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Abstract 

Background Identifying the molecular formula and fragmentation reactions of an unknown compound from its 
mass spectrum is crucial in areas such as natural product chemistry and metabolomics. We propose a method 
for identifying the correct candidate formula of an unidentified natural product from its mass spectrum. The method 
involves scoring the plausibility of parent candidate formulae based on a parent subformula graph (PSG), and two 
possible metrics relating to the number of edges in the PSG. This method is applicable to both electron-impact mass 
spectrometry (EI-MS) and tandem mass spectrometry (MS/MS) data. Additionally, this work introduces the two-
dimensional fragmentation plot (2DFP) for visualizing PSGs.

Results Our results suggest that incorporating information regarding the edges of the PSG results in enhanced 
performance in correctly identifying parent formulae, in comparison to the more well-accepted “MS/MS score”, 
on the 2016 Computational Assessment of Small Molecule Identification (CASMI 2016) data set (76.3 vs 58.9% cor-
rect formula identification) and the Research Centre for Toxic Compounds in the Environment (RECETOX) data set 
(66.2% vs 59.4% correct formula identification). In the extension of our method to identify the correct candidate 
formula from complex EI-MS data of semiochemicals, our method again performed better (correct formula appearing 
in the top 4 candidates in 20/23 vs 7/23 cases) than the MS/MS score, and enables the rapid identification of both the 
correct parent ion mass and the correct parent formula with minimal expert intervention.

Conclusion Our method reliably identifies the correct parent formula even when the mass information is ambigu-
ous. Furthermore, should parent formula identification be successful, the majority of associated fragment formulae 
can also be correctly identified. Our method can also identify the parent ion and its associated fragments in EI-MS 
spectra where the identity of the parent ion is unclear due to low quantities and overlapping compounds. Finally, our 
method does not inherently require empirical fitting of parameters or statistical learning, meaning it is easy to imple-
ment and extend upon.

Scientific contribution Developed, implemented and tested new metrics for assessing plausibility of candidate 
molecular formulae obtained from HR-MS data.
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Introduction
Notwithstanding improvements in experimental 
instrumentation and technique, the determination of 
the molecular formula of an unknown compound from 
mass spectrometry (MS) data remains a key bottleneck 
to further analysis, especially if the molecular ion is 
in low abundance or overlapping with other unrelated 
fragments. To address this, we consider here a slightly 
more general problem: to annotate with molecular for-
mula every mass peak (if possible) in the mass spec-
trum of low-to-medium mass compounds (Da ≤ 1000 ) 
—a process we call whole-spectrum formula annotation.

Usually the unknown compound is present in a mix-
ture; we assume so here. Then, the nature of the mass 
spectra obtained is tightly coupled to physico-chemical 
properties of that unknown—since these dictate both 
the kind of separation techniques used to purify it at 
the inlet of the mass spectrometer, (e.g. liquid chro-
matography (LC) or gas chromatography (GC)), and 
the ionization method used to form the parent ion in 
the spectrometer, (e.g. “hard” electron-impact (EI) 
ionization, or “soft” low-energy methods such as elec-
trospray ionization (ESI), chemical ionization (CI), or 
electromagnetic field ionization [1]). Soft ionization 
methods are more likely to lead to the parent ion mass 
peak being observed in the spectrum, however such a 
spectrum generally does not contain many fragments, 
and consequently possesses less structural information. 
Therefore, putative parent ions from a soft first ioniza-
tion stage are often fed into a second hard ionization 
stage, that yield more fragments [2, 3]. This is usually 
referred to as MS/MS or MS2 . Regardless of the separa-
tion method or ionization technique, if separation fails, 
or if the spectrum is noisy, the undesirable spectral 
components may be be removed via signal processing 
techniques [4–6]. Assuming these difficulties are over-
come, there remains the problem of  achieving suffi-
cient resolution in the mass spectrometer to obtain the 
molecular formula of the analyte. Since the precision of 
mass spectral measurements are given in relative units, 
it follows that there will always be some analyte of suf-
ficiently large mass, or composed of so many elements 
it becomes impossible to unambiguously determine its 
molecular formula from a given spectrometer. Figure 1 
shows when the molecular formula may be obtained 
unambiguously as a function of resolution.

