
Minibaeva et al. Journal of Cheminformatics (2023) 15:102
https://doi.org/10.1186/s13321-023-00772-2

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

EasyDock: customizable and scalable
docking tool
Guzel Minibaeva1, Aleksandra Ivanova1 and Pavel Polishchuk1* 

Abstract 

Docking of large compound collections becomes an important procedure to discover new chemical entities. Screen-
ing of large sets of compounds may also occur in de novo design projects guided by molecular docking. To facilitate
these processes, there is a need for automated tools capable of efficiently docking a large number of molecules
using multiple computational nodes within a reasonable timeframe. These tools should also allow for easy integra-
tion of new docking programs and provide a user-friendly program interface to support the development of further
approaches utilizing docking as a foundation. Currently available tools have certain limitations, such as lacking a con-
venient program interface or lacking support for distributed computations. In response to these limitations, we have
developed a module called EasyDock. It can be deployed over a network of computational nodes using the Dask
library, without requiring a specific cluster scheduler. Furthermore, we have proposed and implemented a simple
model that predicts the runtime of docking experiments and applied it to minimize overall docking time. The current
version of EasyDock supports popular docking programs, namely Autodock Vina, gnina, and smina. Additionally, we
implemented a supplementary feature to enable docking of boron-containing compounds, which are not inherently
supported by Vina and smina, and demonstrated its applicability on a set of 55 PDB protein-ligand complexes.

Keywords  High-throughput molecular docking, Distributed docking, Boron-containing compound docking,
AutoDock Vina, Gnina

Introduction
The primary objective during the early stages of drug dis-
covery pipelines is the identification of promising hits.
To accomplish this, high-throughput screening (HTS)
is extensively applied to explore the chemical space and
uncover initial hits. HTS enables the screening of librar-
ies containing millions of compounds [1]. Although this
may seem like a large number, it represents only a tiny
fraction of the entire drug-like chemical space, which is
estimated to contain approximately 1036 compounds [2].

The introduction of DNA-encoded combinatorial librar-
ies has significantly expanded the coverage of chemical
space and increased the number of compounds screened
in a single campaign to the range of 109–1010 [3–5]. How-
ever, DNA-encoded libraries are restricted by the types of
chemical reactions suitable for coupling building blocks,
and, thus, they cannot efficiently cover the entire chemi-
cal space.

Computational approaches may further extend the
size of explored chemical space. They can be broadly cat-
egorized into two groups: virtual screening and de novo
design. Recent studies have shown that virtual screen-
ing of ultra-large libraries is a promising approach for
identifying highly active hits [6–8]. As a result, numer-
ous academic and proprietary virtual libraries have been
developed, containing up to 1020 compounds [9]. How-
ever, even these large libraries represent only a fraction of
the entire chemical space, and their exhaustive screening

*Correspondence:
Pavel Polishchuk
pavlo.polishchuk@upol.cz
1 Institute of Molecular and Translational Medicine, Faculty of Medicine
and Dentistry, Palacky University and University Hospital in Olomouc,
Hnevotinska 5, 77900 Olomouc, Czech Republic

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00772-2&domain=pdf

Page 2 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102

is no longer feasible. De novo design approaches offer a
solution to explore chemical space beyond the limitations
of routine virtual screening. In de novo design, molecules
are generated iteratively to satisfy specific criteria, in par-
ticular docking score. This allows for adaptive exploration
of regions in chemical space likely to contain promising
hits, without exhaustively enumerating the entire accessi-
ble chemical space. These approaches have demonstrated
high efficacy in hit discovery, particularly in libraries con-
taining over 1010 compounds [10]. In such campaigns,
the number of docked molecules can reach millions. In
both virtual screening and de novo design scenarios,
there is a need to efficiently dock a large number of mol-
ecules, ranging from millions to billions, within a single
campaign.

In order to advance the field of structure-based drug
design, the development of fast, convenient, and reli-
able computational tools capable of efficiently docking
millions of molecules within a reasonable timeframe is
required. Several tools have been created to address this
need, including Vina MPI [11], VirtualFlow [6], Dock-
Stream [12], DOCK3.7 [13], ChemFlow [14]. These tools
enable distributed docking on clusters; however, they
typically offer only a high-level interface and lack easy
integration into other programs. This complicates their
incorporation into developing approaches and software
based on high-throughput docking. To address these

limitations, DockString was developed as a Python
module, providing a convenient interface for docking of
individual ligands [15]. This offers greater flexibility for
the development of customized applications. However,
DockString does not support distributed computations,
requiring users to create their own distributed workflow
based on this module.

To overcome these challenges, we have developed a
novel docking tool capable of performing calculations
using either a single server or multiple servers within a
network. This tool can be invoked from the command
line or imported as a Python module, making it suitable
for the development of further applications based on
large-scale molecular docking. The current implemen-
tation of the tool supports AutoDock Vina [16], gnina
[17] and smina [18] (as a component of gnina), and we
suppose it can easily accommodate the integration of
additional custom docking programs. As an additional
feature we implemented the special protocol of docking
of boron-containing compounds which cannot be pro-
cessed natively by Vina and smina.

Implementation
The EasyDock module, implemented in Python 3, fol-
lows the workflow depicted in Fig. 1. Input to the module
can be provided as SMILES or 2D/3D molecules in SDF
format. If 3D structures are provided, they will be used

Fig. 1  A high-level representation of the EasyDock workflow. Input molecules are stored in a database, optionally protonated and submitted
to the main docking function which takes other docking settings as additional input parameters. Rounded rectangles designate customizable
functions to introduce a custom docking program

Page 3 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102 	

as initial conformations for the docking process, other-
wise, 3D embedding will be performed by RDKit. This
enables the use of alternative conformer generators with-
out explicitly integrating them into EasyDock. An SQLite
database is created and populated with input molecules.
All input arguments are also stored in the database that
enables simple continuation of interrupted calculations.
Optionally, the module can employ Chemaxon cxcalc
utility to obtain major tautomers at pH 7.4. If mole-
cules have been previously protonated, this step can be
disabled, and the input molecules will be used as-is for
docking.

