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Abstract 

With the continuous development of artificial intelligence technology, more and more computational mod-
els for generating new molecules are being developed. However, we are often confronted with the question 
of whether these compounds are easy or difficult to synthesize, which refers to synthetic accessibility of compounds. 
In this study, a deep learning based computational model called DeepSA, was proposed to predict the synthesis 
accessibility of compounds, which provides a useful tool to choose molecules. DeepSA is a chemical language model 
that was developed by training on a dataset of 3,593,053 molecules using various natural language processing (NLP) 
algorithms, offering advantages over state-of-the-art methods and having a much higher area under the receiver 
operating characteristic curve (AUROC), i.e., 89.6%, in discriminating those molecules that are difficult to synthesize. 
This helps users select less expensive molecules for synthesis, reducing the time and cost required for drug discovery 
and development. Interestingly, a comparison of DeepSA with a Graph Attention-based method shows that using 
SMILES alone can also efficiently visualize and extract compound’s informative features. DeepSA is available online 
on the below web server (https://​bailab.​siais.​shang​haite​ch.​edu.​cn/​servi​ces/​deepsa/) of our group, and the code 
is available at https://​github.​com/​Shiha​ng-​Wang-​58/​DeepSA.
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Introduction
Computer aided drug design (CADD), especially AI 
aided drug design (AIDD), has become an important tool 
in modern innovative drug discovery and development, 
which can significantly expediate the drug development 
process and cut investment costs [1–4]. Fragment-based 
drug design (FBDD) is a classical CADD strategy. Based 
on a target structure, FBDD performs virtual screening 

(VS) from the molecular fragment library to obtain ligand 
fragments, and many optimization and transformation 
steps are carried out according to the structural infor-
mation of the target protein to obtain new compounds 
with high affinity and achieve the goal of lead compound 
design [5–7]. In this situation, the designed molecules 
often get stuck with difficulty in synthesizability.

In addition, with the continuous development of arti-
ficial intelligence technology, an increasing number of 
computational molecular generation models are devel-
oped based on various of artificial intelligence algo-
rithms, including variational auto encoders (VAE) [8], 
generation of confrontation networks (GAN) [9], rein-
forcement learning (RL) [10–12], flow-based genera-
tion models and diffusion models [13, 14]. These models 
can generate new hit compounds for the known targets 
of existing diseases and optimize the structure of exist-
ing lead compounds. They help medicinal chemists to 
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find useful molecules from the vast chemical space and 
shorten the time for drug discovery and development [15, 
16]. However, most new molecules created by generation 
models often face major challenges in terms of synthetic 
accessibility [17].

The synthesizability prediction can be seen as a large 
data-required complicated problem, and machine learn-
ing is suitable for dealing with such problems. A huge 
training dataset of molecules and their pre-defined “syn-
thesizability scores” is the prerequisite. Then an artifi-
cial intelligence model is able to be designed to learn 
the relationship between the molecule structures and 
their synthesizability. So far, several such tools have 
been developed, such as SAscore (Synthetic Accessibility 
score), which assesses the compositional fragments and 
complexity of molecules by analyzing the historical syn-
thesis knowledge obtained from the information of mil-
lions of synthesized chemicals, and finally outputs a score 
in the range of 1 to 10 [18]. This method performs bet-
ter than the other methods, including SCScore (Synthetic 
Complexity score) [19], RAscore (Retrosynthetic Acces-
sibility score) [20] and SYBA (SYnthetic Bayesian Acces-
sibility) [21], from an evaluation study from Skoraczyński 
et al. [22]. SCScore is a method for quantifying synthesis 
complexity, which uses deep neural networks and trains 
on a set of 12 million reactions obtained from the Reaxys 
database and the output score for evaluation ranges 
from 1 to 5 [19]. RAscore is a machine learning classi-
fier trained with more than 300,000 compounds from 
the ChEMBL database [20]. SYBA uses Bernoulli Naive 
Bayes classifier to evaluate whether a given molecule is 
easy- (ES) or hard-to-synthesize (HS) [21]. Unlike the 
other mentioned methods, SYBA assesses each frag-
ment of a molecule with an assigned SYBA score to label 
its synthesizability. RetroGNN is a machine learning-
driven method to estimate synthesizability via approxi-
mating the outputs of a retrosynthesis planning software 
within a given search space [23]. The latest synthetic 
accessibility evaluation model is GASA (Graph Attention-
based assessment of Synthetic Accessibility), which is a 
graph-based method for predicting the synthetic  acces-
sibility. Small organic compounds are classified as ES or 
HS based on the capturing of the local atomic environ-
ment by leveraging information from neighboring nodes 
through attention mechanisms and enrichment of the 
overall training process by incorporating bond features 
to obtain a more complete understanding of the global 
molecular structure [24]. GASA has been reported as one 
of the state-of-the-art models, which has shown remark-
able performance in distinguishing the synthetic accessi-
bility of similar compounds, with strong interpretability 
and generalization ability, significantly outperforming 
other existing methods [24]. These methods were trained 

