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Abstract 

BBPs have the potential to facilitate the delivery of drugs to the brain, opening up new avenues for the development 
of treatments targeting diseases of the central nervous system (CNS). The obstacle faced in central nervous system 
disorders stems from the formidable task of traversing the blood–brain barrier (BBB) for pharmaceutical agents. Nearly 
98% of small molecule-based drugs and nearly 100% of large molecule-based drugs encounter difficulties in success-
fully penetrating the BBB. This importance leads to identification of these peptides, can help in healthcare systems. 
In this study, we proposed an improved intelligent computational model BBB-PEP-Prediction for identification of BBB 
peptides. Position and statistical moments based features have been computed for acquired benchmark dataset. 
Four types of ensembles such as bagging, boosting, stacking and blending have been utilized in the methodology 
section. Bagging employed Random Forest (RF) and Extra Trees (ET), Boosting utilizes XGBoost (XGB) and Light Gradi-
ent Boosting Machine (LGBM). Stacking uses ET and XGB as base learners, blending exploited LGBM and RF as base 
learners, while Logistic Regression (LR) has been applied as Meta learner for stacking and blending. Three classifiers 
such as LGBM, XGB and ET have been optimized by using Randomized search CV. Four types of testing such as self-
consistency, independent set, cross-validation with 5 and 10 folds and jackknife test have been employed. Evaluation 
metrics such as Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), Mathew’s correlation coefficient (MCC) have been 
utilized. The stacking of classifiers has shown best results in almost each testing. The stacking results for independent 
set testing exhibits accuracy, specificity, sensitivity and MCC score of 0.824, 0.911, 0.831 and 0.663 respectively. The 
proposed model BBB-PEP-Prediction shown superlative performance as compared to previous benchmark studies. 
The proposed system helps in future research and research community for in-silico identification of BBB peptides.
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Introduction
The BBB serves as a barrier that prevents infections, blood 
cells, and components of neurotoxic plasma from entering 
the brain [1]. Blood vessels play a crucial role in supplying 
oxygen and essential nutrients to all tissues and organs in 
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the body [2]. When it comes to the CNS, the blood ves-
sels that vascularized it possess distinct characteristics 
known as the blood–brain barrier [3]. This barrier enables 
the tight regulation of ion, molecule, and cell movement 
between the bloodstream and the brain. By maintaining 
precise control over CNS homeostasis, the blood–brain 
barrier ensures optimal neuronal function and safeguards 
neural tissue from harmful toxins and pathogens. Any 
changes to the integrity of this barrier are significant fac-
tors in the development and progression of various neu-
rological disorders [4]. The presence of barrier layers at 
critical interfaces between blood and neural tissue plays a 
vital role in regulating the processes involved [2].

Blood–brain barrier penetrating peptides (BBPs) have 
the ability to traverse the blood–brain barrier through 
diverse mechanisms, without compromising its integrity 
[5]. Neurons are protected from hazardous compounds 
found in the bloodstream by BBB, which acts as a barrier. 
Additionally, it is critical for maintaining the CNS care-
fully balanced internal environment, which is necessary 
for the proper operation of synapses and neurons. When 
the BBB is damaged, harmful substances like viruses, 
cells, and neurotoxic particles from the bloodstream 
can enter the brain. This may result in inflammatory and 
immunological responses, activating a number of path-
ways that support neurodegeneration [6].

Studies have shown that certain BBPs can facilitate the 
delivery of drugs into the brain, opening up new possi-
bilities for the development of treatments targeting CNS 
disease [7]. The impasse observed in CNS disorders arises 
from the significant challenge of crossing the BBB for 
pharmaceutical agents. Approximately 98% of small mole-
cule-based drugs and nearly 100% of large molecule-based 
drugs are unable to penetrate the BBB successfully [8].

In the proposed study, the contribution have been 
made are listed below.

1. The collected benchmark dataset has been fed to 
novel feature computation approaches such PRIM, 
RPRIM, AAPIV, RAAPIV and FV.

2. Statistical moments such as Raw, Hahn and central 
have been employed.

3. Four types of ensembles such as bagging, boosting, 
stacking and blending have been utilized for modeling 
purposes.

4. Bagging employed RF and ET, while Boosting utilizes 
XGB and LGBM. Stacking uses ET and XGB as base 
learners, blending exploited LGBM and RF as base 
learners, while LR has been applied as Meta learner 
for stacking and blending.

5. Four types of tests such as self-consistency, inde-
pendent set, cross validation with 5 and tenfold and 
jackknife test have been accomplished.

6. Evaluation metrics such as Accuracy, specificity, sen-
sitivity and MCC have been used for evaluation of 
proposed model.