The docking process is carried out by a generator func-
tion (Fig. 1), which takes the following inputs: (i) a list of
molecules, (ii) a docking function that wraps a specific
docking program and implements all logic including
ligand preparation, docking itself and post-processing
of docking output, (iii) a YAML configuration file (con-
fig.yml) containing values for all other arguments of the
docking wrapper function, and (iv) an optional function
that estimates the docking priority of individual mol-
ecules to optimize the overall running time. For each
molecule, the generator yields a molecule name and a
dictionary of output values (poses, scores, etc.), which are
subsequently stored in the database. The docking gener-
ator can be imported and used in a third-party Python
software development.

For single-machine calculations, the docking gen-
erator only requires the specification of the number of
CPU cores. By default, it utilizes the multiprocessing
module in Python to execute docking on multiple CPU
cores. To perform distributed docking across multiple
machines, the Dask Python library is employed. Dask
creates a virtual cluster comprising individual workers
distributed over a physical cluster or network of com-
putational nodes. Importantly, Dask does not depend on
any specific cluster scheduler, such as PBS or SLURM. To
enable distributed computations, the user must first set
up and initiate a Dask cluster before running the dock-
ing process. This can be accomplished with a single com-
mand executed from the command line. Subsequently,
the docking program can be invoked by supplying the
IP address of a parent node within the Dask cluster. The
molecules are then sequentially submitted to the indi-
vidual workers, and the results are gathered and stored in
the database as they become available.

To customize EasyDock and enable support for other
docking programs, one has to implement a docking
wrapper function that takes a molecule and a con-
figuration file as inputs. This wrapper function should
return the molecule name and a dictionary of output
values, which will be used to update the database. If
the intention is to employ multiple cores for docking a

single molecule, the wrapper function should internally
launch a console script; otherwise an error will occur
due to the Python Global Interpreter Lock.

Optionally, users have the opportunity to implement
and supply a custom function responsible for estimat-
ing the docking priority of individual molecules. Higher
priority should be assigned to molecules with longer
docking runtimes. This approach reduces time wasted
on completing computations because if one molecule
is docked for a long time and it is the last one in the
list, all other computational nodes will stand idle until
docking of this molecule will be finished. By default,
the number of rotatable bonds serves as a proxy for
the priority function. The greater the number of rotat-
able bonds, the higher the docking priority. However,
we recommend utilizing our custom priority function,
which offers a more accurate estimation of docking
runtime and is better suited for prioritizing the dock-
ing of molecules. Further details can be found in the
Results and discussion section.

The current implementation of EasyDock supports
two docking programs, namely AutoDock Vina and
gnina. The scoring functions of smina are accessible
through gnina interface. Each program has its own
wrapper function, which performs the docking for indi-
vidual molecules. The function consists of several steps:

1.	 Ligand preparation:
i)	 If a non-3D structure is provided, the input molecule

undergoes 3D embedding using RDKit.
ii)	 to address the docking of boron-containing com-

pounds, boron atoms are substituted with carbon
atoms. This workaround is necessary because boron
atoms are not parameterized in Vina and smina,
making it impossible to dock such compounds.
Although a simplification, this replacement is reason-
able due to the similar atomic properties of boron
and carbon. We investigated this approach and con-
firmed its validity. Further details are provided in the
Results and discussion section.

iii)	the molecule is converted to the PDBQT format
using the Meeko module (https://​github.​com/​forli​
lab/​Meeko).

2.	 Docking process. For Vina docking, we utilize ver-
sion 1.2.3, which includes Python bindings. Both
Vina and gnina are invoked from the shell, provid-
ing input files and parameters. The docking of each
molecule can be executed on a single core or multiple
cores, depending on the chosen configuration.

3.	 Output parsing. The output PDBQT file is parsed,
and the top-scored pose is converted to the MDL
Mol format. If necessary, corresponding carbon

https://github.com/forlilab/Meeko
https://github.com/forlilab/Meeko

Page 4 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102

atoms are replaced back with boron atoms during
this conversion procedure.

Dask library
Since Dask is not widely adopted by the chemoinformatic
community for parallelization of tasks we briefly summa-
rized its features and compared Dask with other tools.

Dask [19] is a Python library composed of two major
parts: dynamic task scheduling through creation of a
dynamic computational graph and “big data” collections
supporting parallel processing of arrays and dataframes.
The latter is more relevant for data analysis tasks using
numpy and pandas. We chose Dask for implementation
of docking parallelization because it suggests an easy
programming interface and manages the distribution
and scheduling of tasks onto computational nodes on its
own. Its interface is very similar to the standard multi-
processing Python module if one needs to run in paral-
lel multiple independent calculations, like docking of
many compounds (an embarrassingly parallel task). It
takes few lines of code to add support of parallel execu-
tion using Dask. Dask can be run over different sched-
ulers (SLURM, PBS, etc.) and it can be also run over an
arbitrary network of servers trough SSH connections.
Dask also supports a dashboard to track the progress of
calculations and node loading. We encountered only one
issue related not to programming with Dask but to setup
of the in-house cluster to effectively use Dask on multi-
ple nodes. Dask uses file descriptors for intercommuni-
cation between nodes and therefore the allowed number
of simultaneously opened file descriptors should be set
accordingly. Overall, Dask is a mature project with good
documentation and a relatively large community.

Message-Passing Interface (MPI) is a popular tech-
nology to run parallel tasks. In comparison to Dask it
requires more low-level programming and is harder to
learn. However, it offers better optimization of running
tasks over multiple computational nodes with greater
programming efforts.

Spark is similar to Dask. It provides a high-level pro-
gramming interface and can be scaled to thousands of
nodes. Spark is fundamentally an extension of the Map-
Shuffle-Reduce paradigm while Dask supports arbitrary
computational graphs by design. Spark is written in Scala
and while there are ways of using Spark with Python,
it is much more straightforward to use Dask, which is
Python-native.

