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Abstract 

Science and art have been connected for centuries. With the development of new computational methods, new 
scientific disciplines have emerged, such as computational chemistry, and related fields, such as cheminformatics. 
Chemoinformatics is grounded on the chemical space concept: a multi‑descriptor space in which chemical 
structures are described. In several practical applications, visual representations of the chemical space of compound 
datasets are low‑dimensional plots helpful in identifying patterns. However, the authors propose that the plots can 
also be used as artistic expressions. This manuscript introduces an approach to merging art with chemoinformatics 
through visual and artistic representations of chemical space. As case studies, we portray the chemical space of food 
chemicals and other compounds to generate visually appealing graphs with twofold benefits: sharing chemical 
knowledge and developing pieces of art driven by chemoinformatics. The art driven by chemical space visualization 
will help increase the application of chemistry and art and contribute to general education and dissemination 
of chemoinformatics and chemistry through artistic expressions. All the code and data sets to reproduce the visual 
representation of the chemical space presented in the manuscript are freely available at https:// github. com/ DIFAC 
QUIM/ Art‑ Driven‑ by‑ Visual‑ Repre senta tions‑ of‑ Chemi cal‑ Space‑. Scientific contribution: Chemical space as a concept 
to create digital art and as a tool to train and introduce students to cheminformatics.
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Graphical Abstract

Introduction
Art can be considered as the set of activities and 
products of human beings with aesthetic, ethical, and 
communication objectives that impact individuals or 
societies [1]. Its impact may seek to transmit ideas, 
emotions, needs, concerns, or values [2]. Science can be 
considered an art tool that makes the materialization of 
ideas possible and delimits the ideas of artists. What is 
important about science is not only that it has served to 
enable the work to be executed. What is fundamental 
is that it has allowed it to be imagined. Furthermore, 
scientific knowledge allows for a more profound 
interpretation of art.

Historically, the relationship between science and art 
has existed since humans created art. One example is 
chemistry, a scientific discipline that historically has had 
a symbiotic relationship with art and has determined its 
respective evolutions. Among the many interactions of 
chemistry in art are the development of pigments and 
spectroscopic techniques, materials for conservation and 
restoration, to name just a few [3, 4].

The advent of computers gave rise first to 
computational chemistry and then chemoinformatics. 
Chemoinformatics, also frequently referred to in the 
literature as cheminformatics [5] aims to manage and 
organize information, visualize chemical space, perform 

data mining, and establish mathematical relationships 
between chemical structures and properties. While 
bioinformatics focuses on biologically relevant 
macromolecules, chemoinformatics is focused on 
small compounds [6]. As an independent theoretical 
discipline, chemoinformatics relies on the chemical 
space concept [7–10]. Understanding the concept of 
chemical space within and outside chemoinformatics 
can be complicated. Generally, this concept has been 
accompanied by various images that seek to represent 
characteristics that chemists have assigned according 
to the inherent purposes of their research, leaving aside 
the aesthetic composition that, in turn, can contribute 
to deepening and communicating beyond the common 
sense, which associates thinking to an operation that 
excludes its connections with the affections, sensitivity, 
and creation. In Chemoinformatics, chemical space 
has been defined as a chemical descriptor vector 
space (cf. Fig.  1A) set by the numerical vector X 
encoding property or molecular structure aspects 
as elements of the descriptor vector X [11]. As such, 
chemoinformatics methods strongly depend on 
molecular representation and numerical descriptors 
[12]. There are many descriptors whose selection will 
depend on the type of molecules studied, for example, 
organic, inorganic, small molecules, peptides (whose 
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size can differ significantly), natural products, and 
food chemicals, to name a few. For small molecules 
(e.g., molecular weight < 1000  Da), it is common 
to use as descriptors molecular fingerprints [13, 
14], whole molecule properties (e.g., properties of 
pharmaceutical relevance [15, 16]), and sub-structures 
such as molecular scaffolds [17]. Figure  1A shows a 
schematic representation of the concept of chemical 
space, e.g., a chemical space table as a matrix where 
compounds are the rows and the numerical descriptors 
are the columns. Graphical and reduction dimension 
techniques are used to map the usually large multi-
dimensional spaces into two or three dimensions that 
can be plotted and easily visualized.

