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Abstract 

Docking of large compound collections becomes an important procedure to discover new chemical entities. Screen-
ing of large sets of compounds may also occur in de novo design projects guided by molecular docking. To facilitate 
these processes, there is a need for automated tools capable of efficiently docking a large number of molecules 
using multiple computational nodes within a reasonable timeframe. These tools should also allow for easy integra-
tion of new docking programs and provide a user-friendly program interface to support the development of further 
approaches utilizing docking as a foundation. Currently available tools have certain limitations, such as lacking a con-
venient program interface or lacking support for distributed computations. In response to these limitations, we have 
developed a module called EasyDock. It can be deployed over a network of computational nodes using the Dask 
library, without requiring a specific cluster scheduler. Furthermore, we have proposed and implemented a simple 
model that predicts the runtime of docking experiments and applied it to minimize overall docking time. The current 
version of EasyDock supports popular docking programs, namely Autodock Vina, gnina, and smina. Additionally, we 
implemented a supplementary feature to enable docking of boron-containing compounds, which are not inherently 
supported by Vina and smina, and demonstrated its applicability on a set of 55 PDB protein-ligand complexes.

Keywords  High-throughput molecular docking, Distributed docking, Boron-containing compound docking, 
AutoDock Vina, Gnina

Introduction
The primary objective during the early stages of drug dis-
covery pipelines is the identification of promising hits. 
To accomplish this, high-throughput screening (HTS) 
is extensively applied to explore the chemical space and 
uncover initial hits. HTS enables the screening of librar-
ies containing millions of compounds [1]. Although this 
may seem like a large number, it represents only a tiny 
fraction of the entire drug-like chemical space, which is 
estimated to contain approximately 1036 compounds [2]. 

The introduction of DNA-encoded combinatorial librar-
ies has significantly expanded the coverage of chemical 
space and increased the number of compounds screened 
in a single campaign to the range of 109–1010 [3–5]. How-
ever, DNA-encoded libraries are restricted by the types of 
chemical reactions suitable for coupling building blocks, 
and, thus, they cannot efficiently cover the entire chemi-
cal space.

Computational approaches may further extend the 
size of explored chemical space. They can be broadly cat-
egorized into two groups: virtual screening and de novo 
design. Recent studies have shown that virtual screen-
ing of ultra-large libraries is a promising approach for 
identifying highly active hits [6–8]. As a result, numer-
ous academic and proprietary virtual libraries have been 
developed, containing up to 1020 compounds [9]. How-
ever, even these large libraries represent only a fraction of 
the entire chemical space, and their exhaustive screening 
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is no longer feasible. De novo design approaches offer a 
solution to explore chemical space beyond the limitations 
of routine virtual screening. In de novo design, molecules 
are generated iteratively to satisfy specific criteria, in par-
ticular docking score. This allows for adaptive exploration 
of regions in chemical space likely to contain promising 
hits, without exhaustively enumerating the entire accessi-
ble chemical space. These approaches have demonstrated 
high efficacy in hit discovery, particularly in libraries con-
taining over 1010 compounds [10]. In such campaigns, 
the number of docked molecules can reach millions. In 
both virtual screening and de novo design scenarios, 
there is a need to efficiently dock a large number of mol-
ecules, ranging from millions to billions, within a single 
campaign.

In order to advance the field of structure-based drug 
design, the development of fast, convenient, and reli-
able computational tools capable of efficiently docking 
millions of molecules within a reasonable timeframe is 
required. Several tools have been created to address this 
need, including Vina MPI [11], VirtualFlow [6], Dock-
Stream [12], DOCK3.7 [13], ChemFlow [14]. These tools 
enable distributed docking on clusters; however, they 
typically offer only a high-level interface and lack easy 
integration into other programs. This complicates their 
incorporation into developing approaches and software 
based on high-throughput docking. To address these 

limitations, DockString was developed as a Python 
module, providing a convenient interface for docking of 
individual ligands [15]. This offers greater flexibility for 
the development of customized applications. However, 
DockString does not support distributed computations, 
requiring users to create their own distributed workflow 
based on this module.

To overcome these challenges, we have developed a 
novel docking tool capable of performing calculations 
using either a single server or multiple servers within a 
network. This tool can be invoked from the command 
line or imported as a Python module, making it suitable 
for the development of further applications based on 
large-scale molecular docking. The current implemen-
tation of the tool supports AutoDock Vina [16], gnina 
[17] and smina [18] (as a component of gnina), and we 
suppose it can easily accommodate the integration of 
additional custom docking programs. As an additional 
feature we implemented the special protocol of docking 
of boron-containing compounds which cannot be pro-
cessed natively by Vina and smina.