HyperQueue (https://​github.​com/​It4in​novat​ions/​hyper​
queue) is a promising alternative of Dask which is worth
to mention. It is a result of efforts on investigation and
optimization of Dask scheduling model and overheads

[20, 21]. HyperQueue has lower overheads than Dask.
The development of HyperQueue was mostly focused on
providing a command line interface to facilitate users to
run parallel tasks using PBS/SLURM schedulers. How-
ever, it also offers Python interface similar to Dask but
which is less mature. In future, if Python bindings of
HyperQueue will be developed more extensively it may
replace Dask, in particular in cases where one needs to
run multiple calls of a function over a large number of
instances.

Protein preparation
To perform docking studies a user should submit a pre-
pared protein structure. In this study we prepared recep-
tors by the Dock Prep protocol implemented in Chimera
[22]: missed side chains and sequences were remodeled
using a Dunbrack rotomer library [23] and MODELLER
[24], respectively, hydrogens were added considering pH
7.4 and solvent molecules were removed. Molecules were
converted to PDBQT format using the prepare_recep-
tor4.py utility from Autodock Tools. The grid boxes were
determined from ligand coordinates. The center of a grid
box is calculated as a geometric center of a ligand and
the size of a box is calculated by adding of 7Å to mini-
mum and maximum coordinates of ligand heavy atoms.
The prepared protein structures and grid boxes are avail-
able in the repository https://​github.​com/​ci-​lab-​cz/​docki​
ng-​files.

Results and discussion
In this section we will describe two major features of the
tool. The first one is the ability to dock boron-containing
compounds, which is not possible with some of the inte-
grated programs (Vina and smina). The second feature is
the ability to run docking on a distributed infrastructure
and we will describe its optimization and efficiency.

Docking of boron‑containing compounds
Application of boron-containing compounds in drug dis-
covery projects is gradually increasing due to the ability
of boron functional groups to form covalent and strong
hydrogen bonds, modulate pharmacokinetics, drug
resistance, etc. [25, 26]. Many popular docking programs
do not support docking of boron-containing compounds
by default. To overcome this limitation, we implemented
a previously suggested protocol involving the substitution
of boron atoms with carbon atoms prior to docking [27–
30] followed by the revert replacement afterward. While
this approach may appear artificial, it holds promise due
to the similar atomic properties exhibited by boron and
carbon.

https://github.com/It4innovations/hyperqueue
https://github.com/It4innovations/hyperqueue
https://github.com/ci-lab-cz/docking-files
https://github.com/ci-lab-cz/docking-files

Page 5 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102 	

To validate the hypothesis, we conducted a redocking
study involving 55 non-covalent protein-ligand com-
plexes that incorporated boron-containing compounds.
These complexes were selected from the Protein Data
Bank. Complexes had to have X-ray resolution of less
than 2.5 Å and a ligand molecular weight of less than 500.
Non-covalent binding was checked by visual inspection
of complexes. We also omitted complexes with carbo-
rane-containing ligands because they have non-standard
valence of atoms that cause errors in RDKit which is used
for manipulation with molecular structures. For the sake
of reference, all corresponding PDB codes and the associ-
ated redocking statistics are provided in Additional file 1:
Table S1.

In the initial phase, we conducted docking experi-
ments on the selected compounds using gnina. This
docking program was chosen due to its ability to natively
handle boron-containing compounds. We compared
the results obtained from gnina docking of the original
compounds to those obtained when boron atoms were
replaced with carbon atoms. For the docking process,
we set exhaustiveness to 32 and employed rescoring with
default_ensemble or dense_ensemble. The protonation of
compounds was performed using Chemaxon, as previ-
ously described.

Our analysis revealed that default_ensemble was not
able to reproduce docking poses of boron-containing
compounds with a reasonable accuracy (RMSD ≤ 2Å),
only poses for 10 complexes were reproduced (18%),
whereas dense_ensemble reproduced poses for 36
complexes (65%). Replacement of boron atoms with
carbons only slightly affected the accuracy, which was
increased, 12 poses for default_ensemble (22%) and 37
poses (67%) for dense_ensemble. We do not have expla-
nation why default_ensemble performed poor. How-
ever, performance of dense_ensemble without and with

boron replacement closely align with the general per-
formance of gnina, which has been reported to range
from 69 to 72% accuracy [17]. These results demon-
strate that gnina treats boron and carbon atoms simi-
larly and indirectly supports the hypothesis that boron
and carbon atoms exhibit similar properties and can be
interchangeable in docking simulations to some extent.

Next, we implemented the suggested protocol for
automatic usage with Vina and smina. In both cases,
we set an exhaustiveness value to 32, and for smina,
we employed the Vinardo scoring function [31]. Out of
the 55 ligands, Vina successfully reproduced the poses
of 31 ligands (56%), while smina reproduced 30 ligands
(54%). The result obtained with Vina corresponds well
to the general accuracy of 58% reported previously [17].
Vina, smina and gnina mainly agree and disagree on
the same ligands and complexes. Several failed com-
plexes were associated with shallow binding sites. For
instance, ligands that were co-crystallized on the sur-
face of beta-sheets of Transthyretin are widely exposed
to water and featured a limited number of specific
interactions (e.g., 5U48, 5U4C, 5U4E) (Fig. 2A). Simi-
larly, there were cases where the binding site was widely
open, and the ligand tail was significantly exposed to
water (e.g., 5LMD, 6IBS, 6JN6, 6L40, 6Q2Y, 6Q30)
(Fig. 2B). In some cases, the ligand itself was large and
highly flexible (e.g., 2ZK6) (Fig. 2C). Therefore, many
of the poorly docked poses can be attributed to inher-
ent issues in docking approaches and are not specific to
boron-containing compounds or the suggested proto-
col. Based on these observations, we conclude that the
proposed protocol for docking boron-containing com-
pounds, which involves the replacement of boron atoms
with carbon atoms, is applicable. However, researchers
should exercise additional caution when working with
such compounds.