Since the chemical space of a set of compounds is 
not unique and will depend on the set of descriptors 
chosen to describe it, multiple chemical spaces are 
theoretically possible for the same data set. Continuing 
this line of thinking, a chemical multiverse was proposed 
recently and defined as “the group of numerical vectors 
that describe differently the same set of molecules.” 
An alternative definition of the chemical multiverse 
is a “group of multiple chemical spaces, each defined 
by a given set of descriptors—a group of “descriptor 
universes” [7]. The chemical multiverse concept is 
represented in Fig. 1B.

Chemical spaces and chemical multiverses are, like 
many other types of analysis, frequently analyzed through 
data visualization techniques (Fig.  1). Indeed, data 
visualization is widely used in science and other areas to 
effectively summarize and communicate data to produce 
information and, ultimately, knowledge. Extensive 
reviews have been published concerning the visualization 
of chemical spaces [9, 10]. As reviewed, there are multiple 
methods of visualization, such as principal component 
analysis (PCA) [18], t-distributed stochastic neighbor 
embedding (t-SNE) [19], Tree MAP (TMAP) [20], self-
organizing map (SOM) [21–23], and the generative 
topographic mapping (GTM) [24]. Each one will have 
advantages and disadvantages. As emphasized above, the 
visualization of a given data set will depend on the type of 
descriptors used.

The visual representation of chemical spaces can lead 
to visually appealing figures, particularly if appropriate 
color schemes are used. The visually attractive settings 
are used to emphasize patterns in the chemistry data to 
facilitate visual information extraction. For instance, to 

highlight grouping or clustering in the chemistry data 
or to rapidly identify patterns in the structure–property 
landscapes. At the same time, the visually attractive 
graphs can be for the chemistry expert and non-expert, 
a visually appealing graph, or a digital “painting” or work 
of art. In other words, the graph or digital painting is 
driven by chemical structures and descriptors. Therefore, 
the person generating the chemical space representation 
could be considered a chemical space artist who can 
communicate not only chemical data and information but 
even emotions if the chemical structures are associated 
with a personal, emotional, or another type of feeling 
the “artist” / author want to communicate through the 
visualization, e.g., an artistic expression.

In this sense, the concept of chemical space also opens 
up the possibility of searching for new representations 
that have to do with the need to configure another image 
of thought, and think in a novel fashion; it is a creative 
task and is similar to art.

This manuscript proposes the general notion of 
generating visual representations of chemical space 
and chemical multiverses as a means of chemical 
communication that produces new experiences 
and, in parallel, artistic expressions. To illustrate the 
proposal, we generated chemical space visualizations 
of four flavor categories from an extensive public 
database of food chemicals, FooDB [25], using different 
descriptors and molecular fingerprints. We considered 
four flavor categories, as detailed in the Methods 
section. The concept would further promote art driven 
by chemoinformatics and can be expanded to other 
information-related disciplines, such as bioinformatics. 
Using different descriptors and visualization methods, 
we show examples of chemical multiverse visualizations 
of four flavor categories from FooDB and other chemical 
compounds.

Methods
Data sets
Herein, we used food chemicals to generate visual 
representations of the chemical space as artworks. 
Food and its flavors, colors, textures, and aromas are 
generally associated with the great pleasures of life; for 
this reason, they have been a source of inspiration in art 
world. However, an approximation at the structural level 
of the molecules has yet to be addressed. Specifically, 
we used chemical structures from the public database 

(See figure on next page.)
Fig. 1 Schematic concept of A chemical space and its visual representation in low‑dimensions. B Schematic representation of a chemical 
multiverse for a hypothetical data set of n compounds: descriptors of different design (continuous properties, molecular fingerprints, constitutional 
descriptors, etc.) can lead to alternative chemical spaces for the same data set
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Fig. 1 (See legend on previous page.)
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FooDB [25]. The current version of FooDB contains 
70,477 compounds, and after data set standardization 
(described in detail in Sect.  "Data set standardization") 
has 52,856 molecules. FooDB has information about 
macronutrients, micronutrients, and food chemicals 
that give food flavor, color, taste, texture, and aroma to 
foods. Each chemical item in FooDB contains more than 
100 separate data fields providing detailed compositional, 
biochemical, and physiological information [25]. 
From FooDB, 4964 natural flavorings derived from 
food compounds were identified across twenty flavor 
categories. Figure  2 summarizes the frequency of the 
seven most populated categories.