Implementation
The EasyDock module, implemented in Python 3, fol-
lows the workflow depicted in Fig. 1. Input to the module 
can be provided as SMILES or 2D/3D molecules in SDF 
format. If 3D structures are provided, they will be used 

Fig. 1   A high-level representation of the EasyDock workflow. Input molecules are stored in a database, optionally protonated and submitted 
to the main docking function which takes other docking settings as additional input parameters. Rounded rectangles designate customizable 
functions to introduce a custom docking program
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as initial conformations for the docking process, other-
wise, 3D embedding will be performed by RDKit. This 
enables the use of alternative conformer generators with-
out explicitly integrating them into EasyDock. An SQLite 
database is created and populated with input molecules. 
All input arguments are also stored in the database that 
enables simple continuation of interrupted calculations. 
Optionally, the module can employ Chemaxon cxcalc 
utility to obtain major tautomers at pH 7.4. If mole-
cules have been previously protonated, this step can be 
disabled, and the input molecules will be used as-is for 
docking.

The docking process is carried out by a generator func-
tion (Fig. 1), which takes the following inputs: (i) a list of 
molecules, (ii) a docking function that wraps a specific 
docking program and implements all logic including 
ligand preparation, docking itself and post-processing 
of docking output, (iii) a YAML configuration file (con-
fig.yml) containing values for all other arguments of the 
docking wrapper function, and (iv) an optional function 
that estimates the docking priority of individual mol-
ecules to optimize the overall running time. For each 
molecule, the generator yields a molecule name and a 
dictionary of output values (poses, scores, etc.), which are 
subsequently stored in the database. The docking gener-
ator can be imported and used in a third-party Python 
software development.

For single-machine calculations, the docking gen-
erator only requires the specification of the number of 
CPU cores. By default, it utilizes the multiprocessing 
module in Python to execute docking on multiple CPU 
cores. To perform distributed docking across multiple 
machines, the Dask Python library is employed. Dask 
creates a virtual cluster comprising individual workers 
distributed over a physical cluster or network of com-
putational nodes. Importantly, Dask does not depend on 
any specific cluster scheduler, such as PBS or SLURM. To 
enable distributed computations, the user must first set 
up and initiate a Dask cluster before running the dock-
ing process. This can be accomplished with a single com-
mand executed from the command line. Subsequently, 
the docking program can be invoked by supplying the 
IP address of a parent node within the Dask cluster. The 
molecules are then sequentially submitted to the indi-
vidual workers, and the results are gathered and stored in 
the database as they become available.

To customize EasyDock and enable support for other 
docking programs, one has to implement a docking 
wrapper function that takes a molecule and a con-
figuration file as inputs. This wrapper function should 
return the molecule name and a dictionary of output 
values, which will be used to update the database. If 
the intention is to employ multiple cores for docking a 

single molecule, the wrapper function should internally 
launch a console script; otherwise an error will occur 
due to the Python Global Interpreter Lock.

Optionally, users have the opportunity to implement 
and supply a custom function responsible for estimat-
ing the docking priority of individual molecules. Higher 
priority should be assigned to molecules with longer 
docking runtimes. This approach reduces time wasted 
on completing computations because if one molecule 
is docked for a long time and it is the last one in the 
list, all other computational nodes will stand idle until 
docking of this molecule will be finished. By default, 
the number of rotatable bonds serves as a proxy for 
the priority function. The greater the number of rotat-
able bonds, the higher the docking priority. However, 
we recommend utilizing our custom priority function, 
which offers a more accurate estimation of docking 
runtime and is better suited for prioritizing the dock-
ing of molecules. Further details can be found in the 
Results and discussion section.

The current implementation of EasyDock supports 
two docking programs, namely AutoDock Vina and 
gnina. The scoring functions of smina are accessible 
through gnina interface. Each program has its own 
wrapper function, which performs the docking for indi-
vidual molecules. The function consists of several steps:

1.	 Ligand preparation:
i)	 If a non-3D structure is provided, the input molecule 

undergoes 3D embedding using RDKit.
ii)	 to address the docking of boron-containing com-

pounds, boron atoms are substituted with carbon 
atoms. This workaround is necessary because boron 
atoms are not parameterized in Vina and smina, 
making it impossible to dock such compounds. 
Although a simplification, this replacement is reason-
able due to the similar atomic properties of boron 
and carbon. We investigated this approach and con-
firmed its validity. Further details are provided in the 
Results and discussion section.

iii)	the molecule is converted to the PDBQT format 
using the Meeko module (https://​github.​com/​forli​
lab/​Meeko).