)C(6KZ2)B(SBI6)A(84U5
Fig. 2  Native (blue) and unsuccessful (RMSD > 2Å) redocking poses obtained by Vina (green) and gnina dense_ensemble (cyan)

Page 6 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102

Customizing a function setting a priority of docking
of individual molecules
To address the issue of potential wasting of computa-
tional resources, where some molecules may take exces-
sively long time to dock while other computational
nodes remain idle, we suggested to prioritize docking of
molecules based on their estimated docking time. As an
obvious estimator, the number of rotatable bonds can be
used. In order to evaluate different estimators and esti-
mate docking run times, we conducted a study.

We collected a set of 2.13 million compounds from
ChEMBL (version 30) and calculated their molecular
weights, finding that the 95th percentile was at 700 Da.
We chose this threshold as a maximum value for typi-
cal bioactive molecules and selected a random subset of
10,000 molecules with molecular weights below 700 Da
for further analysis. These molecules were docked into
the CDK2 receptor (PDB: 2BTR) using AutoDock Vina
with an exhaustiveness value of 8. CDK2 protein was
chosen as one of the frequently used targets in bench-
marking of docking programs [15]. 2BTR structure has
a resolution 1.85Å and has no missing residues or other
issues within the binding site, thus it is preparation was
easy. On a single core, the median run time for the dock-
ing process was 190 s, with an average of 305 s. Among
the 10,000 molecules, there were 1,217 instances which
docking time exceeded 10 min.

For this set of 10,000 molecules, we calculated various
physicochemical parameters including the number of
H-bond donors (HBD) and acceptors (HBA), the num-
ber of rotatable bonds (RTB), molecular weight (MW),
the number of rings (num rings), the number of heavy
atoms (HAC), topological polar surface area (TPSA),
and lipophilicity (logP). We then analyzed the correlation
between these parameters and the docking run time. The
highest correlating parameters with docking run time
were molecular weight (R = 0.777), the number of heavy
atoms (R = 0.784), and the number of rotatable bonds
(R = 0.764). Other parameters exhibited correlation coef-
ficients below 0.5 (Table 1). Considering the high correla-
tion between molecular weight and the number of heavy
atoms (R = 0.972), we selected the number of rotatable
bonds and the number of heavy atoms as the two param-
eters for further studies.

To develop a simple and efficient estimator, we trained
a linear model using the two selected parameters,
namely the number of rotatable bonds and the number
of heavy atoms. The dataset of 10,000 molecules was
randomly split into a training set (90%) and a test set
(10%). For the training set, we constructed models using
5-fold cross-validation, which was repeated five times to
obtain an average estimate. Here, we present polynomial
models with a degree of 2 (Table 2), as further increas-
ing the degree did not significantly enhance the model

Table 1  Pearson correlation (R) between physicochemical parameters and docking time (Autodock Vina) estimated by 10,000
molecules randomly chosen from ChEMBL30

HBA: the number of H-bond acceptors; HBD: the number of H-bond donors; MW: molecular mass; HAC: the number of heavy atoms; RTB: the number of rotatable
bonds; logP: lipophilicity; TPSA : topological polar surface area

HBA HBD MW HAC RTB logP TPSA Number of rings Docking time

HBA 1 0.298 0.544 0.539 0.341 − 0.205 0.759 0.327 0.433

HBD 0.298 1 0.258 0.251 0.304 − 0.282 0.704 − 0.072 0.355

MW 0.544 0.258 1 0.972 0.596 0.467 0.51 0.587 0.777

HAC 0.539 0.251 0.972 1 0.595 0.476 0.501 0.649 0.784

RTB 0.341 0.304 0.596 0.595 1 0.258 0.386 − 0.036 0.764

logP − 0.205 − 0.282 0.467 0.476 0.258 1 − 0.33 0.423 0.298

TPSA 0.759 0.704 0.51 0.501 0.386 − 0.33 1 0.113 0.494

Number of rings 0.327 − 0.072 0.587 0.649 − 0.036 0.423 0.113 1 0.279

Docking time 0.433 0.355 0.777 0.784 0.764 0.298 0.494 0.279 1

Table 2  Statistical parameters of linear models predicting docking time (Autodock Vina)

Equation number Parameters Equation R2
CV R2

test

1 HAC time (s) = 624.144–63.215 × HAC + 1.735 × HAC2 0.765 0.789

2 RTB time (s) = − 68.856 + 58.457 × RTB + 1.321 × RTB2 0.594 0.606

3 HAC, RTB time (s) = 465.979–59.714 × RTB − 0.375 × RTB2 − 36.723 ×
HAC + 0.745 × HAC2 + 3.48 × RTB × HAC

0.925 0.926

Page 7 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102 	

performance. The results indicated that individual mod-
els based on the number of rotatable bonds or the num-
ber of heavy atoms exhibited moderate predictability
(R2

test = 0.61–0.79). However, when these parameters
were combined, the resulting model demonstrated high
predictive ability (R2

test = 0.93) (Table 2). Equation 3,
derived from this model, was implemented in EasyDock
as an estimator of docking priority for individual mole-
cules when Vina is selected as the docking program.

Since the relationship between docking run time and
molecular properties may vary for different docking
programs and scoring functions there may be a need to
develop a specific priority function. However, the devel-
oped priority function may be applicable to other pro-
grams to some extent. To assess the applicability of the
suggested priority function, we conducted an investiga-
tion using gnina docking. We docked the test set of 1000
molecules with gnina, employing the following settings:
scoring–default, cnn_scoring–rescore, cnn-default_
ensemble or dense_ensemble. The docking calculations
were performed exclusively on CPUs, with each molecule
docked on a single core.