on diverse compound datasets and could be divided into 
structure-based (SAscore and SYBA) and reaction-based 
(SCScore, RAscore, RetroGNN and GASA) [18–24]. 
Interestingly, these reaction-based methods used differ-
ent reaction datasets. SCScore was trained using 12 mil-
lion chemical reactions from the Reaxys database, while 
RAscore, RetroGNN, and GASA used three different 
retrosynthesis analysis softwares, AiZynthFinder [25], 
Molecule.one (https://​www.​molec​ule.​one/), and Retro* 
[26], respectively, to generate synthesis routes for model 
training.

In this study, we propose a new model for evaluating 
the synthetic accessibility of compounds based on the 
chemical language model named DeepSA. This model 
can differentiate easy-to-synthesize from that are hard-
to-synthesize  with a much higher accuracy rate. We 
compared the discriminative ability of DeepSA with 
other existing models for evaluating the synthetic acces-
sibility of compounds (GASA, SYBA, RAscore, SCScore, 
and SAscore). The results show that the performance of 
DeepSA is particularly well as it more accurately assesses 
the synthetic difficulty of real drug molecules in existing 
research reports. We have deposited the original code of 
DeepSA on GitHub (https://​github.​com/​Shiha​ng-​Wang-​
58/​DeepSA) and also provided an online platform for the 
public to use DeepSA (https://​bailab.​siais.​shang​haite​ch.​
edu.​cn/​servi​ces/​deepsa/).

Materials and methods
Collection of datasets
To ensure a fair comparison with existing methods, we 
used the same datasets in this study as Yu et  al. [24] to 
train the model for predicting synthesis accessibility of 
molecules. The datasets consist of two parts. The first 
part is used for training DeepSA, and the other part is 
used to evaluate the performance of DeepSA and other 
synthetic accessibility models. Among them, hard-to-
synthesize molecules are marked as positive samples 
and easy-to-synthesize molecules are marked as negative 
samples.

The training dataset contains 800,000 molecules, of 
which 150,000 are from the ChEMBL [27] or GDB-
ChEMBL [28], and has been labeled the synthetic acces-
sibility by a multi-step retrosynthetic planning algorithm 
called Retro* [26], which is a neural-based A*-like algo-
rithm that can efficiently find simplified synthetic routes 
for aimed compounds. In this study, we used the default 
parameters suggested from the developers of Retro* to 
analyze the synthesis steps. The training data for Retro* 
are from the USPTO reaction dataset and a list of com-
mercially available building blocks from eMolecules 
[26]. The detailed description for the parameter settings 
for Retro* has been listed in Additional file  1: Table  S1. 