2.	 Docking process. For Vina docking, we utilize ver-
sion 1.2.3, which includes Python bindings. Both 
Vina and gnina are invoked from the shell, provid-
ing input files and parameters. The docking of each 
molecule can be executed on a single core or multiple 
cores, depending on the chosen configuration.

3.	 Output parsing. The output PDBQT file is parsed, 
and the top-scored pose is converted to the MDL 
Mol format. If necessary, corresponding carbon 

https://github.com/forlilab/Meeko
https://github.com/forlilab/Meeko
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atoms are replaced back with boron atoms during 
this conversion procedure.

Dask library
Since Dask is not widely adopted by the chemoinformatic 
community for parallelization of tasks we briefly summa-
rized its features and compared Dask with other tools.

Dask [19] is a Python library composed of two major 
parts: dynamic task scheduling through creation of a 
dynamic computational graph and “big data” collections 
supporting parallel processing of arrays and dataframes. 
The latter is more relevant for data analysis tasks using 
numpy and pandas. We chose Dask for implementation 
of docking parallelization because it suggests an easy 
programming interface and manages the distribution 
and scheduling of tasks onto computational nodes on its 
own. Its interface is very similar to the standard multi-
processing Python module if one needs to run in paral-
lel multiple independent calculations, like docking of 
many compounds (an embarrassingly parallel task). It 
takes few lines of code to add support of parallel execu-
tion using Dask. Dask can be run over different sched-
ulers (SLURM, PBS, etc.) and it can be also run over an 
arbitrary network of servers trough SSH connections. 
Dask also supports a dashboard to track the progress of 
calculations and node loading. We encountered only one 
issue related not to programming with Dask but to setup 
of the in-house cluster to effectively use Dask on multi-
ple nodes. Dask uses file descriptors for intercommuni-
cation between nodes and therefore the allowed number 
of simultaneously opened file descriptors should be set 
accordingly. Overall, Dask is a mature project with good 
documentation and a relatively large community.

Message-Passing Interface (MPI) is a popular tech-
nology to run parallel tasks. In comparison to Dask it 
requires more low-level programming and is harder to 
learn. However, it offers better optimization of running 
tasks over multiple computational nodes with greater 
programming efforts.

Spark is similar to Dask. It provides a high-level pro-
gramming interface and can be scaled to thousands of 
nodes. Spark is fundamentally an extension of the Map-
Shuffle-Reduce paradigm while Dask supports arbitrary 
computational graphs by design. Spark is written in Scala 
and while there are ways of using Spark with Python, 
it is much more straightforward to use Dask, which is 
Python-native.

HyperQueue (https://​github.​com/​It4in​novat​ions/​hyper​
queue) is a promising alternative of Dask which is worth 
to mention. It is a result of efforts on investigation and 
optimization of Dask scheduling model and overheads 

[20, 21]. HyperQueue has lower overheads than Dask. 
The development of HyperQueue was mostly focused on 
providing a command line interface to facilitate users to 
run parallel tasks using PBS/SLURM schedulers. How-
ever, it also offers Python interface similar to Dask but 
which is less mature. In future, if Python bindings of 
HyperQueue will be developed more extensively it may 
replace Dask, in particular in cases where one needs to 
run multiple calls of a function over a large number of 
instances.

Protein preparation
To perform docking studies a user should submit a pre-
pared protein structure. In this study we prepared recep-
tors by the Dock Prep protocol implemented in Chimera 
[22]: missed side chains and sequences were remodeled 
using a Dunbrack rotomer library [23] and MODELLER 
[24], respectively, hydrogens were added considering pH 
7.4 and solvent molecules were removed. Molecules were 
converted to PDBQT format using the prepare_recep-
tor4.py utility from Autodock Tools. The grid boxes were 
determined from ligand coordinates. The center of a grid 
box is calculated as a geometric center of a ligand and 
the size of a box is calculated by adding of 7Å to mini-
mum and maximum coordinates of ligand heavy atoms. 
The prepared protein structures and grid boxes are avail-
able in the repository https://​github.​com/​ci-​lab-​cz/​docki​
ng-​files.