Surprisingly, we observed a high correlation between the
predicted and observed run times: for both default_ensemble
(R2(Pearson) = 0.882 and R2(Spearman) = 0.763) and dense_
ensemble, (R2(Pearson) = 0.858 and R2(Spearman) = 0.652).
Although the performance varied, the correlation was suf-
ficiently strong to support the hypothesis that Eq. 3 may
have broader applicability in ranking molecules based on
their docking run times. Consequently, we implemented the
same priority function (Eq. 3) for docking with gnina and
smina. However, it should be emphasized that the imple-
mented model is not universally applicable. For other dock-
ing programs, scoring functions, or different setups (such as

utilizing GPUs), it may be necessary to develop a custom pri-
ority function to achieve optimal results.

Scalability and general performance
To assess the computational efficiency and scalability of
EasyDock, we randomly selected 5000 molecules from
ChEMBL (version 30) with a molecular weight below 700.
These molecules were distinct from those used to develop
the priority function described earlier. Prior to docking,
the molecules were converted to their major tautomers at
pH 7.4 using the cxcalc Chemaxon utility [32]. Although
this step is performed by EasyDock by default, we disa-
bled it in order to avoid overhead and obtain more pre-
cise measurements of docking performance. The docking
process was conducted using Autodock Vina with an
exhaustiveness value of 8, and the target receptor was the
CDK2 protein obtained from the 2BTR PDB complex.
The experiments were performed on an in-house com-
putational cluster comprising nodes equipped with Xeon
CPU E5-2650@2.00 GHz processors, featuring 32 cores
and 48 GB of memory. Nodes were interconnected by a
10GB network that may also affect overall performance.

Initially, we examined whether the application of
the suggested priority function would lead to a reduc-
tion in docking time. Tests were conducted using 20
nodes, with each molecule docked on a single core,
and a speedup of approximately 10% was observed
(Table 3). Subsequently, we optimized the number of
molecules processed on a single server and the num-
ber of cores allocated for docking of each molecule.
When docking was performed on 20 nodes, shorter run
times were observed with a greater number of cores
per molecule. While slight overbooking did not sig-
nificantly impact run times, we selected the following

Table 3  Performance of docking of 5000 ligands to CDK2 (2BTR) with Autodock Vina using different number of computational nodes

Number of computational nodes
(parallelization)

Total number of
cores

N workers per node N cpu per molecule Wall time Speed up

1 (multiprocessing, random priority) 32 8 5 7 h 4 m 1

1 (dask) 32 8 5 7 h 19 m 0.966

2 (dask) 64 8 5 3 h 39 m 1.936

5 (dask) 160 8 5 87 m 43 s 4.833

10 (dask) 320 8 5 44 m 8 s 9.607

20 (dask, random priority) 640 32 1 29 m 37 s 14.32

20 (dask) 640 32 1 26 m 45 s 15.85

20 (dask) 640 16 2 23 m 43 s 17.88

20 (dask) 640 16 3 23 m 21 s 18.16

20 (dask) 640 8 4 22 m 19 s 19.00

20 (dask) 640 8 5 22 m 14 s 19.07

20 (dask, random priority) 640 8 5 22 m 35 s 18.77

Page 8 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102

setup for subsequent runs as it resulted in the shortest
run time: 8 molecules per server and 5 cores per mol-
ecule (Table 3). A control experiment using this setup,
with molecules selected for docking in a random order,
demonstrated a 1.55% slower run time. Although this
difference is not substantial, it remained consistent
across repeated runs. Thus, the application of the pri-
ority function had a noticeable and measurable effect,
even with an optimal setup regarding the number of
molecules and cores per server. This confirms the appli-
cability of the suggested priority function in reducing
docking run times.

We evaluated scalability of docking using the Dask
library and compared the results with the native Python
multiprocessing module. The native module exhibited
smaller overheads for dispatching molecules for dock-
ing and outperformed the Dask-based implementation
by 3.4% on a single server. However, the scalability of
the Dask library was commendable, as increasing the
number of nodes only slightly increased the overhead.
For docking using 20 nodes, the overhead was 4.6%.

Comparison with other programs
An overview of available automated docking tools is
presented in Table 4. While some tools are designed to
work with specific docking programs, many of them
claim to offer extensibility with other programs, similar
to EasyDock. Autodock Vina and its derivatives emerge
as the most commonly integrated docking programs.
EasyDock, in addition to Autodock Vina, also integrates
gnina, which utilizes modern 3D convolutional neural
networks and exhibits improved performance compared
to Vina, albeit with higher computational requirements.

Most automated docking protocols offer 3D embed-
ding of initial structures. Protonation of ligands is typi-
cally performed using OpenBabel, Epik, or Chemaxon
cxcalc utility. DockStream and ChemFlow provide tau-
tomer and stereoisomer enumeration capabilities. Dock-
String generates consistent random stereoisomers but
does not handle tautomers, whereas VirtualFlow gener-
ates major tautomers but lacks stereoisomer generation.
EasyDock automatically generates major tautomers at pH
7.4 and consistent random stereoisomers.

Table 4  The list of freely available automated docking protocols

Program
name

Year Supported
docking
programs

Input Protonation 3D
embedding

Stereoisomers/
tautomers

Parallel
computing

Ref Repository
link

Vina MPI 2013 vina pdbqt MPI [11]

VirtualFlow 2020 vina
qvina
qvina-w
vina-carb
smina
autodockFR

cxcalc chemaxon
openbabel

A major tau-
tomer (cxcalc)

SLURM
Moab
TORQUE
PBS

 [6] https://​github.​
com/​Virtu​
alFlow/​VFVS

DockStream 2021 vina
glide
gold
hybrid
rDock

epik corina
ligprep
omega
rdkit

Enumeration
of tautomers
and stereoiso-
mers

Across cores [12] https://​github.​
com/​Molec​
ularAI/​DockS​
tream

DOCK 2021 DOCK 3D molecules SGE
PBS
SLURM

 [13]

DockString 2022 vina SMILES openbabel,
pH = 7.4

rdkit Consistent ran-
dom stereoiso-
mer (rdkit)