Formula annotation via isotopic profile matching
If the error inherent to the mass measurement is too great 
to unambiguously resolve the molecular formula of the 
unknown parent molecule, then a general strategy is to 
leverage extra information in order to annotate the spec-
trum. The first additional source of information which can 
be utilised to disambiguate between the possibilities is the 
abundance of the the M + 1 and M + 2 isotopologue mass 
peaks [7], or even the M + 3 mass peak [8], if these exist, 
relative to the monoisotopic mass peak. Grange and cow-
orkers call this approach ion composition elucidation (ICE) 
via relative isotopic analysis (RIA) [7]. More generally, this 
idea is called  isotopic profile matching, which implies more 
complex isotopic envelope calculations and comparisons. 
These techniques are widely used for the elucidation of 
molecular formulae with high-resolution mass spectrom-
eters [9–16].

Formula annotation via additional experiments
In some cases, if it is viable to do so, experimental interven-
tions alone may allow for the unambiguous determination 
of the parent molecular formula [17–20]. For example, one 
may use Fourier transform (FT) ion-cyclotron resonance 
(ICR), which allows for ultra-high resolution mass meas-
urements [21] in order to determine the analyte molecu-
lar formula unambiguously. FT-ICR instruments allow for 
extremely accurate mass measurements; they can possess 
a resolution of one million or greater. However, FT-ICR 
instruments are extremely expensive and consequently 
out of reach of most laboratories. In contrast, due to the 
increasing availability and ease of use of benchtop tandem 
mass spectrometers such as Q-TOFs and Orbitraps, mass 
spectrometers that can record accurate mass measure-
ments are becoming more accessible. In particular, in a 
general MSn experiment, which is possible with a tribrid 
Orbitrap mass spectrometer, the (fragment) ions compris-
ing a mass peak may be fragmented again, offering the 
potential to systematically reconstruct molecular formula 
of the parent from that of its parts [22–26]. Unfortunately, 
such experiments generate large amounts of data, which 
complicates the analysis; and if there is insufficient amount 
of sample, the signal from successive fragmentation may be 
weak.

Simple rule‑based methods for formula annotation
Another source of such extra information comprises “rules 
of thumb”, derived empirically, not always correct, but can 

(See figure on next page.)
Fig. 1 The number of molecular formulae as a function of mass tolerance of a mass spectrometer, assuming the element is made from an alphabet 
of elements C, H, N, O (above) and C, H, N, O, P, S (below), subject to the condition that the number of hydrogens in the formula is less or equal 
to twice the maximum number of carbon atoms assignable to the formula, and that each formula is at least 25% carbon by mass
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Fig. 1 (See legend on previous page.)
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be used nonetheless to filter out unlikely candidate formu-
lae. Such rules include constraints on the number and type 
of elements in a given molecular formula such that they can 
be drawn as sensible Lewis structures. Well known exam-
ples are the “nitrogen rule”, [27, 28], Senior’s three rules 
[29], and the rule that the ring and double-bond equivalent 
(RDBE) value of a molecular formula take on integer val-
ues of zero or more [30]. The Kendrick Mass Defect rela-
tive to integer-normalized-mass CH2 groups [31], or other 
chemical groups or entities [32], may also be plotted, as in 
van Krevelen diagrams [33], which may also help molecu-
lar formula determination for specific classes of molecules 
[17]. By considering 400,000 compounds, Kind and Fiehn 
[8] derived “seven golden rules” that involve constraints of 
element valencies and elemental ratios. However, even here 
still 2% of known compounds do not satisfy all the rules; 
and the accuracy was even lower for “truly novel com-
pounds”, which  may be of  greatest interest.