Results and discussion
In this section we will describe two major features of the 
tool. The first one is the ability to dock boron-containing 
compounds, which is not possible with some of the inte-
grated programs (Vina and smina). The second feature is 
the ability to run docking on a distributed infrastructure 
and we will describe its optimization and efficiency.

Docking of boron‑containing compounds
Application of boron-containing compounds in drug dis-
covery projects is gradually increasing due to the ability 
of boron functional groups to form covalent and strong 
hydrogen bonds, modulate pharmacokinetics, drug 
resistance, etc. [25, 26]. Many popular docking programs 
do not support docking of boron-containing compounds 
by default. To overcome this limitation, we implemented 
a previously suggested protocol involving the substitution 
of boron atoms with carbon atoms prior to docking [27–
30] followed by the revert replacement afterward. While 
this approach may appear artificial, it holds promise due 
to the similar atomic properties exhibited by boron and 
carbon.

https://github.com/It4innovations/hyperqueue
https://github.com/It4innovations/hyperqueue
https://github.com/ci-lab-cz/docking-files
https://github.com/ci-lab-cz/docking-files
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To validate the hypothesis, we conducted a redocking 
study involving 55 non-covalent protein-ligand com-
plexes that incorporated boron-containing compounds. 
These complexes were selected from the Protein Data 
Bank. Complexes had to have X-ray resolution of less 
than 2.5 Å and a ligand molecular weight of less than 500. 
Non-covalent binding was checked by visual inspection 
of complexes. We also omitted complexes with carbo-
rane-containing ligands because they have non-standard 
valence of atoms that cause errors in RDKit which is used 
for manipulation with molecular structures. For the sake 
of reference, all corresponding PDB codes and the associ-
ated redocking statistics are provided in Additional file 1: 
Table S1.

In the initial phase, we conducted docking experi-
ments on the selected compounds using gnina. This 
docking program was chosen due to its ability to natively 
handle boron-containing compounds. We compared 
the results obtained from gnina docking of the original 
compounds to those obtained when boron atoms were 
replaced with carbon atoms. For the docking process, 
we set exhaustiveness to 32 and employed rescoring with 
default_ensemble or dense_ensemble. The protonation of 
compounds was performed using Chemaxon, as previ-
ously described.

Our analysis revealed that default_ensemble was not 
able to reproduce docking poses of boron-containing 
compounds with a reasonable accuracy (RMSD ≤ 2Å), 
only poses for 10 complexes were reproduced (18%), 
whereas dense_ensemble reproduced poses for 36 
complexes (65%). Replacement of boron atoms with 
carbons only slightly affected the accuracy, which was 
increased, 12 poses for default_ensemble (22%) and 37 
poses (67%) for dense_ensemble. We do not have expla-
nation why default_ensemble performed poor. How-
ever, performance of dense_ensemble without and with 

boron replacement closely align with the general per-
formance of gnina, which has been reported to range 
from 69 to 72% accuracy [17]. These results demon-
strate that gnina treats boron and carbon atoms simi-
larly and indirectly supports the hypothesis that boron 
and carbon atoms exhibit similar properties and can be 
interchangeable in docking simulations to some extent.

Next, we implemented the suggested protocol for 
automatic usage with Vina and smina. In both cases, 
we set an exhaustiveness value to 32, and for smina, 
we employed the Vinardo scoring function [31]. Out of 
the 55 ligands, Vina successfully reproduced the poses 
of 31 ligands (56%), while smina reproduced 30 ligands 
(54%). The result obtained with Vina corresponds well 
to the general accuracy of 58% reported previously [17]. 
Vina, smina and gnina mainly agree and disagree on 
the same ligands and complexes. Several failed com-
plexes were associated with shallow binding sites. For 
instance, ligands that were co-crystallized on the sur-
face of beta-sheets of Transthyretin are widely exposed 
to water and featured a limited number of specific 
interactions (e.g., 5U48, 5U4C, 5U4E) (Fig.  2A). Simi-
larly, there were cases where the binding site was widely 
open, and the ligand tail was significantly exposed to 
water (e.g., 5LMD, 6IBS, 6JN6, 6L40, 6Q2Y, 6Q30) 
(Fig. 2B). In some cases, the ligand itself was large and 
highly flexible (e.g., 2ZK6) (Fig.  2C). Therefore, many 
of the poorly docked poses can be attributed to inher-
ent issues in docking approaches and are not specific to 
boron-containing compounds or the suggested proto-
col. Based on these observations, we conclude that the 
proposed protocol for docking boron-containing com-
pounds, which involves the replacement of boron atoms 
with carbon atoms, is applicable. However, researchers 
should exercise additional caution when working with 
such compounds.

