAffinity(Parameter Ensemble) 0.533 0.840

DeepAffinity(NN Ensemble) 0.504 0.860

DeepDTA(Ensemble of 30 Models) 0.471 0.886

MONN(Ensemble of 30 Models) 0.432 0.895

PMF-CPI(Parameter Ensemble) 0.416 0.899
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into activation and inhibition. Based on the reported 
dataset named DrugAI, we evaluated our model’s perfor-
mance using a five-fold cross-validation strategy to vali-
date the predictive capability.

Figure  4a and b shows the classification results over 
five folds. Our model achieved the highest AUC of 
0.972 and an AUPR of 0.946. Compared with the AUC 
value 0.971 of the multi-view deep learning model 
DrugAI, our plain architecture can yield a competi-
tive performance on this mechanism task. Figure  4c 
displays the confusion matrix of PMF-CPI on the test 
set, annotating the number of true positives 280, true 

negatives 754, false positives 34, and false negatives 39. 
Our model reached an accuracy of 0.927 and a preci-
sion of 0.864 (Fig.  4d). We also used the cold-protein, 
cold-compound, and blind split methods for different 
five-fold splittings on this dataset and the results are 
recorded in Additional file 1: Table S3. Similar tenden-
cies emerged here for which new proteins had bigger 
impacts than new compounds. The mean AUC of the 
blind split was 0.846 when predicting the regulatory 
mechanisms in compound–protein interactions. In 
general, PMF-CPI has the potential to solve multiple 
CPI-related tasks.

Fig. 2 Results of CPI Classification. a Visualization of the representation via t-SNE. b Comparison with other methods. PMF-CPI has the highest AUC 
and AUPR values among six models
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Analysis on drug selectivity
The above results have demonstrated that our model 
obtained outstanding performance on BindingDB regres-
sion and classification benchmarks. In this section, we 
will explore predicting drug selectivity after fine-tuning 
the model on specific datasets.

Fine‑tuning on selective data
Here, the datasets are from three different backgrounds 
of drug selectivity. Expressing in the brain regions, 
adenosine receptors (AR) are important targets of neu-
rodegenerative diseases. Two subtypes A1 and A2A have 
opposite effects on cAMP levels; thus, their selective 
antagonists play different regulatory roles [39]. Tyros-
ine kinase JAKs are crucial parts of the JAK/STAT sign-
aling pathway that regulates inflammatory responses, 

cell apoptosis, etc. Sharing high sequence homology, 
four members of JAKs may be induced via the same 
compounds, which leads to unsafe side-effects [40]. 
Human cytochrome P450s (CYP) are important pro-
tein targets related to metabolism. In the subfamily 
3A, CYP3A7 and CYP3A4 are liver enzymes that exist 
in infants and adults, respectively [41]. Hence, predict-
ing selective drugs of them is meaningful to precise 
therapeutics.

Compared with training a model for selectivity pre-
diction from scratch, fine-tuning saves time and can 
reach a good predictive performance with limited train-
ing data. We conducted a series of experiments with dif-
ferent fractions of missing data on four datasets, three 
for regression (Fig.  5a–c) and one for classification 

Fig. 3 Five-fold cross-validation of PMF-CPI on BindingDB classification dataset. a Cold-protein splitting. b Cold-compound splitting. c Blind 
splitting, i.e., both the protein and compound that appear in the test set are not seen by the model at the training stage. d Random splitting, i.e., 
split by compound–protein interactions randomly
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(Fig. 5d). When the ratio of missing entries reduces, the 
predictive performances improve. AR got an MSE of 
1.005 when only training on 5% activity data. If the seen 
ratio improves to 30%, its MSE value drops more than 
0.5 and Pearson increases to 0.784. Since JAK and CYP 
datasets contain more samples over 3000, they have 
lower MSEs with 95% missing entries. For regression, 
our model can reach MSEs of about 0.2 and Pearson’s 
correlation coefficient of around 0.8 when only train-
ing on 30% of each dataset. For classification, PMF-
CPI yields an AUC of 0.864 and an AUPR of 0.896. By 
contrast, we found it unsatisfactory to predict these 
selectivity sets using the pretrained model solely or 
separating out a fraction of samples for direct training 
(Additional file  1: Table  S4 and Fig.  S2). This suggests 
that our pretrained model with fine-tuning can provide 
an accurate and direct prediction of the binding affinity 
and interaction relationship for selective drugs toward 
similar targets.

Case study of CYP3A4/CYP3A7 inhibitors
Xu et al. assayed almost 5000 drugs and drug-like com-
pounds toward CYP3A4 and CYP3A7 via quantitative 
high-throughput screening and identified multi-target 
or selective inhibitors. Based on these data, they con-
structed machine learning models to detect CYP3A4 or 
CYP3A7 selective inhibitors [29]. Without utilizing tar-
get information, they have to build models for each target 
and do not develop a useful regression model with activ-
ity data. Since our CPI model receives both the molecule 
and protein inputs, it can produce the affinity or interac-
tion of one drug toward two targets at the same time, and 
the outputs can be analyzed for selectivity.