For the computational identification of blood–brain 
barrier peptides, just a few studies have been conducted. 
Dai et al. has conducted a study on predicting BBB pep-
tides, where feature selection has been utilized by dis-
carding redundant and irrelevant features. Finally, logistic 
regression has employed prediction of BBB peptides [9]. 
Another study contributed by extending the dataset and 
usage of several feature descriptors. The researcher has 
used several machine-learning approaches such as Deci-
sion Tree, Random forest, Logistic Regression, KNN and 
Gaussian Naive Bayes (GNB), XGB, and Support Vector 
Classifier (SVC) for identification of BBB peptides [10].

The latest benchmark study by Chen et  al. has been 
incorporated by extending the data. The study uses 
CKSAAP and PAAC as feature vectors and DT, RF, KNN, 
AdaBoost, GentleBoost, LogitBoost, linearSVM and rbf-
SVM to predict blood–brain barrier peptides [11].

Materials and methods
This section explores the dataset used to conduct study, 
and employs classifiers to predict BBB penetrating pep-
tides. The first section describes the data acquisition; 
the second section explores the feature generation pro-
cess. Finally, the last elaborates the employed classifiers 
approaches.

Figure 1 shows the architecture employed for identifi-
cation of Blood–brain barrier penetrating peptides. The 
position based and statistical moments based features 
have been computed and fed to machine learning classi-
fiers for training and test purpose.

Dataset description
The benchmark dataset has been collected from Chen 
et  al. [11]. The experimentally validated Blood–Brain 
Barrier Peptides (BBPs dataset has been acquired from 
different research papers such as Dorpe et al. [12], B3Pdb 
Kumar et al. [13], public datasets of BBPpred Dai et al. [9], 
B3Pred Kumar et al. [10]. For the collection of non-BBPs, 
sequences were obtained from UniProt using specific 
query criteria to exclude peptides related to blood–brain 
barrier, brain, Brainpeps, B3Pdb, permeation, perme-
ability, venom, toxin, transmembrane, transport, transfer, 
membrane, neuro, and hemolysis. Redundant sequences 
were then removed using CD-HIT with a sequence iden-
tity cut-off of 10% Dai et al. [9]. Finally, peptide sequences 
with ambiguous residues were also excluded. This process 
yielded 425 non-BBPs. Overall dataset consists of 425 
positive samples and 425 negative samples. The feature 
vectors have been generated using the combined dataset 
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based on positive and negative sequences. The hyper-
parameters  tuning has been performed for three classi-
fiers on the entire dataset to exhibit better results. Once 
the optimal hyper-parameters have been originated, the 
dataset has been split into 77 and 23% for training and 
test set respectively.

Feature formulation
Position variant and composition-specific feature extrac-
tion techniques are employed to extract features from 
proteomic and genomic sequences. These widely recog-
nized techniques consist of the following components.

Position relative incidence matrix (PRIM)
The arrangement of amino acid residues within the poly-
peptide chain holds significant importance in unraveling 
the hidden properties of the protein. To unveil intricate 
patterns formed by the placement of residues, a matrix is 
created to capture positional correlations among all resi-
dues [14]. This matrix, known as PRIM (Positional Resi-
due Interaction Matrix), is designed as a 20 × 20 grid to 
estimate the positional information of the protein [15], 
considering the twenty unique amino acid residues pre-
sent in each polypeptide chain [16].

Each element (Rij) within the PRIM matrix represents 
the sum calculated based on the relative position of the 
ith residue with respect to the jth residue, indicating the 
presence of the ith residue at that position. Consequently, 
the resulting matrix comprises 400 coefficients. To miti-
gate the complexity of dimensions, statistical moments 
are calculated, resulting in a set of 30 enumerated fea-
tures derived from the original 400-coefficient matrix 
[17].

Reverse position relative incidence matrix (RPRIM)
The Reverse Position Relative Incidence Matrix (RPRIM) 
is an enumeration technique that shares similarities with 
the aforementioned method, but it delves deeper into 
uncovering hidden features of sequences that exhibit 
homologous peculiarities. RPRIM is calculated by utiliz-
ing the reverse sequence of the original sequence [18]. 

(1)RPRIM =



















R1→1 R1→2 · · · R1→y · · · R1→20

R2→1 R2→2 · · · R2→y · · · R2→20

...
...

...
...

Rx→1 Rx→2 · · · Rx→y · · · Ri→20

...
...

...
...

RA→1 RA→2 · · · RA→y · · · RA→20



















Fig. 1 Architecture employed in this study
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The resulting RPRIM matrix, computed through this pro-
cess, is provided below.

Similar to PRIM, the RPRIM matrix also consists of 400 
coefficients, maintaining the same dimensionality. How-
ever, through the application of statistical moments, the 
dimensionality of RPRIM is subsequently reduced to 30 
coefficients, just like in the case of PRIM [15].