)C(6KZ2)B(SBI6)A(84U5
Fig. 2  Native (blue) and unsuccessful (RMSD > 2Å) redocking poses obtained by Vina (green) and gnina dense_ensemble (cyan)
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Customizing a function setting a priority of docking 
of individual molecules
To address the issue of potential wasting of computa-
tional resources, where some molecules may take exces-
sively long time to dock while other computational 
nodes remain idle, we suggested to prioritize docking of 
molecules based on their estimated docking time. As an 
obvious estimator, the number of rotatable bonds can be 
used. In order to evaluate different estimators and esti-
mate docking run times, we conducted a study.

We collected a set of 2.13  million compounds from 
ChEMBL (version 30) and calculated their molecular 
weights, finding that the 95th percentile was at 700 Da. 
We chose this threshold as a maximum value for typi-
cal bioactive molecules and selected a random subset of 
10,000 molecules with molecular weights below 700 Da 
for further analysis. These molecules were docked into 
the CDK2 receptor (PDB: 2BTR) using AutoDock Vina 
with an exhaustiveness value of 8. CDK2 protein was 
chosen as one of the frequently used targets in bench-
marking of docking programs [15]. 2BTR structure has 
a resolution 1.85Å and has no missing residues or other 
issues within the binding site, thus it is preparation was 
easy. On a single core, the median run time for the dock-
ing process was 190 s, with an average of 305 s. Among 
the 10,000 molecules, there were 1,217 instances which 
docking time exceeded 10 min.

For this set of 10,000 molecules, we calculated various 
physicochemical parameters including the number of 
H-bond donors (HBD) and acceptors (HBA), the num-
ber of rotatable bonds (RTB), molecular weight (MW), 
the number of rings (num rings), the number of heavy 
atoms (HAC), topological polar surface area (TPSA), 
and lipophilicity (logP). We then analyzed the correlation 
between these parameters and the docking run time. The 
highest correlating parameters with docking run time 
were molecular weight (R = 0.777), the number of heavy 
atoms (R = 0.784), and the number of rotatable bonds 
(R = 0.764). Other parameters exhibited correlation coef-
ficients below 0.5 (Table 1). Considering the high correla-
tion between molecular weight and the number of heavy 
atoms (R = 0.972), we selected the number of rotatable 
bonds and the number of heavy atoms as the two param-
eters for further studies.

To develop a simple and efficient estimator, we trained 
a linear model using the two selected parameters, 
namely the number of rotatable bonds and the number 
of heavy atoms. The dataset of 10,000 molecules was 
randomly split into a training set (90%) and a test set 
(10%). For the training set, we constructed models using 
5-fold cross-validation, which was repeated five times to 
obtain an average estimate. Here, we present polynomial 
models with a degree of 2 (Table  2), as further increas-
ing the degree did not significantly enhance the model 

Table 1  Pearson correlation (R) between physicochemical parameters and docking time (Autodock Vina) estimated by 10,000 
molecules randomly chosen from ChEMBL30

HBA: the number of H-bond acceptors; HBD: the number of H-bond donors; MW:  molecular mass; HAC: the number of heavy atoms; RTB: the number of rotatable 
bonds; logP: lipophilicity; TPSA : topological polar surface area

HBA HBD MW HAC RTB logP TPSA Number of rings Docking time

HBA 1 0.298 0.544 0.539 0.341 − 0.205 0.759 0.327 0.433

HBD 0.298 1 0.258 0.251 0.304 − 0.282 0.704 − 0.072 0.355

MW 0.544 0.258 1 0.972 0.596 0.467 0.51 0.587 0.777

HAC 0.539 0.251 0.972 1 0.595 0.476 0.501 0.649 0.784

RTB 0.341 0.304 0.596 0.595 1 0.258 0.386 − 0.036 0.764

logP − 0.205 − 0.282 0.467 0.476 0.258 1 − 0.33 0.423 0.298

TPSA 0.759 0.704 0.51 0.501 0.386 − 0.33 1 0.113 0.494

Number of rings 0.327 − 0.072 0.587 0.649 − 0.036 0.423 0.113 1 0.279

Docking time 0.433 0.355 0.777 0.784 0.764 0.298 0.494 0.279 1

Table 2  Statistical parameters of linear models predicting docking time (Autodock Vina)