https://www.molecule.one/
https://github.com/Shihang-Wang-58/DeepSA
https://github.com/Shihang-Wang-58/DeepSA
https://bailab.siais.shanghaitech.edu.cn/services/deepsa/
https://bailab.siais.shanghaitech.edu.cn/services/deepsa/
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Simply input the SMILES of the molecule to Retro *, and 
it will output the synthesis route of the molecule and 
the final number of synthesis steps. A molecule requires 
less than or equal to 10 synthetic steps was labeled as 
ES, otherwise, if the required step is larger than 10 or 
can’t be successfully predicted by Retro* was labeled 
as HS. Another 650,000 molecules were derived from 
SYBA [21], with positive samples coming from purchas-
able molecules in the ZINC15 database [29] and nega-
tive samples generated by the Nonpher algorithm [30]. 
All samples were divided into a training set, and a test 
set was set as 9:1 ratio. Meanwhile, we amplified differ-
ent SMILES representations of the same molecule to add 
advanced sampling operations to the dataset.

The independent test sets used to evaluate the per-
formance of the various models consist of three parts. 
In summary, the three datasets were drawn from three 
previous published works. Independent test set 1 (TS1) 
contains 3,581 ES and 3,581 HS molecules that obtained 
directly from the study of SYBA [21, 24]. The independ-
ent test set 2 (TS2) contains 30,348 molecules derived 
from the study of RAscore [20]. The independent test set 
3 (TS3) consists of 900 ES and 900 HS molecules which 
obtained from the study of GASA [24]. The compounds 
in TS3 were collected from different sources and have 
higher similarity of fingerprints, which makes the pre-
diction task more challenging. There was no overlap 
between the training set and the independent test sets. 
The data sets used in this study are shown in Additional 
file 1: Table S2. Finally, to further verify the performance 
of DeepSA for compounds with real synthetic pathways, 
we selected 18 compounds with complete synthetic 
pathways from the published literatures [31–48], which 
will be detailed introduced in the section of Results and 
Discussion.

Criteria for Performance Evaluation
Model evaluation is an important part for classification 
tasks. When comparing the predictive performance of 
different models, most evaluation indicators can only 
show the predictive performance of the model from a 
particular aspect. Therefore, we used several statisti-
cal indicators, including accuracy (ACC​, Eq.  (1)), Preci-
sion (Eq.  (2)), Recall (Eq.  (3)), F–score (Eq.  (4)) and the 
AUROC [49–52]. ACC​ indicates the prediction accuracy; 
however, if the sample size belonging to different classes 
in the data is uneven, the conclusions of the evaluation of 
ACC​ may be questionable. Precision represents the pro-
portion of correctly predicted positive set out of all pre-
dicted positive set. Recall is the proportion of correctly 
predicted positive set out of all positive set. The F–score 
is defined as the harmonic mean of the model’s precision 

and recall. ROC curve is an important index for evaluat-
ing the generalization performance of models.

TP and FN indicate that if the true label of the sample 
is positive, the prediction labels are positive and negative, 
respectively. TN and FP indicate that if the true label of 
the sample is negative, the prediction labels are negative 
and positive, respectively.

Classification threshold of the models
In this study, compared with DeepSA, GASA and RAs-
core are binary classification models with an output 
probability between 0 and 1. However, the output of 
SYBA, SAscore and SCscore is a non-binary score. To 
compare the performance of all models more fairly, two 
classification thresholds (cut-offs) were used to evalu-
ate our method, one is 0.5 which is the same as the other 
binary-classification methods, e.g., GASA and RAs-
core, as reported in Yu et al. [24], and the other is 0.47, 
which was the optimal cut-off of ROC determined using 
the training data. The prediction results of each method 
were analyzed using scikit-learn [53] to calculate the ACC​
, Recall, Precision, and F–score. For DeepSA, SAscore 
and SCscore, output scores above the threshold are con-
sidered as HS and below the threshold are considered as 
ES. For GASA, RAscore and SYBA, on the contrary, out-
put scores above the threshold are considered as ES and 
below the threshold are considered as HS.