Graph theoretical methods for formula annotation
In mass spectrometry, hard ionization primarily results 
in unimolecular fragmentations, where a compound 
breaks down into a cationic fragment and a neutral radi-
cal or stable molecule. These fragmentations can occur 
sequentially, leading to a reaction network that can be 
encoded as a directed acyclic graph (DAG). The graph’s 
vertices represent chemical species, and a directed edge 
encodes the relationship between parent and child frag-
ments. Such reaction networks have been called “fam-
ily trees” [34] and “identification trees” [35] in a mass 
spectral context, and the construction of such trees from 
mass spectra based on chemical knowledge enables the 
analyst to identify unknown analytes.

In general, one cannot conclude from (non-MSn ) mass 
spectra alone how fragment masses are related to each 
other at the level of the reaction network (e.g if one is 
a parent of the other, or if they are siblings that share a 
common parent ion). However, provided only fragmenta-
tion reactions occur, the formula of a child species must 
be a subformula of the formula of the parent species from 
which it is derived. This restriction allows one to con-
struct a number of reaction network-like graphs, which 
also assist in the formula and/or structural elucidation 
process, even if they do not correspond to the true reac-
tion network [24, 36, 37].

Although not necessarily graph-theoretical, an early 
example of the use of this restriction is by Grange and 
coworkers [7], who claimed that “determination of the 
unique composition of a fragment ion or a neutral loss 
requires less stringent error limits than for the [parent] 
ion” (see also [38]). From this, they proposed an “ion 
correlation” algorithm for MS/MS spectra, where for a 
given candidate formula of the precursor (parent) ion, 

candidate formulae for the most abundant fragment ions 
and corresponding neutral loss, were computed such that 
either the formula for the fragment or neutral loss spe-
cies has masses within an acceptable tolerance and are 
subformula of the formula for the candidate parent spe-
cies. If no corresponding formulae satisfying these con-
ditions exist for the select fragment mass peaks of high 
intensity, then the parent candidate formula was ruled 
out. In this way, one can reduce the number of plausible 
candidate formulae for the parent ion.

Böcker and Rasche [36] subsequently proposed a 
related graph-theoretical method, representing the mass 
spectrum by “fragmentation trees” (FT), illustrated in 
Fig.  2c. The FT comprises vertices that represent the 
mass peaks in the spectrum, and are labelled by their 
putative molecular formulae, and edges are connected if 
the subformula relationship holds. Each FT is associated 
with a score, which depends on a particular whole-spec-
trum formula annotation. The FT with the highest score 
defines the best annotation. The score of the FT is calcu-
lated as the sum of vertex scores, with each vertex score 
being the logarithm of a product of terms involving the 
number of weak-intensity peaks, predicted peak-mass 
deviation, heteroatom-carbon ratios, energy-depend-
ence of fragment and parent peak appearances, uncom-
mon neutral losses, and large-mass neutral losses. This 
method was first developed for MS/MS spectra, but later 
was generalised to MSn  [25] and EI-MS spectra [39]. The 
SIRIUS software package utilises this approach, com-
bined with isotopic profile matching, to perform whole-
spectrum annotation [40].

Pluskal and coworkers [14] proposed a very similar idea 
to that of Grange and coworkers, also for MS/MS spec-
tra. Rather than picking only the most highly abundant 
mass peaks, they instead filtered out parent candidate 
formulae by calculating the score, which they refer to as 
the “MS/MS score”,

for each parent candidate formula, where ninterpreted is the 
number of mass peaks which are explainable as subfor-
mula of the putative formula for the unknown parent and 
|N | is the total number of mass peaks in the spectrum. 
The parent candidate formulae with a score that fails to 
meet a certain user-defined threshold are rejected. This 
filter was implemented into the MZMine2 software pack-
age [41], tested on a metabolomic dataset of 48 com-
pounds from an extract of Schizosaccharomyces pombe 
cells, and obtained the correct formula in 79% of the 
cases, which was more successful than a similar method 
of Böcker and coworkers [13]. However, since several 
other complementary methods were used in conjunction 

(1)score =
ninterpreted

|N|
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to eliminate parent candidate formulae by both workers, 
and different data sets were used, it is difficult to con-
clude whether the MS/MS score performed better than 
the computation of fragment trees.