Equation number Parameters Equation R2
CV R2

test

1 HAC time (s) = 624.144–63.215 × HAC + 1.735 × HAC2 0.765 0.789

2 RTB time (s) = − 68.856 + 58.457 × RTB + 1.321 × RTB2 0.594 0.606

3 HAC, RTB time (s) = 465.979–59.714 × RTB − 0.375 × RTB2 − 36.723 × 
HAC + 0.745 × HAC2 + 3.48 × RTB × HAC

0.925 0.926
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performance. The results indicated that individual mod-
els based on the number of rotatable bonds or the num-
ber of heavy atoms exhibited moderate predictability 
(R2

test = 0.61–0.79). However, when these parameters 
were combined, the resulting model demonstrated high 
predictive ability (R2

test = 0.93) (Table  2). Equation  3, 
derived from this model, was implemented in EasyDock 
as an estimator of docking priority for individual mole-
cules when Vina is selected as the docking program.

Since the relationship between docking run time and 
molecular properties may vary for different docking 
programs and scoring functions there may be a need to 
develop a specific priority function. However, the devel-
oped priority function may be applicable to other pro-
grams to some extent. To assess the applicability of the 
suggested priority function, we conducted an investiga-
tion using gnina docking. We docked the test set of 1000 
molecules with gnina, employing the following settings: 
scoring–default, cnn_scoring–rescore, cnn-default_
ensemble or dense_ensemble. The docking calculations 
were performed exclusively on CPUs, with each molecule 
docked on a single core.

Surprisingly, we observed a high correlation between the 
predicted and observed run times: for both default_ensemble 
(R2(Pearson) = 0.882 and R2(Spearman) = 0.763) and dense_
ensemble, (R2(Pearson) = 0.858 and R2(Spearman) = 0.652). 
Although the performance varied, the correlation was suf-
ficiently strong to support the hypothesis that Eq.  3 may 
have broader applicability in ranking molecules based on 
their docking run times. Consequently, we implemented the 
same priority function (Eq.  3) for docking with gnina and 
smina. However, it should be emphasized that the imple-
mented model is not universally applicable. For other dock-
ing programs, scoring functions, or different setups (such as 

utilizing GPUs), it may be necessary to develop a custom pri-
ority function to achieve optimal results.

Scalability and general performance
To assess the computational efficiency and scalability of 
EasyDock, we randomly selected 5000 molecules from 
ChEMBL (version 30) with a molecular weight below 700. 
These molecules were distinct from those used to develop 
the priority function described earlier. Prior to docking, 
the molecules were converted to their major tautomers at 
pH 7.4 using the cxcalc Chemaxon utility [32]. Although 
this step is performed by EasyDock by default, we disa-
bled it in order to avoid overhead and obtain more pre-
cise measurements of docking performance. The docking 
process was conducted using Autodock Vina with an 
exhaustiveness value of 8, and the target receptor was the 
CDK2 protein obtained from the 2BTR PDB complex. 
The experiments were performed on an in-house com-
putational cluster comprising nodes equipped with Xeon 
CPU E5-2650@2.00  GHz processors, featuring 32 cores 
and 48 GB of memory. Nodes were interconnected by a 
10GB network that may also affect overall performance.

Initially, we examined whether the application of 
the suggested priority function would lead to a reduc-
tion in docking time. Tests were conducted using 20 
nodes, with each molecule docked on a single core, 
and a speedup of approximately 10% was observed 
(Table  3). Subsequently, we optimized the number of 
molecules processed on a single server and the num-
ber of cores allocated for docking of each molecule. 
When docking was performed on 20 nodes, shorter run 
times were observed with a greater number of cores 
per molecule. While slight overbooking did not sig-
nificantly impact run times, we selected the following 

Table 3  Performance of docking of 5000 ligands to CDK2 (2BTR) with Autodock Vina using different number of computational nodes

Number of computational nodes 
(parallelization)