From the twenty-seven flavor categories, we defined 
four new flavor categories: (1) ground flavors, (2) wine-
tasting, (3) contrast between fatty and spicy, and (4) 
natural remedies. Additional file  1: Table  S1 shows the 
number of compounds in each of the four categories 
considered in this work. Flavors of the ground/flavor 
similar to herbaceous are earthy, herbaceous, and green 
flavors. Wine tasting is composed of fruity and floral 
flavors. The contrast between fatty and spicy is composed 
of fatty and spicy flavors. Medicinal comprises balsamic, 
chemical, and medicinal, which are characteristic flavors 
found in ointments, alcohol, and syrups. Additional file 1: 
Fig. S1 shows the overlapping compounds between the 
selected flavor categories.

Data set standardization
Compounds in FooDB, encoded as SMILES strings 
[12], were standardized using the open-source 
cheminformatics toolkit RDKit [26] and Standardizer, 
LargestFragmentChoser, Uncharger, Reionizer y 
TautomerCanonicalizer functions implemented in 
MolVS [27]. Compounds with valence errors or any 
chemical element other than H, B, C, N, O, F, Si, P, S, Cl, 

Se, Br, and I were removed. Stereochemistry information, 
when available, was retained. Compounds with multiple 
components were split, and the largest component was 
retained. The remaining compounds were neutralized 
and reionized to generate the corresponding canonical 
tautomer.

Molecular descriptors
For each molecule, physicochemical properties and 
molecular fingerprints were calculated as descriptors 
using Python language and RDKit. The whole molecule 
descriptors computed were hydrogen bond donors 
(HBD), hydrogen bond acceptors (HBA), topological 
polar surface area (TPSA), number of rotatable bonds 
(RB), molecular weight (MW), and partition coefficient 
octanol/water (LogP). Molecular fingerprints computed 
were Molecular Access System (MACCS) Keys (166-bits) 
[13], extended connectivity fingerprint (ECFP) [14] of 
1024-bits with diameter 4 (ECFP4). Of note, virtually any 
other descriptors can be used, as further commented in 
the Sect. "Discussion".

Visualization methods
In this study, we used three well-known dimensionality 
reduction methods: t-SNE, PCA, and TMAPs, although 
additional visualization methods can be used. Briefly, 
t-SNE generates plots that organize compounds. Similar 
compounds form clusters and dissimilar compounds are 
distant from each other. PCA is a linear dimensionality 
reduction technique that transforms data with many 
dimensions (i.e., descriptors) into a lower dimensional 
space and keeps the different relationships between 
the data points as much as possible [18]. PCA was 
generated from six whole molecule descriptors (MW, 
HB, HBA, SlogP, TPSA, and RB). TMAPs allow 
visualization of many chemical compounds through the 
distance between clusters and the detailed structure 
of these through branches and sub-branches. Local 
sensitive hashing allows each compound to be grouped 
hierarchically according to common substructures using 
molecular fingerprints. In this work, we use MACCS 
keys (166-bits) [13] fingerprints. Then, each chemical 
compound was encoded using the MinHash algorithm. 
The number of nearest neighbors, k = 50, and the factor 
used by the augmented query algorithm, kc = 10, were 
used to generate the TMAPs [20].

Results
Figures  3, 4, 5, 6 show examples of so-called “Art 
Galleries” composed by visualization of the chemical 
space of different food chemical categories. The visual 
representations of chemical space were generated 
with t-SNE (Figs.  3 and 4), PCA (Fig.  5), and TMAPs Fig. 2 The seven most frequent flavor categories identified in FooDB
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(Fig.  6). Below each image (i.e., “digital paintings”) 
is presented basic information of the “technique” 
(visualization method, allusive to the techniques used 
in paintings), descriptors, and chemicals (that would 
be meaningful information for a chemistry-oriented 
person to understand the data presented). Each visual 
representation of the chemical space or Artwork 
includes a “Title” that is reminiscent of the name of the 
piece of art or digital painting.