Network architecture of DeepSA
The DeepSA proposed in this study consists of three 
modules: the data processing module, the feature embed-
ding module, and the decoder module. The architecture 
of DeepSA is shown in Fig.  1. We converted the origi-
nal SMILES in dataset to canonical SMILES, and then 
the dataset was further expanded by introducing alter-
native formats of SMILES of some randomly selected 
molecules by RDKit [54]. The final size of training, 
and test dataset after data enhancement are 3,593,053 
and 399,216. Meanwhile, a Byte-Pair Encoder (BPE) 
tokenizer from HuggingFace tokenizer library was used 
to encode the structures for compounds, which can 
treat the basic atomic and ring structures in the input 
SMILES as “words” or “sentences” and make meaningful 

(1)ACC =
TP+TN

TP+TN+FP+FN

(2)Precision =
TP

TP+FP

(3)Recall =
TP

TP+FN

(4)F−score =
2 ∗Precision ∗Recall

Precision+Recall
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predictions using the previous reported ChemBERTa 
SMILES-Tokenizer [55, 56]. Firstly, we collected a num-
ber of network architectures from different natural 
language models, including bert-mini (MinBert) [57], 
bert-tini (TinBert) [57], roberta-base (RoBERTa) [58], 
deberta-v3-base (DeBERTa) [59], Chem_GraphCodeBert 
(GraphCodeBert) [60] and electra-small-discriminator 
(SmELECTRA) [61], and two chemical language models, 
including ChemBERTa-77M-MTR (ChemMTR) [62] and 
ChemBERTa-77M-MLM (ChenMLM) [62]. Secondly, we 
trained DeepSA models based on these different natu-
ral language models and two chemical language models 
using the designed synthetic accessibility dataset of mol-
ecules. The architectures of these natural language mod-
els were fine-tuned on the enhanced dataset to adopt the 
synthetic accessibility prediction task. The AutoGluon 
package [63, 64] was employed to fine-tuning stages. The 
learning rate was set to 0.001 and adjusted during train-
ing process by cosine decay schedule. The training pro-
cess was performed for a maximum of 20 epochs, and 
the validated every 0.2 epoch, and up to three check-
point models with the highest ACC​ on the validation 
set were stored. Finally, the top three models were fused 
by the greedy soup method [65] and the final DeepSA 
model was generated. The whole training process was 

performed on a RTX3090 GPU. Detailed information 
regarding to output dimensions of each layer and hyper-
parameters utilized in the DeepSA model are listed in 
Additional file 1: Table S3.

Results and discussion
Proposing the DeepSA models for predicting synthetic 
accessibility for molecules
In recent years, the development of natural language pro-
cessing techniques has led to the emergence of numerous 
natural language models, providing a range of frame-
works to process protein sequence data like natural lan-
guages. Intuitively, SMILES sequences used to represent 
compounds share certain similarities with natural lan-
guage. Both are composed of a diverse vocabulary of sim-
ple characters, and generate complex sentences through 
simple rules. This similarity has inspired researchers 
to transfer the framework of natural language mod-
els to compound data, with the aim of training chemi-
cal language models, e.g., SMILES-BERT [66], in order 
to achieve improved performance in compound-related 
tasks. Therefore, we aim to explore whether a training 
strategy similar to text classification tasks in natural lan-
guage can be employed to the chemical language models 
for evaluating the synthesizability of molecules. This will 

Fig. 1  An illustration of the designed architecture for DeepSA. We designed and trained Bidirectional Encoder Representations from Transformers 
(BERT) model and fine-tuned on our labeled synthesis related data to evaluate synthesizability from the given molecules’ SMILES. A dense layer 
was added following the BERT layer to perform binary classification task. If the given score is equal to or greater than 0.5, the molecule is considered 
difficult to synthesize; otherwise, if the score is less than 0.5, it will be easy to obtain
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further enhance our understanding of chemical language 
models and the synthesizability of compounds.