Frequency vector (FV)
The frequency vector is a valuable source of information 
that reveals the distribution of residues within a poly-
peptide chain in a given sequence [19]. It calculates the 
occurrence rate of individual residues in the protein. The 
FV characteristic ensures that details about the composi-
tion and distribution of protein sequences are retained. 
The FV is represented as follows.

The FV is a vector with 20 dimensions that calculates 
the frequency of each amino acid residue in the sequence, 
based on their alphabetic ordinal value.

Accumulative absolute position incidence vector (AAPIV)
The FV captures the distributional details of each amino 
acid residue in a protein and identifies ambiguous fea-
tures related to its composition. However, the FV does 
not include information about the relative positions 
of the amino acid residues. To address this, the AAPIV 
(Amino Acid Positional Information Vector) was intro-
duced, which partitions the relative positional informa-
tion into four quarters [20]. This information is computed 
based on the occurrence of the 20 native amino acids, as 
shown below.

where the ith section of AAPIV is calculated as

Considering a specific nucleotide, k represents a ran-
domly chosen location. In the AAPIV, a designated com-
ponent, denoted as I, accumulates the sum of all the 
locations where the ith nucleotide occurs.

(2)

RRPRIM =



















Q1→1 Q1→2 · · · Q1→y · · · Q1→20

Q2→1 Q2→2 · · · Q2→y · · · Q2→20

...
...

...
...

Qx→1 Qx→2 · · · Qx→y · · · Qi→20

...
...

...
...

QA→1 QA→2 · · · QA→y · · · QA→20



















(3)FV = [f1, f2, f3, . . . , f20]

(4)K = [∀1, ∀2, ∀3, . . . , ∀n]

(5)∀i = �n
k=1βk

Reverse accumulative absolute position incidence vector 
(RAAPIV)
RAAPIV shares similarities with AAPIV, with the key 
distinction being that it utilizes the reverse sequence of 
the original sample to generate the output vector. This 
reversal enables the extraction of additional knowl-
edge regarding positional information, allowing for the 
discovery of concealed and profound characteristics 
within the sequences [21]. The vector is represented as 
follows.

Statistical moments
The feature set is populated with the raw, Hahn, and 
central moments of the genomic data, which contrib-
ute essential elements to the input vector for the model. 
Researchers have recognized that the characteristics of 
proteomic and genomic sequences depend on both the 
composition and the relative positions of their bases. 
Consequently, computational and mathematical models 
have focused on capturing the correlated placement of 
nucleotide bases in genomic sequences to enhance the 
feature vector [22]. This attention to correlated position-
ing is crucial for establishing a reliable and comprehen-
sive feature set [23].

Hahn moments require two-dimensional data, so 
genomic sequences are transformed into a two-dimen-
sional matrix S’ with dimensions k*k, which contains 
the same information as matrix S but arranged in a two-
dimensional format. Therefore,

In order to reduce dimensionality, statistical moments 
are computed based on the obtained square matrix, 
resulting in the creation of a fixed-size feature vector 
[28]. As previously mentioned, this study employs Hahn, 
central, and raw moments for this purpose.

The below equation entitles the calculation of raw 
moments of order a + b.

The sequences contain significant information embed-
ded within their Moments, specifically up to the third 
order are U00,U10,U11,U20, U02, U21, U12,U03 and U30 . 
To compute the central moments ( xy ), it is necessary to 
calculate the centroid first, which represents the central 
point of the data [24]. The central moments are then 

(6)RAAPIV = [n1, n2, n3, . . . , nm]

(7)k =
√
n

(8)
S′ = |S11S12 . . . S1nS21...S22... . . . S2n...Sn1Sn2 . . . Snn|

(9)Uab = �n
e=1�

n
f=1e

af bδef
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computed using this centroid according to the following 
procedure:

The computation of Hahn moments involves the use 
of a square grid as the discrete input. This choice helps 
elucidate both the regularity and reversibility of the data, 
as the original data can be reconstructed using inverse 
Hahn moments. Due to the reversibility property of 
Hahn moments, the information transformed from the 
original sequences remains intact and is incorporated 
into the model through the feature vector [15]. The com-
putation of Hahn moments is depicted by the equation 
provided below.

The equation utilizes Pochhammer notation and the 
Gamma operator, which are explained in detail by Akmal 
et al. [25].

The Hahn coefficients obtained from the previous 
equation are typically normalized using the coefficients 
specified in the subsequent equation.

Classification models
This section offers an overview of the classification algo-
rithms utilized in this study. Various ensemble methods, 
including bagging, boosting, blending, and stacking, 
were employed. Additionally, the algorithms under-
went evaluation and comparative analysis to assess their 
performance.