A single mol
dock can use
multiple cores

 [15] https://​github.​
com/​docks​
tring/​docks​
tring

ChemFlow 2023 plants
vina
qvina
smina

SMILES, 2D
SDF

epic cxcalc Dominant tau-
tomers (> 10%
probability),
enumerate
stereoisomers
(cxcalc)

PBS
SLURM

 [14] https://​github.​
com/​IFMlab/​
ChemF​low

EasyDock 2023 vina
gnina
smina

SMILES,
2D/3D SDF

cxcalc,
pH = 7.4
(optional)

rdkit if input
is not 3D

A major tau-
tomer (cxcalc,
optional) consist-
ent random
stereoisomer
(rdkit)

Across cores
and network
nodes (Dask)

This work https://​github.​
com/​ci-​lab-​cz/​
easyd​ock

https://github.com/VirtualFlow/VFVS
https://github.com/VirtualFlow/VFVS
https://github.com/VirtualFlow/VFVS
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/IFMlab/ChemFlow
https://github.com/IFMlab/ChemFlow
https://github.com/IFMlab/ChemFlow
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock

Page 9 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102 	

Many of these tools support distributed comput-
ing using common schedulers such as PBS, SLURM,
and others. However, they do not necessarily provide
an API for seamless integration into further develop-
ing software. While DockString offers a Python API,
it does not support distributed computing. EasyDock
distinguishes itself by supporting distributed comput-
ing across various network devices without reliance on
a specific scheduler. Furthermore, EasyDock provides
a Python API, facilitating straightforward integration
into third-party software.

EasyDock features:

•	 single server and distributed docking over nodes in
a network, it does not depend on a particular sched-
uler (e.g. PBS, SLURM, etc.), Dask has its own sched-
uler to dispatch jobs.

•	 Python API to develop further applications based on
docking.

•	 customizability of the module with other docking
programs.

•	 automatic continuation of interrupted calculations.
•	 docking of boron-containing compounds using Vina

and smina.
•	 automatic generation of a major tautomer and its

protonation using Chemaxon cxcalc utility (optional).
•	 use of user-defined conformations as starting if 3D

structures were supplied as input. This can be useful
if one wants to sample ring conformation with pro-
grams other than RDKit.

•	 output is a single database. Data can be retrieved
using ordinary SQL queries or a script provided
within the module.

•	 the current implementation was tested using CPUs
only, however if computational nodes are equipped
with GPUs they may be used if this is supported by a
docking program itself.

EasyDock limitations and remarks:

•	 stereoisomer enumeration is not implemented in
EasyDock. In cases where the input molecule has
undefined configurations of stereocenters or double
bonds, a random but consistent stereoisomer will be
generated. We recommend explicitly enumerating
stereoisomers using built-in RDKit functions or the
provided script gen_stereo_rdkit.py from the reposi-
tory https://​github.​com/​DrrDom/​rdkit-​scrip​ts.

•	 the scalability of EasyDock to a larger number of
nodes or workers has not been tested. It is possible
that the overhead could increase, or writing to the
database could become a rate-limiting step when
scaling up.

•	 when performing docking of individual molecules,
each molecule runs in a separate instance of the
docking program. It is important to carefully estimate
the memory required for docking a single molecule
in order to choose an appropriate number of work-
ers per computational node and avoid exceeding the
total memory limit. For example, docking with gnina
using dense_ensemble typically requires around 3 GB
of memory per molecule. Therefore, on a node with
48 GB of memory, the maximum number of simulta-
neously processed molecules should be limited to 16
to ensure memory constraints are met.

Conclusions
The EasyDock module incorporates an automated dock-
ing protocol that supports distributed computing and
provides a Python interface. The protocol is designed to
minimize user intervention. It takes input molecules and
returns all outputs to a single database. Currently, Easy-
Dock supports Autodock Vina, smina, and gnina. The
specific protocol was implemented for the docking of
boron-containing compounds in Vina and smina. This
protocol demonstrated the ability to accurately reproduce
poses of boron-containing ligands in redocking studies.
The list of supported docking programs can be easily
expanded to accommodate other programs. To optimize
the docking process, we have developed a linear model
that prioritizes the selection of compounds for docking.
By employing this model, we could minimize the over-
all docking runtime in a distributed computing envi-
ronment, outperforming random ordering approaches.
The model was trained using Autodock Vina outputs,
but as demonstrated with gnina, it can be applicable to
other programs and scoring functions. Thus, it is recom-
mended as a default choice for integrating other docking
programs into EasyDock. The EasyDock tool is open-
source and freely available to the scientific community.
Its purpose is to facilitate virtual screening campaigns
of large compound libraries and aid in the development
of structure-based design tools using molecular docking
techniques.

Availability and requirements
Project name: EasyDock.

Project home page: e.g. https://​github.​com/​ci-​lab-​cz/​
easyd​ock.

Operating system(s): Platform independent.
Programming language: Python 3.
Other requirements: RDKit, vina, gnina, dask.
License: BSD 3-clause.
Any restrictions to use by non-academics: no

limitation.

https://github.com/DrrDom/rdkit-scripts
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock

Page 10 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00772-2.

Additional file 1: Table S1. Complexes of non-covalent boron-containing
ligands used for redocking with Vina, smina (Vinardo) and gnina.

Acknowledgements
The authors thank Jakub Beranek from IT4Innovation for valuable advices on
Dask implementation and fruitful discussions on distributed computing.

Author contributions
G.M. developed the program, performed tests and analyzed results. A.I. devel-
oped the program. P.P. developed the program, designed studies, analyzed
results and wrote the manuscript. All authors reviewed the manuscript.

Funding
This work was supported by the Ministry of Education, Youth and Sports of the
Czech Republic through INTER-EXCELLENCE II LUAUS23262, the e-INFRA CZ
(ID:90140), ELIXIR-CZ (LM2018131, LM2023055), CZ-OPENSCREEN (LM2018130,
LM2023052) grants and by European and Regional Fund project ENOCH (No.
CZ.02.1.01/0.0/0.0/16_019/0000868).