Discussion
Chemoinformatics has been broadly used in drug 
discovery. Still, it has many more applications in 
chemistry, with increasing applications in food 
chemistry, as evidenced by the emergence of the 
research areas of food chemical informatics or food 
informatics [28, 29]. There are others, such as natural 
products [30, 31], polymers, and materials, to name 
a few [6]. Herein, we propose expanding the realm of 
chemoinformatics´ applications through the visual 

Fig. 3 Four flavor categories and full FooDB. The flavor categories are A Ground flavors (655 compounds), B Wine‑tasting (1024 compounds), C 
Contrast between fatty and spicy (430 compounds), and D Natural remedies (762 compounds)
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representation of the chemical space of compound 
data sets—herein illustrated with food chemicals—
to yield exemplary “art pieces.” The connection or 
synergy between chemoinformatics and art has a strong 

potential to bring together at least two sectors of the 
population that might be otherwise disconnected. From 
an educational point of view, which is a central need in 

A

TITLE: Umami
Technique: t-SNE
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor food category: Green, Earthy, and Herbaceous.

B

TITLE: Sweet
Technique: t-SNE
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor food category: Fruity and Floral.

C

TITLE: Sour
Technique: t-SNE
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Fatty and Spicy.

D

TITLE: Bitter
Technique: t-SNE
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Balsamic, Chemical, and Medicinal.

Fig. 4 Four flavor categories: A Ground flavors (655 compounds), B Wine‑tasting (1024 compounds), C Contrast between fatty and spicy (430 
compounds), and D Natural remedies (762 compounds)
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chemoinformatics—the synergy might attract young 
students and kids to chemistry through art.

The subdiscipline of food informatics was proposed 
in 2014 as a specific application of chemoinformatics to 
food chemistry [28]. Since then, numerous applications 
of chemoinformatics to different aspects of food 

chemistry have been published, including analysis of 
the chemical space of food chemicals to characterize the 
structural diversity [32]. In Sect.  "Results" we showed 
examples of visual representations of the chemical 
space of food chemicals as an artistic expression and 
scientific dissemination through art. There are many 

A

TITLE: PANTE
Technique: PCA
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Green, Earthy, and Herbaceous.

B

TITLE: SYRAH
Technique: PCA
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Fruity and Floral.

C

TITLE: FONTINA
Technique: PCA
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Fatty and spicy.

D

TITLE: XOCOC
Technique: PCA
Descriptors: MW, HB, HBA, SlogP, TPSA, and RB.
Chemicals: Flavor food-chemical compounds.
Flavor categories: Balsamic, Chemical, and Medicinal.

Fig. 5 Four flavor categories: A Ground flavors (655 compounds), B Wine‑tasting (1024 compounds), C Contrast between fatty and spicy (430 
compounds), and D Natural remedies (762 compounds)
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A

TITLE: Ébano (Ebony)
Technique: TMAP
Descriptors: MACCS keys fingerprints
Chemicals: Flavor food-chemical compounds.
Flavor categories: Green, Earthy, and Herbaceous.

B

TITLE: Flor de corazón (Heart flower)
Technique: TMAP
Descriptors: MACCS keys fingerprints
Chemicals: Flavor food-chemical compounds.
Flavor categories: Fruity and Floral

C

TITLE: Amaranto (Amaranth)
Technique: TMAP
Descriptors: MACCS keys fingerprints
Chemicals: Flavor food-chemical compounds.
Flavor categories: Fatty and Spicy

D

TITLE: Huele a miel (Honey´s smell)
Technique: TMAP
Descriptors: MACCS keys fingerprint
Flavor food-chemical compounds.
Flavor categories: Balsamic, Chemical, and Medicinal

Fig. 6 Four flavor categories: A Ground flavors (655 compounds), B wine‑tasting (1024 compounds), C Contrast between fatty and spicy (430 
compounds), and D Natural remedies (762 compounds)
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possibilities to expand the genesis of the proposed 
“art-cheminformatics,” as further elaborated in Sect. 
“Conclusions and outlook”.