(10)vab = �n
e=1�

n
f=1)(e − x)a

(

f − y
)b

δef

(11)h
x,y
n (p,Q) = (Q + V − 1)n(Q−1)n ×�n

z=0(−1)z
(−n)z(−p)z(2Q + x + y− n− 1)z

(Q + y− 1)z(Q−1)z

1

z!

(12)Hpq = �G−1
j=0�

G−1
i=0δpqh

a,b
p

(

j,Q
)

ha,bq(i,Q),m, n = 0, 1, 2, . . . ,Q − 1

Bagging
Bagging, an ensemble-based approach, is commonly 
employed for diverse machine learning problems. It 
operates in a parallel manner, dividing the dataset into 
multiple subsets using sampling with replacement [26]. 
In this study, two classifiers were utilized within the bag-
ging approach. Figure 2 illustrates the architecture of the 
bagging methodology.

Figure 2 illustrates the structural framework of the bag-
ging methodology utilized for predicting BBB peptides.

Extra trees ET, belonging to the bagging family of 
algorithms, shares similarities with the random forest 
algorithm but has two key differences. During training, 
the ET model receives positive and negative sequences, 

along with their respective labels. By dividing the tweets 
into subsets of equal size and creating various sub-data-
sets based on positive and negative sequences, multiple 
decision trees are generated [27]. Each decision tree is 
built with a fixed number of split nodes. For a given test 
tweet, each weak learner model predicts its class, and the 

class prediction with the highest number of votes deter-
mines the classification for the test sample. For accuracy 
enhancement, the hyper-parameters optimization for ET 
has been employed.

Table 1 shows the hyper-parameters values after opti-
mization. Randomized search CV has been used to find 
optimal parameters.

Fig. 2 Bagging architecture used in this study
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Random forest RF has been utilized in various compu-
tational proteomics and genetics problems [28]. RF uti-
lizes a bootstrapping strategy for sample distribution and 
is a member of the bagging family. The model initially 
builds sub-datasets of positive and negative samples using 
sampling with replacements [29]. The sequences are dis-
tributed equally throughout each subset. A feature vec-
tor with a label for training purposes and decision trees 
made with randomly selected best-split nodes serve as the 
model’s sources of information. All weak learners receive 
a test instance, and the class prediction is decided by a 
majority vote.

Boosting
Another ensemble strategy that uses an iterative learn-
ing process is boosting. Unlike bagging, the dataset is 
not broken up into smaller sub-datasets; rather, all of 
the learners work in a serial fashion. Each classifier in 
boosting algorithms educated on data while accounting 
for the output of earlier weak learners. After each epoch, 
the weights are dispersed once more. In the succeeding 
learners, only incorrectly classified observations are con-
sidered, and the incorrectly classified samples are given 
a high weight up to a specified number of epochs. The 
classification of all test samples as positive or negative is 
accomplished by repeating this process [30]. The descrip-
tion of each boosting algorithm is explained in the next 
section.

Figure 3 illustrates the structure of the boosting ensem-
ble used for the identification of BBB peptides.

XGBoost The XGB boosting algorithm builds decision 
trees that are divided into sections along the tree’s depth, 
and it is trained and evaluated on a dataset using these 
decision trees. The number of trees in algorithms is speci-
fied by the default number of weak learners. The first tree 
was made using the provided data, and test data was used 
to evaluate the model. The incorrectly identified observa-
tions were given a lot of weight and were passed on to the 
weaker learner after them. In this case, the tree is exclu-
sively formed using incorrectly identified samples [31]. 
The model completes its performance in this manner.

LGBM Following model execution, the light gradient 
boosting machine splits the decision tree leaf-wise. The 
leaf that performs best and has the lowest error is cho-

sen by LGBM. A large weight is given to occurrences that 
were mistakenly identified in the sequential process, and 
the output from the first weak learner is transferred to the 
second weak learner [32]. Until the model produces the 
best results or the maximum number of iterations have 
been accomplished, this process is repeated.

The tuned hyper-parameters values for boosting classi-
fiers, obtained by Randomized Search CV, are presented 
in Table 2.

Stacking
The stacking approach, which uses multiple heteroge-
neous classifiers instead of bagging and boosting, also 
makes use of the two layers notion [33]. In the first layer, 
base learners ET and XGB have been used. On the entire 
dataset using cross validation, both classifiers have been 
trained and produced the predations. A newly con-
structed 2-D dataset is further divided into training and 
test set. The Meta classifier LR has been trained by using 
training data based on prediction from level 0 and tested 
on test data.

Figure 4 demonstrates the architecture of the stacking 
ensemble employed for the prediction of BBB peptides.