In this study, a chemical language framework to predict 
the synthetic accessibility for molecules was designed, 
where we tried various language models as the encode 
layer, such as bert-mini (MinBert) [57], bert-tini (Tin-
Bert) [57], roberta-base (RoBERTa) [58], deberta-v3-base 
(DeBERTa) [59], Chem_GraphCodeBert (GraphCode-
Bert) [60], electra-small-discriminator (SmELECTRA) 
[61], ChemBERTa-77M-MTR (ChemMTR) [62] and 
ChemBERTa-77M-MLM (ChenMLM) [62]. First, mole-
cule structures are converted into SMILES strings, which 
are then encoded into embeddings using a BPE tokenizer. 
Subsequently, the embeddings are further processed 
using various techniques, such as positional embeddings. 
Finally, through multiple encoding layers and linear lay-
ers, the model outputs probabilities for the two classifica-
tion categories of easy synthesis (ES) and hard synthesis 
(HS) using a softmax activation function. The perfor-
mance of DeepSA on the test set was shown in Table 1. It 
is great to see high ACC​, recall, precision, and F–score on 
the test results. The high precision of the models reduces 
the risk of misjudging ES compounds as HS, which 
improves decision accuracy. Additionally, the high recall 
of the models means that they can identify more truly ES 
compounds, which improves decision comprehensive-
ness and reliability. It is also impressive that almost all of 
the models had AUROC values higher than 0.98. Next, 
we will further evaluate the model’s generalization ability 
on the independent test sets.

Performance comparison of different synthetic 
accessibility prediction models
Three independent test sets TS1, TS2, and TS3 are used 
to compare DeepSA with some state-of-the-art molec-
ular synthesis accessibility assessment methods. The 
results have been summarized in Table 2, and it is shown 
that DeepSA can perfectly discriminate between ES and 

HS on TS1, only slightly lower than SAscore on TS2, and 
outperforms all existing methods on the most challeng-
ing TS3, indicating its excellent performance in iden-
tifying the difficulty of synthesis of similar compounds 
(Table 2 and Additional file 1: Table S4). DeepSA based 
on SmELECTRA model showed better performance on 
TS3, reflecting the difficulty of molecular synthesis in the 
real world (Fig.  2A), so we used DeepSA_SmELECTRA 
as the standard DeepSA model for the following analysis.

As shown in Fig. 2B, the ROC curves for existing meth-
ods that evaluate synthetic accessibility of compounds, 
including GASA, SYBA, SCscore, SAscore, and RAscore. 
DeepSA achieves a significantly higher early enrichment 
rate than GASA and other models in identifying HS.

As shown in Table  2 and Fig.  2, the prediction accu-
racy of the model decreases sequentially on TS1, TS2 and 
TS3, which may be due to various molecular properties 
among these three independent test sets. Therefore, the 
topological torsion fingerprint and Yule similarity met-
ric were used to calculate the similarity matrix for these 
three datasets and the similarity matrix was presented 
as heatmap in Fig.  3. The groups of ES and HS mole-
cules in TS1 show high fingerprint similarity within each 
group. Comparatively significant differences can be seen 
between the ES and HS groups. It indicates that the dif-
ference in patterns of the molecular embeddings may be 
great helpful for telling HS from ES (Fig. 3A). Figure 3B 
presents the fingerprint patterns for the molecules in 
TS2. Most of them show a clear difference between HS 
and ES, but a few show similar patterns between HS and 
ES, which presents some difficulty in prediction. Unlike 
TS1 and TS2, the fingerprints for HS and ES in TS3 have 
very similar patterns, indicating the challenges in the pre-
diction (Fig. 3C).

TS3 is the test set created by medicinal chemists that is 
closer to chemical synthesis tasks. Therefore, TS3 is the 
one of the most suitable datasets for validating the per-
formance of different models. Since DeepSA is a chemi-
cal language model inspired by language models in the 
field of NLP, intuitionally, the length of the “sentences” 
(SMILES) may have an impact on the performance of a 
language model. To answer this question, we took TS3 
to investigate the relationship between the model’s per-
formance and the length of SMILES. However, in doing 
so, we found that there doesn’t appear to be a strong cor-
relation between synthetic complexity and the length of 
the compounds’ SMILES (Fig.  4A). Although the per-
centage of False_HS increases somewhat in the long 
SMILES region (Fig. 4B); we still can’t determine whether 
the performance of our model is sensitive to the length 
of SMILE based on the results over such a limited data-
base. Overall, DeepSA passes the test when predicting 
non-extreme molecules. As the TS3 ROC curves shown 