Similarly to the fragmentation graph of Böcker and 
coworkers, Guillevic and coworkers [42] defined a 
“pseudo-fragmentation graph” (see Fig.  2(a)), where 
the vertices correspond to all possible (parent and frag-
ment) candidate formulae and edges correspond to 
a formula-subformula relationship, from which they 
define a “likelihood estimator” that they use for “non-
target screening” (i.e. “quantifying unknown substances 
in a sample with little or no a priori knowledge”). Mix-
tures of predominantly halogen-containing gas mole-
cules were analysed via GC-EI-MS. In the construction 
of the pseudo-fragmentation graph, a pruning step was 
included to eliminate “singleton” vertices with no par-
ent or child, corresponding to either noise mass peaks 
or candidate formulae that did not correspond to the 
fragment represented by the measured mass. The set 
of “maximal fragments”, which are vertices possessing 
children but no parents in the pseudo-fragmentation 
graph then corresponds to the set of parent candidates 
for a given mass spectrum, if the molecular ion is pre-
sent. After further incorporation of isotopic informa-
tion, they then arrive at the most likely whole-spectrum 
annotation. The method was tested on 23 molecules of 
mass up to 338 Da, producing the correct parent ion 
formula in 80 % of the cases.

Finally, Xing and coworkers [43] recently developed 
the software package BUDDY, which performs formula 

identification for MS/MS spectra by what they refer to 
as “bottom-up formula interrogation”. Essentially, all 
fragment masses Mi , alongside the theoretical “neutral 
loss” M1 −Mi are used to query a formula database, 
yielding the query candidate subformula and candidate 
neutral loss set Ci and Ni respectively. The set of all pos-
sible (parent) candidate formula is then mathematically 
defined by the union

where Npeak denotes the total number of mass  peaks 
under consideration, and the addition term cij + nik 
denotes the formation of new molecular formulae by 
adding the two formulae in compomer form. Informally, 
the assumption is that any valid candidate formula can be 
made by “stitching together” at least one fragment for-
mula - neutral loss pair found within a molecular formula 
database, which is less restrictive and more amenable to 
discovering “unknown-unknowns” than directly search-
ing the parent mass in the database.

Each candidate formula is then scored/ranked by a 
multiple linear regression (MLR) model, utilising 14 
features derived from the isotopic profile of the precur-
sor (MS1 ) spectra and 24 features derived from the MS/
MS spectra. The authors report superior performance 
than SIRIUS [40] on a number of datasets [43], however 
they also note that there is a some probability (which 
was small, based on their benchmarking datasets) of 
“misdisposition”, or the incorrect discarding of the 

(2)
Npeak
⋃

i=1

{cij + nik : (cij , nik) ∈ Ci × Ni}

Fig. 2 a Böcker and coworkers’ fragmentation graph. Each vertex corresponds to a candidate formula for some mass in the mass spectrum, 
and vertices of the same color are candidate formulae of the same mass. Observe that there is no line between the C7H6O and C8H5O3 vertices, 
as they are not subformulae of each other. b A possible subformula graph, which is a subgraph of a and also explains the same mass spectrum 
encoded by (a). Note that all vertices possess distinct colours, which means masses in the spectrum are only assigned a maximum of one candidate 
formula. c A possible fragmentation tree (colourful subtree) of Böcker and coworkers. The vertices are also distinct colours, but each vertex 
only has one incoming edge
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correct formula, should it not lie within the set defined 
by Eq.  2, which is not the case with SIRIUS, since it 
generates all mathematically possible candidate formu-
lae with a mass deviation below a certain threshold.

This work
In this work, we outline a new method for whole-spec-
trum formula annotation, by first invoking the concept 
of what we call a the subformula graph, which repre-
sents a possible whole-spectrum formula annotation (i.e 
a mapping from the mass peaks in the spectrum to a 
corresponding candidate formula). This “subformula 
graph” is closely related to the “fragmentation graph” of 
Böcker and coworkers and defined similarly to that of 
the pseudo-fragmentation graph by Guillevic and cow-
orkers, except we assume from the outset that there is a 
single dominant “parent” ion which fragmented to give 
rise to the majority of the fragments present in the mass 
spectrum. We propose this change in terminology to dis-
ambiguate the concept, because such a graph does not 
necessarily correspond to actual fragmentation events 
occurring within the mass spectrometer, or even the true 
formulae of the analyte and its fragments, instead simply 
encoding formula-subformula relationships of a number 
of putative formulae assigned to masses within the mass 
spectrum.