Logistic regression Contemporary machine learning 
algorithm for supervised learning called LR has been 
used to solve many in-silico proteomics difficulties. To 
get a projected score against each sample, the weights and 
inputs are multiplied. Each anticipated score has been 
subjected to the sigmoid function, which produces values 
between 0 and 1 [29]. A decision border is constructed 
to separate two classes as a result. When a test sample 
appears to be classified, it will be placed in a positive 
class if the value obtained after applying the sigmoid is 
greater than 0.5 and a negative class if it is less than 0.5. 
The threshold is set at 0.5.

where z is

The linear portion of the sigmoid activation function is 
elaborated in Eq. 14, where w’s represents the initialized 
weights and x’s stands for the inputs from the data.

Blending
Blending is an ensemble approach, which combines 
several heterogeneous classifiers [34]. The valida-
tion dataset including train and test data, as well as 
the blending approach, are in opposition to stacking. 
With validation data that has been extracted from the 
training set in the first layer, the train and test data are 

(13)P =
1

1+ e−z

(14)z = (w1x1 + w2x2 + . . .wnxn + b)

Table 1 Hyper-parameter optimization for ET

Classifier n_estimators min_samples_split max_depth

ET 100 2 None
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divided. Predictions were produced on the test set and 
validation set using the used models RF and LGBM, 
which were trained on the training dataset. The predic-
tion obtained from the validation set combined with 
the initial validation set creates a new dataset in the 
second layer. The recently created dataset was tested on 
test data divided into the first layer and trained using 
the Meta classifier LR.

The structure of the blending ensemble utilized for the 
identification of BBB peptides is demonstrated in Fig. 5.

Evaluation metrics
The suggested model is evaluated using a variety of meas-
ures, including ACC score, SPE, SEN, and MCC. The 
ACC score shows the total number of samples from both 
classes that were correctly predicted out of all samples 
[35]. In order to quantify the negative cases that can be 
expected from the accuracy of the model, SPE has been 
used [36]. SEN shows how well the model can locate 
occurrences of positivity [37]. Despite unbalanced data, 
MCC is a reliable metric since it considers both classes 
[38]. If the model successfully detected both the positive 
and negative samples, it will produce an assiduous MCC 
score. For every discussed metric, the formulas are given.

(15)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3 Boosting architecture

Table 2 Hyperperameters tuning for boosting classifiers

Classifier n_estimators max_depth learning_rate

XGB 400 9 0.1

LGBM 200 5 0.1
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A True Positive represents the Peptides belonging to 
the positive class that has been accurately identified by 
the predictor. False Negative refers to the Peptides that 
belongs to positive class but are negatively identified by 
the predictor. False Positive, on the other hand, it indi-
cates Negative samples but are identified as Positive 
samples by the predictor. A True Negative corresponds 

(16)Specificity =
TN

TN + FP

(17)Senstivity =
TP

TP + FN

(18)

MCC =
TN × TP − FN × FP

√
(FP + TP)(FN + TP)(FP + TN )(FN + TN )

to the samples belonging to the negative class that is 
correctly identified by the predictor.

Results and discussion
Four types of rigorous tests, including the self-consist-
ency test, independent set test, K-fold with 5 and tenfold 
cross-validation, and jackknife testing, were carried out 
to evaluate predictor robustness.

Self‑consistency
A simple test that is frequently used to assess a predic-
tor’s accuracy is the self-consistency test. Without per-
forming a train-test split, the model was trained on the 
entire set of data to ensure that the prediction was self-
consistent. Following training, the model is tested against 
the training dataset to determine whether all classifi-
ers have formed the model appropriately [39]. Since the 

Fig. 4 Stacking architecture

Fig. 5 Blending architecture
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model was trained and tested using the same dataset, 
the self-consistency test illustrates the consistency of the 
model with respect to its data [40]. Table 1 displays the 
results of self-consistency.

Table  3 presents the various techniques employed to 
test self-consistency, each of which has been demon-
strated. All the employed methods exhibit perfect accu-
racy across all evaluation metrics, indicating that the 
predictor aligns consistently with the data.

Following that, a ROC curve was utilized to evaluate 
the accuracy of each predictor. The findings reveal that 
all the predictors achieved a perfect score of 100% except 
Blending of classifiers. Figure  6 visually represents this, 
showcasing that all the predictors attained the highest 
area under the curve score.

Independent testing
Another method for evaluating the performance of a pre-
dictor with unseen data is through independent testing. 