Total number of 
cores

N workers per node N cpu per molecule Wall time Speed up

1 (multiprocessing, random priority) 32 8 5 7 h 4 m 1

1 (dask) 32 8 5 7 h 19 m 0.966

2 (dask) 64 8 5 3 h 39 m 1.936

5 (dask) 160 8 5 87 m 43 s 4.833

10 (dask) 320 8 5 44 m 8 s 9.607

20 (dask, random priority) 640 32 1 29 m 37 s 14.32

20 (dask) 640 32 1 26 m 45 s 15.85

20 (dask) 640 16 2 23 m 43 s 17.88

20 (dask) 640 16 3 23 m 21 s 18.16

20 (dask) 640 8 4 22 m 19 s 19.00

20 (dask) 640 8 5 22 m 14 s 19.07

20 (dask, random priority) 640 8 5 22 m 35 s 18.77
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setup for subsequent runs as it resulted in the shortest 
run time: 8 molecules per server and 5 cores per mol-
ecule (Table 3). A control experiment using this setup, 
with molecules selected for docking in a random order, 
demonstrated a 1.55% slower run time. Although this 
difference is not substantial, it remained consistent 
across repeated runs. Thus, the application of the pri-
ority function had a noticeable and measurable effect, 
even with an optimal setup regarding the number of 
molecules and cores per server. This confirms the appli-
cability of the suggested priority function in reducing 
docking run times.

We evaluated scalability of docking using the Dask 
library and compared the results with the native Python 
multiprocessing module. The native module exhibited 
smaller overheads for dispatching molecules for dock-
ing and outperformed the Dask-based implementation 
by 3.4% on a single server. However, the scalability of 
the Dask library was commendable, as increasing the 
number of nodes only slightly increased the overhead. 
For docking using 20 nodes, the overhead was 4.6%.

Comparison with other programs
An overview of available automated docking tools is 
presented in Table  4. While some tools are designed to 
work with specific docking programs, many of them 
claim to offer extensibility with other programs, similar 
to EasyDock. Autodock Vina and its derivatives emerge 
as the most commonly integrated docking programs. 
EasyDock, in addition to Autodock Vina, also integrates 
gnina, which utilizes modern 3D convolutional neural 
networks and exhibits improved performance compared 
to Vina, albeit with higher computational requirements.

Most automated docking protocols offer 3D embed-
ding of initial structures. Protonation of ligands is typi-
cally performed using OpenBabel, Epik, or Chemaxon 
cxcalc utility. DockStream and ChemFlow provide tau-
tomer and stereoisomer enumeration capabilities. Dock-
String generates consistent random stereoisomers but 
does not handle tautomers, whereas VirtualFlow gener-
ates major tautomers but lacks stereoisomer generation. 
EasyDock automatically generates major tautomers at pH 
7.4 and consistent random stereoisomers.

Table 4  The list of freely available automated docking protocols

Program 
name

Year Supported 
docking 
programs

Input Protonation 3D 
embedding

Stereoisomers/ 
tautomers

Parallel 
computing

Ref Repository 
link

Vina MPI 2013 vina pdbqt MPI  [11]

VirtualFlow 2020 vina
qvina
qvina-w
vina-carb
smina
autodockFR

cxcalc chemaxon
openbabel

A major tau-
tomer (cxcalc)

SLURM
Moab
TORQUE
PBS

 [6] https://​github.​
com/​Virtu​
alFlow/​VFVS

DockStream 2021 vina
glide
gold
hybrid
rDock

epik corina
ligprep
omega
rdkit

Enumeration 
of tautomers 
and stereoiso-
mers

Across cores  [12] https://​github.​
com/​Molec​
ularAI/​DockS​
tream

DOCK 2021 DOCK 3D molecules SGE
PBS
SLURM

 [13]

DockString 2022 vina SMILES openbabel, 
pH = 7.4

rdkit Consistent ran-
dom stereoiso-
mer (rdkit)

A single mol 
dock can use 
multiple cores

 [15] https://​github.​
com/​docks​
tring/​docks​
tring

ChemFlow 2023 plants
vina
qvina
smina

SMILES, 2D 
SDF

epic cxcalc Dominant tau-
tomers (> 10% 
probability), 
enumerate 
stereoisomers 
(cxcalc)

PBS
SLURM

 [14] https://​github.​
com/​IFMlab/​
ChemF​low

EasyDock 2023 vina
gnina
smina

SMILES, 
2D/3D SDF

cxcalc, 
pH = 7.4 
(optional)

rdkit if input 
is not 3D

A major tau-
tomer (cxcalc, 
optional) consist-
ent random 
stereoisomer 
(rdkit)

Across cores 
and network 
nodes (Dask)

This work https://​github.​
com/​ci-​lab-​cz/​
easyd​ock

https://github.com/VirtualFlow/VFVS
https://github.com/VirtualFlow/VFVS
https://github.com/VirtualFlow/VFVS
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/dockstring/dockstring
https://github.com/IFMlab/ChemFlow
https://github.com/IFMlab/ChemFlow
https://github.com/IFMlab/ChemFlow
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock
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Many of these tools support distributed comput-
ing using common schedulers such as PBS, SLURM, 
and others. However, they do not necessarily provide 
an API for seamless integration into further develop-
ing software. While DockString offers a Python API, 
it does not support distributed computing. EasyDock 
distinguishes itself by supporting distributed comput-
ing across various network devices without reliance on 
a specific scheduler. Furthermore, EasyDock provides 
a Python API, facilitating straightforward integration 
into third-party software.