Exemplary art‑related chemical spaces and multiverses
The examples of visual representation of chemical space 
as artistic representations presented in Sect.  "Results" 

Table 1 Exemplary potential paintings based on the visualization of the chemical space of compound data sets

Data set Artistic meaning Artwork name

Random compounds Aleatory molecules represent the vastness of our universe and daily life. We are 
in contact with many chemicals every time, but we don’t look at their complexity 
and intrinsic disorder in our universe and daily life

“Chaos”

Diverse data set The diversity offers many colors, flavors, tastes, and experiences. In nature, diversity 
(in all senses) is a constant feature

“Diversity”

Marine natural products We don’t understand the sea; It has life, death, color, and darkness. It’s constantly 
changing

“The Ocean”
“Immensity”

Drugs approved for the treatment of HIV Everything happens in a positive HIV human; Fear, memories, happiness, 
and normality. The drugs help… but are not a complete answer

“Living with AIDS”

Hormones—neurotransmitters Love = hormones + neurotransmitters + special persons “The chemistry of love”

Chemicals associated with depression Depression = hormones + neurotransmitters—purpose “Darkness”

Food chemicals The great pleasures of life are often accompanied by flavors, colors, textures, 
and aromas

“Bellyful”
“Flavor trip”

ZINC database vs. drug‑like compounds We know a lot about our nature and composition, but we don’t know much more. 
Our knowledge is a mere stain on an entire canvas that we do not yet understand

“Our knowledge”

Fig. 7 Chemical space art example. Title: “Wise nature”; Autor: Edgar López‑López; Technique: SOM—using DataWarrior software [33, 34]; Dataset: 
Random natural products (1000 compounds); Descriptors: predicted mutagenic, tumorogenic, Reproductive effective, and Irritant; Technical 
description: Each white point is a natural product, the regions colored in red represent the chemical space with a high predicted probability 
of containing compounds witch side effects, the opposite for the blue color; Artistic interpretation: The "nature" is not always healthy, in nature, 
there has always been a duality between what fills us with life and what takes it away
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are focused on food chemicals and molecular descriptors 
suitable to represent such chemical compounds. Also, 
examples of visualization methods used in the previous 
section are t-SNE, PCA, and TMAPs. However, 
as commented in the Introduction, the number 
of established visualization techniques, molecular 
descriptors, and, perhaps most importantly, the number 
of chemical structures are immense. Therefore, there are 
thousands or millions of ways to generate chemical space-
driven works of art. To glimpse the artistic possibilities, 
Table  1 summarizes examples of the cheminformatics-
driven visualization of chemical space and multiverses. 
The table summarizes examples of compound data sets 
with chemicals of different types that could be used 
to represent their vastness, complexity, diversity, and 
chaotic intrinsic features from an artistic perspective. 
Many more compound data sets and multiple 
combinations of descriptors and visualization techniques 

could be used. However, as with any other artistic vehicle, 
the real importance of any type of art is its capacity to tell 
histories or convey a message that sometimes is hidden.

To illustrate further the potential of generating artistic 
representations through visualization of chemical space, 
Fig. 7 shows an example of chemical space artwork from 
a random natural products dataset, decoding by their side 
effects descriptors (e.g., mutagenesis, tumorogenesis, and 
negative reproductive effects, etc.). Their color palette, 
from red to blue, represents the probability of each 
natural product generating side effects. The “canvas” was 
“painted” with a dotted technique, reflecting another 
possible set of textures that can be developed with this 
technique. Like in Fig.  7, we intrinsically know that 
"nature" is not always healthy and that within us, there is 
a delicate balance that is very easy to break.

Figure  8 shows additional examples of chemical 
space artwork that combine different reduction data 

TITLE: Chemical umbrella
Technique: PCA + Data fusion (chemical 
multiverse approach).
Descriptors: Cell-based and enzymatic 
inhibition data. Dots are connected based on 
their inhibitory activity against different types of 
cytochromes (proteins related to hepatic 
protection).
Hepatotoxic compounds. 