Typically, the data is divided into two parts for this evalu-
ation [22]. The first part, constituting 77% of the entire 
dataset, is allocated to the training set. In this set, input 
and output pairs are provided to the model to facilitate 
accurate learning. The remaining 23% is used to assess 
the predictor’s performance. In this testing phase, only 
input features are provided to the predictor, while the 
class label remains unknown. The predictor makes pre-
dictions on this unseen data, which was not exposed 
during the training phase [41]. All the evaluation meas-
ures discussed are presented in Table 2 for the employed 
classifiers.

According to the data presented in Table 4, the Stack-
ing classifier demonstrates remarkable performance with 
MCC and accuracy scores of 0.663 and 0.824, respec-
tively. The results obtained from testing on an independ-
ent dataset signify that the predictor performs well on 
unseen data, which was not encountered by the predictor 
during the training phase.

Table 3 Self consistency results

Model ACC SEN SPE MCC

RF 0.998 0.998 0.998 0.966

ET 0.998 0.999 1 0.996

LGBM 0.998 0.998 0.998 0.996

XGB 0.998 0.998 0.998 0.996

Stacking (ET, XGB, LR) 0.998 0.998 0.996 0.995

Blended (LGBM, RF, LR) 0.998 0.998 0.98 0.995

Fig. 6 Roc curve for self-consistency test

Table 4 Results from the independent set

Model ACC SEN SPE MCC

RF 0.769 0.775 0.844 0.550

ET 0.789 0.798 0.9 0.600

LGBM 0.789 0.796 0.867 0.590

XGB 0.809 0.816 0.9 0.634

Stacking (ET, XGB, LR) 0.824 0.831 0.911 0.663

Blended (LGBM, RF, LR) 0.804 0.806 0.822 0.609
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During independent-set testing, it is evident that stack-
ing classifier surpass other predictors, showcasing supe-
rior performance compared to all other methods. The 
results are visually depicted in Fig. 7.

Cross validation
Cross-validation is a distinct testing technique that oper-
ates differently compared to self-consistency and inde-
pendent testing. In self-consistency testing, the predictor 
doesn’t make predictions on unseen data since all the 
available data is utilized for training and the same-trained 
data is used for testing [42]. This limitation necessitates 
the use of independent testing to assess the performance 
of the predictor on unseen data. However, when inde-
pendent set testing is conducted on randomly distrib-
uted data, there is a chance that a considerable portion 
of the data may be overlooked [43]. To address this issue, 
cross-validation has been developed as a novel testing 
approach.

Fivefold cross‑validation
Cross-validation is an extensive testing method that is 
applied to all samples [44]. It involves dividing the data 
into k-folds, where the value of k can vary but is typically 
set to 5 or 10 in the literature. For example, when k = 5, 
the data is partitioned into 5 equal parts. In each itera-
tion, one fold is left out for testing, while the remaining 
four folds are used for training. This process is repeated 
until each fold has been used as a test set. The accuracy 
of each fold is computed, and the average accuracy is 

calculated as the final result. This approach ensures that 
all the data is both trained and tested in a disjoint man-
ner. The outcomes for each classifier are presented in 
Table 3.

Among the employed methods, the stacking approach 
has demonstrated superior performance in the fivefold 
cross-validation (CV) testing. It has achieved impressive 
accuracy and MCC scores of 0.808 and 0.616, respec-
tively. The results obtained from fivefold CV provide 
valuable insights into the effectiveness of the predictor 
as shown in Table  5. In contrast, independent set test-
ing may have missed some data that could potentially be 
crucial for the predictor’s learning. Thus, the fivefold CV 
approach has shown better results when compared to 
independent set testing.

In Fig. 8, the fivefold cross-validation (CV) AUC results 
are presented. Stacking classifier stands out among the 
other methods, achieving a remarkable roc-AUC score of 
0.889.

Fig. 7 Roc curve for independent set test

Table 5 Results from 5 fold CV test

Model ACC SEN SPE MCC

RF 0.749 0.71 1 0.505

ET 0.808 0.752 1 0.620

LGBM 0.783 0.773 1 0.568

XGB 0.797 0.807 1 0.596

Stacking (ET, XGB, LR) 0.808 0.796 0.806 0.616

Blended (LGBM, RF, LR) 0.8 0.746 0.850 0.601
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The violin plot combines the characteristics of box-
plots and kernel density plots to visually represent the 
distributions of different groups. In Fig. 9, a violin chart 

displaying fivefold cross-validation results in terms of 
accuracy is presented. It is evident that each fold’s accu-
racy can be attributed to each classifier. Notably, each 

Fig. 8 Roc curve for fivefold CV test

Fig. 9 Violin chart for fivefold CV test
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classifier exhibits the highest accuracy in fold 1 and the 
lowest accuracy in fold 4.