Declarations

Competing interests
The authors declare no competing interests.

Received: 23 May 2023 Accepted: 21 October 2023

References
	1.	 Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening.

Curr Opin Pharmacol 9:580–588. https://​doi.​org/​10.​1016/j.​coph.​2009.​08.​
004

	2.	 Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on GDB-17 data. J Comput Aid Mol Des
27:675–679. https://​doi.​org/​10.​1007/​s10822-​013-​9672-4

	3.	 Deng H, O’Keefe H, Davie CP, Lind KE, Acharya RA, Franklin GJ, Larkin
J, Matico R, Neeb M, Thompson MM, Lohr T, Gross JW, Centrella PA,
O’Donovan GK, Bedard KL, van Vloten K, Mataruse S, Skinner SR, Belyan-
skaya SL, Carpenter TY, Shearer TW, Clark MA, Cuozzo JW, Arico-Muendel
CC, Morgan BA (2012) Discovery of highly potent and selective small
molecule ADAMTS-5 inhibitors that inhibit human cartilage degrada-
tion via Encoded Library Technology (ELT). J Med Chem 55:7061–7079.
https://​doi.​org/​10.​1021/​jm300​449x

	4.	 Kollmann CS, Bai X, Tsai C-H, Yang H, Lind KE, Skinner SR, Zhu Z, Israel DI,
Cuozzo JW, Morgan BA, Yuki K, Xie C, Springer TA, Shimaoka M, Evindar G
(2014) Application of encoded library technology (ELT) to a protein–pro-
tein interaction target: discovery of a potent class of integrin lymphocyte
function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem
22:2353–2365. https://​doi.​org/​10.​1016/j.​bmc.​2014.​01.​050

	5.	 Chen Q, Li Y, Lin C, Chen L, Luo H, Xia S, Liu C, Cheng X, Liu C, Li J, Dou
D (2022) Expanding the DNA-encoded library toolbox: identifying small
molecules targeting RNA. Nucl Acids Res 50:e67–e67. https://​doi.​org/​10.​
1093/​nar/​gkac1​73

	6.	 Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW,
Padmanabha Das KM, Malets YS, Radchenko DS, Moroz YS, Scott DA,
Fackeldey K, Hoffmann M, Iavniuk I, Wagner G, Arthanari H (2020) An
open-source drug discovery platform enables ultra-large virtual screens.
Nature. https://​doi.​org/​10.​1038/​s41586-​020-​2117-z

	7.	 Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO,
Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas
A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie
LWK, Lundkvist Ã, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J,

Sandberg K, Danielson UH, Carlsson J (2022) Ultralarge virtual screen-
ing identifies SARS-CoV-2 main protease inhibitors with broad-spec-
trum activity against coronaviruses. J Am Chem Soc 144:2905–2920.
https://​doi.​org/​10.​1021/​jacs.​1c084​02

	8.	 Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, O’Meara MJ, Che T,
Algaa E, Tolmachova K, Tolmachev AA, Shoichet BK, Roth BL, Irwin JJ
(2019) Ultra-large library docking for discovering new chemotypes.
Nature 566:224–229. https://​doi.​org/​10.​1038/​s41586-​019-​0917-9

	9.	 Hoffmann T, Gastreich M (2019) The next level in chemical space navi-
gation: going far beyond enumerable compound libraries. Drug Discov
Today 24:1148–1156. https://​doi.​org/​10.​1016/j.​drudis.​2019.​02.​013

	10.	 Sadybekov AA, Sadybekov AV, Liu Y, Iliopoulos-Tsoutsouvas C, Huang
X-P, Pickett J, Houser B, Patel N, Tran NK, Tong F, Zvonok N, Jain MK,
Savych O, Radchenko DS, Nikas SP, Petasis NA, Moroz YS, Roth BL,
Makriyannis A, Katritch V (2021) Synthon-based ligand discovery in
virtual libraries of over 11 billion compounds. Nature. https://​doi.​org/​
10.​1038/​s41586-​021-​04220-9

	11.	 Ellingson SR, Smith JC, Baudry J (2013) VinaMPI: facilitating multiple
receptor high-throughput virtual docking on high-performance
computers. J Comput Chem 34:2212–2221. https://​doi.​org/​10.​1002/​jcc.​
23367

	12.	 Guo J, Janet JP, Bauer MR, Nittinger E, Giblin KA, Papadopoulos K,
Voronov A, Patronov A, Engkvist O, Margreitter C (2021) DockStream:
a docking wrapper to enhance de novo molecular design. J Chem Inf
13:89. https://​doi.​org/​10.​1186/​s13321-​021-​00563-7

	13.	 Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA,
Balius TE, Carlsson J, Irwin JJ, Shoichet BK (2021) A practical guide to
large-scale docking. Nat Protoc 16:4799–4832. https://​doi.​org/​10.​1038/​
s41596-​021-​00597-z

	14.	 Barreto Gomes DE, Galentino K, Sisquellas M, Monari L, Bouysset C,
Cecchini M (2023) ChemFlowFrom 2D chemical libraries to protein–
ligand binding free energies. J Chem Inf Model. https://​doi.​org/​10.​
1021/​acs.​jcim.​2c009​19

	15.	 García-Ortegón M, Simm GNC, Tripp AJ, Hernández-Lobato JM, Bender
A, Bacallado S (2022) DOCKSTRING: easy molecular docking yields
better benchmarks for ligand design. J Chem Inf Model 62:3486–3502.
https://​doi.​org/​10.​1021/​acs.​jcim.​1c013​34

	16.	 Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina
1.2.0: new docking methods, expanded force field, and Python bind-
ings. J Chem Inf Model. https://​doi.​org/​10.​1021/​acs.​jcim.​1c002​03