TITLE: Broked cancer
Technique: Constellation plots.
Descriptors: Anticancer cell inhibition data. 
Anticancer drugs.

Fig. 8 Chemical space art examples. Chemical artworks were generated with public data [35–37]
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methods and descriptors to generate an artistic visual 
representation of the chemical data. We encourage the 
readers to reflect and find other artistic interpretations 
that these figures could have. The examples of chemical 

space visualization as work art have been included in a 
Chemical Space Art Gallery freely available at https:// 
www. difac quim. com/ chemi cal- art- galle ry/

Fig. 9 Example(s) of artificial intelligence‑driven art with the free application Canva (https:// www. canva. com/) using the keyword chemical space 
and A Watercolor and B color pencil

Table 2 Representative developments of combining art with chemoinformatics through artistic visualizations of chemical space

Development Putative outcome or application

Continue developing a digital collection focused on the artistic representation of the chemical 
space

The Chemical Space Art Museum

Generate automated workflows using open software or informatic tools to improve the accessibility 
of this kind of art to people with different academic/artistic backgrounds

ChemArt Generators

Establish a free, open‑access, and permanent repository of art pieces. This encourages open science 
and open art. The scientific and artistic community could support the repository

ChemART Gallery. An example is at https:// www. 
difac quim. com/ chemi cal‑ art‑ galle ry/

Set up a sustained educational or cultural program as a continued open and permanent exposition Art Driven by Chemical Space Visualization program

https://www.difacquim.com/chemical-art-gallery/
https://www.difacquim.com/chemical-art-gallery/
https://www.canva.com/
https://www.difacquim.com/chemical-art-gallery/
https://www.difacquim.com/chemical-art-gallery/
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Artificial intelligence and digital art
Artificial intelligence (AI) is used to generate artistic 
representations [38, 39]. Although it is not the central 
point of this manuscript, Fig.  9 illustrates images 
generated with free resources using keywords associated 
with “chemical space.” Specifically, the figure shows 
an example of a chemical multiverse/chemical space 
driven by an AI-web server training on words. Although 
the images are attractive, a striking difference with the 
chemical space artworks presented in previous sections 
(Figs. 3, 4, 5, 6, 7, 8) is that the images in Fig. 9 are based 
on keyword training. The former are derived directly 
from chemical structures encoded with molecular 
descriptors. Another important aspect is a greater 
understanding and human intervention in the former 
representations, something questionable in AI-guided 
pictures.

Conclusions and outlook
Science and art have long been intimately related. A 
typical example is summarized by the phrase, “Drug 
discovery is as much an art as it is a science.” Certainly, 
chemistry is substantially used in art, such as in art 
restoration and preservation. However, an emerging 
trend exists to apply chemistry and its concepts to 
generate artwork. Herein, we discuss an approach to 
combining art with chemoinformatics through the visual 
representations of chemical space. We presented a few 
examples of chemical space artworks that can be “digital 
paintings.” The author of the low-dimensional graphs can 
use the plots with dual general purposes: communicate 
data and generate chemical information (as generally 
done with the visualizations of chemical space) and 
convey an emotional or personal meaning to the graph 
(driven by chemistry and informatics principles).

We also conclude that chemical space-driven works 
of art can be tools to promote science in general and 
chemistry in particular for the broad audience. Thus, 
chemistry informatic-driven artistic expressions can 
be an approach to disseminating science. Such an 
approach aligns with the graphical abstracts frequently 
used in peer-reviewed journals. The "chemical art" 
could be useful to represent complex data by using 
an artistic and attractive perspective. The person 
generating the chemical space representation could be 
considered a “chemical space artist.”

We envision several further developments and areas 
of opportunity for art driven by visual representations 
of chemical space. Table  2 summarizes ongoing 
chemical arts projects, from the generation of “easy 
to use” tools, the first chemical art gallery, and the 
implementation of this artistic mode to introduce the 
new generation of chemoinformaticians to the chemical 

space concept. In parallel, AI methods will continue 
expanding and exploring the chemical space, offering 
new types of molecules and descriptors that could 
be used to increase the possibilities of representing 
chemical space from an artist’s perspective.
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