Tenfold cross validation
In tenfold cross-validation, the dataset is divided into 10 
equal-sized parts. This methodology involves training 
and testing ten models on these sub-datasets in a disjoint 
manner. In the first iteration, the first fold is used as the 
test set, while the remaining folds are utilized for training 
[19]. The accuracy score, specificity, sensitivity, and MCC 
score are calculated for this particular fold. Similarly, the 
models are tested on the second fold and trained on the 
remaining folds, and the evaluation metrics are com-
puted. This process is repeated for each fold, ensuring 
that all folds are validated. Finally, the average of all the 
evaluation metrics is calculated to determine and report 
the overall performance.

The results obtained from the tenfold cross-validation 
(CV) test are presented in Table  6. The XGB classifier 

demonstrates superior performance compared to the 
other classifiers, achieving an accuracy score of 0.802 and 
an MCC score of 0.610. These results from the tenfold 
CV test surpass the results obtained from the fivefold CV 
test, indicating improved performance and consistency in 
the predictions.

In Fig. 10, the AUC scores for each classifier in the ten-
fold cross-validation (CV) are displayed. ET stands out 
with a commendable AUC score of 0.889, closely fol-
lowed by stacking with an AUC score of 0.898 and XGB 
with an AUC score of 0.884. These scores highlight the 
strong performance of these classifiers in terms of pre-
dictive accuracy and discrimination.

Figure  11 presents the results of the tenfold cross-
validation, showcasing the excellent performance of the 
models. Fold 6 demonstrates the highest accuracy, while 
fold 2 exhibits the lowest accuracy. Notably, the mean 
accuracy reflects consistent and favorable results, as evi-
denced by the small gap between the highest and lowest 
values. Overall, the tenfold cross-validation demonstrates 
the models’ strong performance across different folds.

Jackknife
The Jackknife method is a robust testing measure that 
divides a dataset into n-folds, where n represents the 
total number of samples [21]. In each iteration of the 
Jackknife process, one sample is selected as the test 
instance, and the remaining samples are used as the 
training set. This process continues until each sample 
has been used for testing once, while the rest of the 

Table 6 Results from 10 fold CV test

Model ACC SEN SPE MCC

RF 0.770 0.747 1 0.543

ET 0.791 0.759 1 0.588

LGBM 0.796 0.787 1 0.593

XGB 0.802 0.786 1 0.610

Stacking (ET, XGB, LR) 0.801 0.781 0.809 0.604

Blended (LGBM, RF, LR) 0.791 0.759 0.827 0.588

Fig. 10 Roc curve for tenfold CV test
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samples are utilized for training. The results obtained 
from the Jackknife self-consistency testing are pre-
sented in Table 5 below.

Table  7 displays the results obtained from the jack-
knife testing. Among the employed methods, the stack-
ing classifier has demonstrated the best performance, 
achieving an accuracy score of 0.828 and an MCC score 
of 0.657 for the jackknife test. This testing approach has 
yielded the most favorable results compared to all other 
testing methods employed in the analysis.

In Fig.  12, the ROC curve for the jackknife testing 
is presented. The ensemble-based bagging approach, 
stacking, outperforms the other methods, demonstrat-
ing superior performance in terms of the ROC curve.

Table  8 highlights that the proposed approach BBB-
PEP-Prediction has achieved the best results when com-
pared to existing state-of-the-art studies. These results 
have been obtained from independent set testing con-
ducted in the proposed study.

Comparative analysis
This study utilized an in-silico method to identify inter-
actions between BBB peptides. Human-constructed 
features were employed for peptides, utilizing position-
specific and composition variant features to transform the 
sequences into enumerated forms. The resulting feature 
vectors were high-dimensional, so statistical moments 
such as Raw, Hahn, and central-based moments were 
used to reduce the dimensionality. This study extracted 
significant information about the properties of peptides, 
surpassing previous studies. State-of-the-art machine 
learning ensemble approaches including bagging, boost-
ing, stacking, and blending were employed. RF and 
ET were used in the bagging approach, while XGB and 
LGBM were utilized in the boosting approach. Stacking 
involved ET and a XGB as base learners, with LR serv-
ing as the Meta learner. LGBM and RF were used as base 
learners, with LR as the Meta learner to reveal different 
patterns in order to identify the BBB peptides. LGBM, 
ET and XGB have been optimized by using Randomized 