Table 1  Performance comparison of the different models on the 
test set

Model ACC​ Recall Precision F–score AUROC

DeepSA_ChemMTR 0.971 0.968 0.974 0.971 0.997

DeepSA_ChemMLM 0.961 0.955 0.967 0.961 0.995

DeepSA_MinBert 0.939 0.933 0.945 0.939 0.988

DeepSA_TinBert 0.942 0.937 0.947 0.942 0.990

DeepSA_RoBERTa 0.940 0.940 0.940 0.940 0.988

DeepSA_DeBERTa 0.898 0.873 0.920 0.896 0.959

DeepSA_GraphCodeBert 0.938 0.931 0.944 0.937 0.987

DeepSA_SmELECTRA​ 0.944 0.938 0.949 0.943 0.990
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Table 2  Performance comparison of the different models on the external three test sets

Datasets Model ACC​ Recall Precision F-score AUROC Threshold

TS1 DeepSA 0.995 1.000 0.989 0.995 1.000 0.47

DeepSA 0.995 1.000 0.990 0.995 1.000 0.50

GASA 0.987 0.999 0.976 0.987 1.000 0.50

SAscore 0.989 0.992 0.986 0.989 0.999 4.50

SAscore 0.665 0.331 0.998 0.497 0.999 6.00

RAscore 0.919 0.867 0.967 0.914 0.982 0.50

SYBA 0.962 1.000 0.930 0.964 0.998 0.00

SCScore 0.608 0.698 0.592 0.641 0.641 3.10

TS2 DeepSA 0.840 0.746 0.861 0.799 0.913 0.47

DeepSA 0.838 0.730 0.871 0.795 0.913 0.50

GASA 0.796 0.677 0.815 0.740 0.876 0.50

SAscore 0.815 0.603 0.946 0.737 0.919 3.40

SAscore 0.664 0.216 0.996 0.355 0.919 6.00

RAscore 0.751 0.485 0.878 0.625 0.865 0.50

SYBA 0.787 0.627 0.834 0.716 0.862 0.00

SCScore 0.395 0.442 0.341 0.385 0.373 2.30

TS3 DeepSA 0.819 0.761 0.861 0.808 0.896 0.47

DeepSA 0.817 0.753 0.864 0.805 0.896 0.50

GASA 0.760 0.646 0.837 0.729 0.849 0.50

SAscore 0.577 0.211 0.788 0.333 0.772 3.10

SAscore 0.512 0.044 0.690 0.084 0.772 6.00

RAscore 0.701 0.571 0.772 0.656 0.790 0.50

SYBA 0.647 0.387 0.806 0.523 0.790 0.00

SCScore 0.472 0.723 0.481 0.578 0.425 2.20

Fig. 2  A ACC​ of the different synthetic accessibility classification methods over the three independent test sets. B ROC curves of the above 
methods on the three independent test sets. DeepSA shows higher early enrichment rates
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in Fig. 2B, DeepSA has a much higher early enrichment 
rate on discriminating the molecules which are difficult 
to be synthesized compared to other models, thus help-
ing users to avoid the highly cost molecules for synthe-
sis, thereby saving the resource and reducing the time for 
the experimental validation of compounds designed from 
molecule generation model.

Generalization ability and robustness of DeepSA model
To further verify the predictive performance of DeepSA 
for compounds with real synthetic pathways, we tested 
18 compounds which have published synthetic pathways 
(those are real synthesis pathways instead of retrosyn-
thetic analysis or chemist created) outside of the training 
set and the independent test set (Table 3), and predicted 

synthetic accessibility scores for these compounds using 
DeepSA and other synthetic accessibility assessment 
methods. The results showed that DeepSA successfully 
distinguished the synthetic difficulty labels of all com-
pounds when divided by 10 synthetic steps.