	17.	 McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sun-
seri J, Koes DR (2021) GNINA 1.0: molecular docking with deep learn-
ing. J Chem Inf 13:43. https://​doi.​org/​10.​1186/​s13321-​021-​00522-2

	18.	 Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in
empirical scoring with smina from the CSAR 2011 benchmarking exer-
cise. J Chem Inf Model 53:1893–1904. https://​doi.​org/​10.​1021/​ci300​
604z

	19.	 Rocklin M (2015) Dask: parallel computation with blocked algorithms and
task scheduling. In Huff K, Bergstra J (eds) Proceedings of the 14th Python
in science conference, pp 130–136

	20.	 Böhm S, Beránek J (2020) Runtime vs scheduler: analyzing dask’s over-
heads. Paper presented at the 2020 IEEE/ACM workflows in support of
large-scale science (WORKS)

	21.	 Beránek J, Böhm S, Cima V (2022) Analysis of workflow schedulers in
simulated distributed environments. J Supercomput 78:15154–15180.
https://​doi.​org/​10.​1007/​s11227-​022-​04438-y

	22.	 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng
EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory
research and analysis. J Comput Chem 25:1605–1612. https://​doi.​org/​10.​
1002/​jcc.​20084

	23.	 Shapovalov Maxim V, Dunbrack Roland L (2011) A smoothed backbone-
dependent Rotamer Library for proteins derived from adaptive Kernel
Density estimates and regressions. Structure 19:844–858. https://​doi.​org/​
10.​1016/j.​str.​2011.​03.​019

	24.	 Webb B, Sali A (2016) Comparative protein structure modeling using
MODELLER. Current protocols in Bioinformatics, 54:5.6. doi: 10.1002/
cpbi.3.

	25.	 Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X
(2021) Recent developments in the medicinal chemistry of single boron
atom-containing compounds. Acta Pharm Sin B 11:3035–3059. https://​
doi.​org/​10.​1016/j.​apsb.​2021.​01.​010

https://doi.org/10.1186/s13321-023-00772-2
https://doi.org/10.1186/s13321-023-00772-2
https://doi.org/10.1016/j.coph.2009.08.004
https://doi.org/10.1016/j.coph.2009.08.004
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1021/jm300449x
https://doi.org/10.1016/j.bmc.2014.01.050
https://doi.org/10.1093/nar/gkac173
https://doi.org/10.1093/nar/gkac173
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1021/jacs.1c08402
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1038/s41586-021-04220-9
https://doi.org/10.1038/s41586-021-04220-9
https://doi.org/10.1002/jcc.23367
https://doi.org/10.1002/jcc.23367
https://doi.org/10.1186/s13321-021-00563-7
https://doi.org/10.1038/s41596-021-00597-z
https://doi.org/10.1038/s41596-021-00597-z
https://doi.org/10.1021/acs.jcim.2c00919
https://doi.org/10.1021/acs.jcim.2c00919
https://doi.org/10.1021/acs.jcim.1c01334
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1021/ci300604z
https://doi.org/10.1021/ci300604z
https://doi.org/10.1007/s11227-022-04438-y
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1016/j.str.2011.03.019
https://doi.org/10.1016/j.str.2011.03.019
https://doi.org/10.1016/j.apsb.2021.01.010
https://doi.org/10.1016/j.apsb.2021.01.010

Page 11 of 11Minibaeva et al. Journal of Cheminformatics (2023) 15:102 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	26.	 Messner K, Vuong B, Tranmer GK (2022) The boron advantage: the evolu-
tion and diversification of boron’s applications in medicinal chemistry.
Pharmaceuticals 15:264

	27.	 Johnsamuel J, Byun Y, Jones TP, Endo Y, Tjarks W (2003) A convenient
method for the computer-aided molecular design of carborane contain-
ing compounds. Bioorg Med Chem Lett 13:3213–3216. https://​doi.​org/​
10.​1016/​S0960-​894X(03)​00674-7

	28.	 Minkkilä A, Saario SM, Käsnänen H, Leppänen J, Poso A, Nevalainen T
(2008) Discovery of boronic acids as novel and potent inhibitors of fatty
acid amide hydrolase. J Med Chem 51:7057–7060. https://​doi.​org/​10.​
1021/​jm801​051t

	29.	 Byun Y, Thirumamagal BTS, Yang W, Eriksson S, Barth RF, Tjarks W (2006)
Preparation and Biological evaluation of 10B-enriched 3-[5-{2-(2,3-dihy-
droxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH), a new
boron delivery agent for Boron neutron capture therapy of brain tumors.
J Med Chem 49:5513–5523. https://​doi.​org/​10.​1021/​jm060​413w

	30.	 Tiwari R, Mahasenan K, Pavlovicz R, Li C, Tjarks W (2009) Carborane
clusters in computational drug design: a comparative docking evaluation
using AutoDock, FlexX, Glide, and Surflex. J Chem Inf Model 49:1581–
1589. https://​doi.​org/​10.​1021/​ci900​031y

	31.	 Quiroga R, Villarreal MA (2016) Vinardo: a scoring function based on
Autodock Vina improves scoring, docking, and virtual screening. PLoS
ONE 11:e0155183

	32.	 cxcalc version 22.19.0, ChemAxon. https://​www.​chema​xon.​com

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/S0960-894X(03)00674-7
https://doi.org/10.1016/S0960-894X(03)00674-7
https://doi.org/10.1021/jm801051t
https://doi.org/10.1021/jm801051t
https://doi.org/10.1021/jm060413w
https://doi.org/10.1021/ci900031y
https://www.chemaxon.com

	EasyDock: customizable and scalable docking tool
	Abstract
	Introduction
	Implementation
	Dask library
	Protein preparation

	Results and discussion
	Docking of boron-containing compounds
	Customizing a function setting a priority of docking of individual molecules
	Scalability and general performance
	Comparison with other programs

	Conclusions
	Availability and requirements

	Anchor 14
	Acknowledgements
	References