Fig. 11 Violin chart for tenfold CV test

Table 7 5Results from jackknife test

Model ACC SEN SPE MCC

RF 0.776 0.748 0.804 0.552

ET 0.817 0.785 0.849 0.636

LGBM 0.816 0.809 0.823 0.633

XGB 0.8 0.802 0.797 0.600

Stacking (ET, XGB, LR) 0.828 0.808 0.832 0.657

Blended (LGBM, RF, LR) 0.8 0.795 0.804 0.599
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Search CV to find the optimal parameters for accuracy 
enhancement. The employed classifiers effectively dis-
tinguished between both classes and the created feature 
space for BBB peptides demonstrated strong coefficients. 
Four types of testing were performed: self-consistency, 
independent set testing, cross-validation testing with 5 
and 10 folds, and jackknife testing, to evaluate the pre-
dictor’s performance. Stacking classifiers consistently 
showed the best results across most of the tests, achiev-
ing an AUC score of 0.913, which outperformed existing 
methods. The accuracy scores for stacking in self-con-
sistency, independent set testing, and cross-validation 
testing with 5 and 10 folds, as well as jackknife testing, 
were 1, 0.913, 0.889, 0.898, and 0.898, respectively. Com-
pared with Chen et  al. [11], who achieved the highest 
Accuracy score of 0.7727 in an independent set. Our pro-
posed model BBB-PEP-Prediction achieved an improved 
Accuracy score of 0.824 for predicting BBB peptides. The 
computed features in this study were more robust and 
stringent in capturing the properties of sequences com-
pared to other feature computation approaches. Overall, 

the results, particularly in cross-validation and jackknife 
tests, indicate a high level of generalization capability of 
the predictor. The complete results of the random forest 
experiment are shown below.

Boundary visualization
In this section, we showcase the visualization of deci-
sion boundaries. When dealing with only two features, 
the decision boundary takes the form of a line that sepa-
rates the samples belonging to one class from those of the 
other class. The visualization techniques employed in this 
study encompass boundary visualization for each classi-
fier and raw sequence visualization.

In Fig.  13, the boundary visualization for each classi-
fier is depicted, illustrating how they classify the positive 
and negative classes by creating distinct discrimination 
boundaries. The input data was composed of samples 
from both classes. After passing through heterogene-
ous classifiers, each classifier generated its own space for 
class discrimination. It is evident that the ET classifier 
has created a space with the fewest misclassified samples, 
demonstrating its effectiveness in accurately separating 
the classes.

In Fig.  14, the raw feature space visualization is pre-
sented, which showcases the separability of the data. The 
visualization of the feature space demonstrates remarka-
ble results, indicating that the computed features on BBB 
peptides hold significant discriminatory information. 
The data is clearly separated into two distinct clusters, 

Fig. 12 Roc curve for jackknife test

Table 8 Comparison with previous studies

Author Accuracy Specificity Sensitivity MCC

BBPpred [9] 0.6667 0.6566 0.6768 0.3334

B3Pred [10] 0.6768 0.6465 0.7071 0.3542

BBBPredict [11] 0.7727 0.7778 0.7677 0.5455

BBB-PEP-prediction 0.824 0. 911 0.831 0.663
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representing the different classes, and can be effectively 
discerned by the classifiers employed in the study.

Conclusion
This study focuses on the computational identification 
of BBB peptides, which may revolutionise drug deliv-
ery to the brain and open up new treatment options for 
disorders of the central nervous system (CNS). Peptide 
sequences were examined to learn more about their 
properties using a variety of feature computation tech-
niques, such as PRIM, RPRIM, AAPIV, RAPPIV, and 
FV. Predictive models were built using ensemble-based 
techniques like bagging, boosting, stacking, and blend-
ing. Bagging used RF and ET classifiers, boosting used 
XGB and LGBM, and stacking used LR as the meta-
learner in addition to ET and XGB as base learners. RF 
and LGBM served as the base learners in the blend, and 

LR served as the meta-learner. Randomized Search CV 
was used to optimize the hyper parameters for the XGB, 
LGBM, and ET. Self-consistency, independent set test-
ing, K-fold cross-validation (5 and 10 folds), and jack-
knife testing, along with evaluation metrics like ACC, 
SPE, SEN, and MCC, were used to thoroughly evalu-
ate the predictor’s performance. When compared to 
biological sequence data, the computed features show 
increased robustness and precision. When compared 
to other feature computation techniques, the proposed 
study accurately reflects sequence properties. As a 
result, the method has shown superior performance, 
especially in an independent set test, highlighting its 
improved capacity for predictive generalization. RF 
consistently outperformed other bagging techniques. 
The stacking classifier achieved high accuracy, speci-
ficity, sensitivity, MCC, and ROC score of 0.824, 0.911, 
0.831, 0.663, and 0.913, respectively. Independent set 
testing produced the best results. Despite the fact that 
this study offers insightful information about BBB pep-
tide identification, it acknowledges the drawback of not 
considering deep neural networks. Future studies might 
take into account using deep learning architectures for 
automated feature learning, such as FCN, 1D CNN, and 
RNN with GRU or LSTM.
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