EasyDock features:

•	 single server and distributed docking over nodes in 
a network, it does not depend on a particular sched-
uler (e.g. PBS, SLURM, etc.), Dask has its own sched-
uler to dispatch jobs.

•	 Python API to develop further applications based on 
docking.

•	 customizability of the module with other docking 
programs.

•	 automatic continuation of interrupted calculations.
•	 docking of boron-containing compounds using Vina 

and smina.
•	 automatic generation of a major tautomer and its 

protonation using Chemaxon cxcalc utility (optional).
•	 use of user-defined conformations as starting if 3D 

structures were supplied as input. This can be useful 
if one wants to sample ring conformation with pro-
grams other than RDKit.

•	 output is a single database. Data can be retrieved 
using ordinary SQL queries or a script provided 
within the module.

•	 the current implementation was tested using CPUs 
only, however if computational nodes are equipped 
with GPUs they may be used if this is supported by a 
docking program itself.

EasyDock limitations and remarks:

•	 stereoisomer enumeration is not implemented in 
EasyDock. In cases where the input molecule has 
undefined configurations of stereocenters or double 
bonds, a random but consistent stereoisomer will be 
generated. We recommend explicitly enumerating 
stereoisomers using built-in RDKit functions or the 
provided script gen_stereo_rdkit.py from the reposi-
tory https://​github.​com/​DrrDom/​rdkit-​scrip​ts.

•	 the scalability of EasyDock to a larger number of 
nodes or workers has not been tested. It is possible 
that the overhead could increase, or writing to the 
database could become a rate-limiting step when 
scaling up.

•	 when performing docking of individual molecules, 
each molecule runs in a separate instance of the 
docking program. It is important to carefully estimate 
the memory required for docking a single molecule 
in order to choose an appropriate number of work-
ers per computational node and avoid exceeding the 
total memory limit. For example, docking with gnina 
using dense_ensemble typically requires around 3 GB 
of memory per molecule. Therefore, on a node with 
48 GB of memory, the maximum number of simulta-
neously processed molecules should be limited to 16 
to ensure memory constraints are met.

Conclusions
The EasyDock module incorporates an automated dock-
ing protocol that supports distributed computing and 
provides a Python interface. The protocol is designed to 
minimize user intervention. It takes input molecules and 
returns all outputs to a single database. Currently, Easy-
Dock supports Autodock Vina, smina, and gnina. The 
specific protocol was implemented for the docking of 
boron-containing compounds in Vina and smina. This 
protocol demonstrated the ability to accurately reproduce 
poses of boron-containing ligands in redocking studies. 
The list of supported docking programs can be easily 
expanded to accommodate other programs. To optimize 
the docking process, we have developed a linear model 
that prioritizes the selection of compounds for docking. 
By employing this model, we could minimize the over-
all docking runtime in a distributed computing envi-
ronment, outperforming random ordering approaches. 
The model was trained using Autodock Vina outputs, 
but as demonstrated with gnina, it can be applicable to 
other programs and scoring functions. Thus, it is recom-
mended as a default choice for integrating other docking 
programs into EasyDock. The EasyDock tool is open-
source and freely available to the scientific community. 
Its purpose is to facilitate virtual screening campaigns 
of large compound libraries and aid in the development 
of structure-based design tools using molecular docking 
techniques.

Availability and requirements
Project name: EasyDock.

Project home page: e.g. https://​github.​com/​ci-​lab-​cz/​
easyd​ock.

Operating system(s): Platform independent.
Programming language: Python 3.
Other requirements: RDKit, vina, gnina, dask.
License: BSD 3-clause.
Any restrictions to use by non-academics: no 

limitation.

https://github.com/DrrDom/rdkit-scripts
https://github.com/ci-lab-cz/easydock
https://github.com/ci-lab-cz/easydock
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