Also, we checked the embedding of these compounds 
in DeepSA, where each compound is represented as a 
matrix of 256-dimensional vectors. Since DeepSA is a 
chemical language model, we explored whether differ-
ence in randomized SMILES of the same compound 
make any effects on the embedding. We generated three 
different randomized SMILES representations for each 
compound and extracted a total of 54 embeddings of 
the 18 compounds described above (Additional file  1: 
Table S5). Ultimately, we normalized all the embeddings 

Fig. 3  Heatmaps of fingerprint similarities between the ES and HS molecules in three independent test sets: TS1, TS2, and TS3. A The ES and HS 
compounds in TS1 have high fingerprint similarity within their own groups, but significant different patterns presenting between the groups 
of ES and HS. B Small portion of molecules of ES and HS show similar fingerprint patterns. C All compounds in TS3 have high fingerprint similarity, 
indicating that this is the most difficult test set for the classification task

Fig. 4  Prediction results for 1,800 compounds in TS3. A Score distribution histogram for the results from DeepSA over TS3. B The bubble plot 
of SMILES length versus synthetic accessibility prediction for 1800 compounds in TS3. The vertical coordinates represent the prediction outcome 
of the model. True_HS represents true positives, True_ES is true negatives, False_HS indicates false positives, and False_ES represents false negatives. 
Bubble size represents the number of observations in the SMILES length intervals. The depth of the bubble color represents the proportion 
of the prediction outcome in each bin of the SMILES length of compounds
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Table 3  Prediction results for the different types of molecules

Compound name 2D DeepSA GASA SAscore RAscore SYBA SCScore Synthesis 
steps

Refs.

Cularine 0.999 0.458 2.933 0.939 −0.556 3.706 16 [31]

Goniomitine 0.999 0.165 3.831 0.314 −16.213 4.376 12 [32]

Fusaequisin A 0.976 0.008 5.066 0.023 −51.766 3.925 20 [33]

Haliclonin A 0.960 0.002 6.513 0.131 −97.488 3.982 38 [34]

Hyacinthacine A1 0.959 0.108 3.847 0.638 −17.617 3.446 13 [35]

Hydroxyancepsenolide 0.744 0.029 3.892 0.018 −33.231 4.000 13 [36]

Kirkamide 0.630 0.475 4.142 0.264 −16.188 3.161 11 [37]

Longianone 0.727 0.190 4.666 0.668 −45.744 2.857 14 [38]

Simpotentin 0.522 0.075 4.560 0.201 25.489 3.643 14 [39]

Halomon 0.403 0.688 4.847 0.302 −6.849 2.588 10 [40]

Dihydropinidine 0.340 0.455 3.275 0.927 −29.819 3.102 9 [41]

Scorodonin 0.306 0.452 4.831 0.907 −26.430 2.160 6 [42]

Pinnatolide 0.294 0.718 3.534 0.547 −6.103 2.498 7 [43]

Tanikolide 0.289 0.371 3.072 0.797 2.726 3.218 7 [44]

Sedridine 0.128 0.924 3.324 0.990 −23.154 2.987 7 [45]

Isolaurepan 0.117 0.958 2.790 0.393 22.754 3.609 4 [46]

cis-Perhydroazulene 0.086 0.724 2.532 0.965 10.031 2.746 8 [47]

Gabapentin 0.071 0.770 2.400 0.973 2.213 2.161 3 [48]
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and used the heatmap (Fig.  5 and Additional file  2: Fig. 
S1) to visualize their embedding patterns. We found that 
the embeddings between HS and ES are significantly dif-
ferent in most regions along the dimension vectors. The 
vector size of the first hundred dimensions of ES is obvi-
ously higher than that of HS, while the opposite is true 
for the last hundred dimensions. The pattern differences 
within the group of HS or ES are mainly in the middle 
range of the dimension vectors. Meanwhile, differences 
in the embeddings correspond to the predicted scores for 
molecules’ synthetic accessibility. If a compound is pre-
dicted to have a higher probability of being HS or ES, it 
will be more clearly marked in the embeddings. For the 
same compound represented by different randomized 
SMILES, the embeddings mostly showed a high degree 
of similarity, which might indicate that different rand-
omized SMILES of the same compound don’t affect the 
prediction accuracy of synthetic accessibility, showing 
that the DeepSA model has a certain robustness.