We fine-tuned our model on the CYP-related sets. 
Results in Fig. 5c and d demonstrate that our model can 
effectively predict the affinity or inhibitory relationship 
with only seeing less than 30% samples. Belonging to the 
human CYP3A subfamily, CYP3A4 and CYP3A7 share 
the sequence identity of 88.5% and similarity of 94.4% 

Fig. 4 The AUC and AUPR of five-fold cross-validation on DrugAI dataset. The highest fold has an AUC of 0.972 and an AUPR of 0.946, which 
suggests that PMF-CPI can classify activating or inhibiting interactions accurately
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(alignment shown in Additional file 1: Fig. S3). But some 
compounds exhibit distinct inhibitory affinity against 
these two similar targets, for example, two molecules 
shown in Fig. 6a. The validated pIC50 values of molecule 
9818306 are 4.460 and 5.660 for CYP3A4 and CYP3A7, 
respectively, which means their difference in activity is 
more than an order of magnitude. For such compounds, 
our model can predict the affinity accurately with an 
error of less than 0.1.

There are also some interaction pairs without detailed 
pIC50 values in CYP sets that suit for the classification 
model. Some molecules are labeled oppositely toward 
two targets, which indicates that they are specific drugs 
for infants or adults. Figure 6b displays three cases. Mol-
ecule 16014348 is active for only CYP3A4 while 666418 
and 8293 are active for CYP3A7. The predictions from 
our fine-tuned classification model are consistent with 
the actual labels.

More importantly, the prediction of precise affinity val-
ues and binary interaction relationships can compensate 

for each other. We list two compounds in Fig.  6c. Mol-
ecule 8343 and 7452 own similar activity when binding 
to CYP3A4 or CYP3A7. If we distinguish their inhibitory 
activity with a specific threshold such as five, we may not 
identify two molecules as selective inhibitors. Neverthe-
less, their active labels are comprehensive classifications 
according to not only the activity but also the efficacy 
and curve-fitting confidence. Hence, the processed data 
mark two molecules as CYP3A4 selective inhibitors. 
When inputting our model, both the predictions from 
regression and classification models help to recognize the 
proper selective relations.

Conclusions
In this study, we proposed a compound–protein inter-
action prediction model called PMF-CPI by leveraging 
the protein language model embedding and molecular 
graphs. The main contributions of PMF-CPI are as fol-
lows: (1) PMF-CPI utilizes the embedding of a large lan-
guage model of proteins, which not only fully captures 

Fig. 5 Fine-tuning results of PMF-CPI on datasets about drug selectivity. Different fine-tuning set scales are used with missing entries from 70% 
to 95%. MSE and Pearson’s correlation coefficient are shown for regression sets a AR, b JAK, and c CYP. d AUC and AUPR are used for CYP 
classification. All results are from five-fold cross-validation with the standard deviation as error bars
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the protein features but also reduces the requirement for 
computational resources; (2) PMF-CPI is a multi-func-
tional framework for CPI prediction. This model achieves 
promising performance on binding affinity regression 
compared with other methods. Meanwhile, it can be used 
in classification tasks including recognizing active inter-
action pairs and distinguishing activation or inhibition 
mechanisms; (3) PMF-CPI provides a pretrained model 
for assessing drug selectivity. After being fine-tuned on 
selective datasets related to special targets, PMF-CPI can 
accurately predict different drug interactions or affin-
ity values. In short, PMF-CPI suits for few-shot learn-
ing, instead of case-by-case construction on targets of 
interest.

There are also some limitations of our proposed 
model. First, we just explored the graph representations 
of compounds, instead of integrating different encod-
ings from multiple levels such as strings and molecular 
fingerprints. As an attention-free model, PMF-CPI has 
reached a prominent prediction accuracy consisting of 
the GraphSAGE and LSTM modules, but its interpret-
ability still needs improvement without the aid of atten-
tion layers. Second, we trained PMF-CPI for regression 
or classification on different datasets separately and it 
cannot give the evaluation of compound-protein affin-
ity and interaction labels in one run. Finally, although 
PMF-CPI provides a unified pretrained model for tar-
get-specific selectivity tasks, fine-tuning is a crucial 
step to obtain better performance. From this point of 
view, domain adaptation, multi-task learning, and other 
techniques are worth exploring for data heterogene-
ous and scarcity. We explore the possibility of the CPI 
framework on the issue of drug selectivity in this work, 

and we hope that CPI models can harness the strengths 
in more real-world scenarios of drug discovery.
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