Constructing web server for public use
To facilitate the use of our model by biomedical research-
ers, a trained model was deployed on a web server that 
can be publicly accessed by https://​bailab.​siais.​shang​haite​
ch.​edu.​cn/​servi​ces/​deepsa/ (Fig. 6A). Users can upload a 
molecule file in csv format which contains the SMILES 
of molecules desired to be evaluated (Fig. 6B). If the sub-
mitted file does not conform to the correct format, the 
web server notifies the user with the message "Failed to 
upload files" and requests the user to resubmit the com-
pound in its correct format. After clicking the Submit 

button, the page redirects to a new page from which the 
user can download the result file (Fig. 6C).

Conclusion
In this study, we have presented a novel tool called 
DeepSA for synthetic accessibility assessment of organic 
compounds, which offers advantages over previously 
known techniques. Since DeepSA is a deep learning 
model developed based on chemical language models, it 
reflects to some extent that the method of using SMILES 
to represent and extract features of compounds is not 
necessarily inferior to the graph representation method.

Although the model is considered successful, there 
is still room for improvement. Being lack of the data, 
DeepSA can’t learn real chemical reactions, the actual 
synthetic pathways, and their relative complexity, but 
only evaluates how complicated of those synthesis pro-
cesses. DeepSA outperforms datasets that currently 
use the number of steps of retrosynthetic analysis as 
the standard, but has lower predictive power for mol-
ecules collected from the literature that have been 
evaluated by chemists. The reason that limits the gen-
eralizability of DeepSA is that the labels for datasets 
currently used come from the retrosynthetic analysis 
software evaluations and not all have been assessed 
by chemists. Determining the standard for evaluating 
the synthetic difficulty of a compound is still a matter 
of consideration. In this study, using 10 synthesis steps 
as the threshold for HS and ES is rather arbitrary, and 
the number of synthesis steps for a compound is easily 

Fig. 5  Embeddings of 18 different selected compounds in DeepSA. Each compound was represented as a matrix of 256 dimensional vectors. The 
matrix is normalized by column and uniformly ordered

https://bailab.siais.shanghaitech.edu.cn/services/deepsa/
https://bailab.siais.shanghaitech.edu.cn/services/deepsa/
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influenced by the parameter settings of the retrosyn-
thesis algorithm, especially the raw materials in the 
database.

Skoraczyński et  al. evaluated the performance of the 
other compound synthesis accessibility prediction tools 
mentioned in this study, except for DeepSA and GASA 
[22], and the evaluation results were close to the test 
results obtained our work (Fig. 2). However, there is still 
room for improvement of this evaluation method to eval-
uate more reasonably.

To some extent, when evaluating the ease of synthesis 
of a compound, one should not only consider the number 
of steps in the synthesis reaction, but also focus on the 
yield of the products obtained from each step reaction, 
the cost of chemical reaction of each step with the experi-
mental conditions, and so on. It is therefore imperative to 
create a completely new, clean, and informative dataset, 
but such a database is not currently available to us, which 
is a formidable challenge. We would like to fully account 
for the structural information of compounds with the 
variety of conditions that affect the synthetic reaction, 
but it clearly requires a great deal of time and patience 
to solve this problem. However, we believe that assessing 
the difficulty of synthesizing compounds in the current 
context of rapid advances in deep generation models is of 

very high academic and commercial value that merits our 
continued efforts to do deep thinking and research.

Scientific contribution
In this study, we have developed a chemical language 
model called DeepSA for compound synthesis accessi-
bility assessment. DeepSA has a high early enrichment 
rate in discriminating hard-to-synthesize molecules and 
could help users select less expensive molecules for syn-
thesis. Meanwhile, DeepSA can be used as a useful fil-
ter for molecular generation models in computational 
chemistry.
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