We further extend upon this concept by also defining 
the parent subformula graph (PSG), a specific type of 
subformula graph that is uniquely defined for each can-
didate parent formula with respect to a given mass spec-
trum. We show that the concept of the PSG is valuable, 
because subsequently each (candidate) parent formula 
can then be scored by some function depending on the 
topology of the PSG. To demonstrate this, we devised 
two simple scoring functions which solely depend on the 
connectivity of our PSG and do not invoke specific frag-
mentation rules or arbitrary data-dependent weights — a 
restriction that makes our method generally applicable 
across all subfields of mass spectrometry where fragment 
masses are present. We also show that given reasonably 
accurate mass measurements, should the correct parent 
formula be obtained, the corresponding PSG also cor-
responds to an (approximately) correct whole spectrum 
annotation.

Our method (construction of the PSG, followed by 
application of either of our scoring functions) has been 
benchmarked using hundreds of mass spectra (both 
EI-MS and MS/MS spectra) against our implementation 
of the existing “MS/MS score” of Pluskal and cowork-
ers [14], corresponding to a vertex count of the PSG, as 

defined in this work1 and show that both of our scoring 
functions perform better than the “MS/MS score”. We 
also validate our method on “non-ideal” GC-EI-MS data, 
and show that in the case of EI-MS spectra where the 
identity of the molecular ion is unclear, a slight modifica-
tion of our method can extract both the correct molecu-
lar ion (mass) and its corresponding molecular formula 
from the mass spectrum, even at trace levels, if it is pre-
sent. Finally, we exhibit a way to represent the PSG; the 
two-dimensional fragmentation plot (2DFP), which is 
similar stylistically to plotted 2D-NMR data. We dem-
onstrate the utility of these plots in determining whether 
or not a certain annotation may be reasonable, thus sug-
gesting that candidate formula identification can be per-
formed by visually inspecting the PSG, as a complement 
to using scoring functions.

Methods
In this section we provide a mathematical description 
of our method for whole-spectrum annotation. We also 
relate our scheme to those employed by Pluskal and cow-
orkers [14], and the fragmentation tree of Böcker and 
coworkers [36], and show how our scheme can be used 
to analyse mass spectra from weak samples with overlap-
ping compounds. Table 1 summarizes the key parameters 
to be defined.

Basic notation and terminology
We closely follow the notation of our earlier paper [44] 
and others [37, 42], and for convenience the defined 
terms are in italic. A mass spectrum is considered here to 
be a list of Npeak mass peaks

Mmax is a maximum mass parameter that must be sup-
plied in all analyses below, and ideally should be chosen 
as small as possible. The relative intensities associated 
with the mass peaks can be defined analogously,

where Ii is the intensity associated with mass Mi . While 
most peaks are assumed to arise from a dominant  parent 
molecule (of mass M1 ) and its fragments, some may not 
be, and are regarded as interfering masses. Nevertheless, 
we refer to all non-parent masses as fragment masses. 
Following the notation of our previous paper [44], the 
unknown parent is assumed to be composed of elements 
in the elemental list or alphabet,

(3)

M =[M1,M2, . . . ,MNpeak
], where, for convenience,

M1 > M2 > . . .MNpeak
> 0, andMmax > M1.

(4)I = [I1, I2 . . . INpeak
]

1 We also have shown in our work, by benchmarking our method against it, 
that the “MS/MS score” can be applied to EI-MS data without issue.
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which have to be decided a priori; the associated (neu-
tral-charged) list of atomic masses are

We are only concerned here with the masses of the most 
abundant isotopes; however differing isotopes could be 
represented as distinct “elements” in the list. The true 
molecular formula associated with each molecular mass 
Mi , is

where the stoichiometric coefficients are f i , also called 
a compomer [45]. Thus the parent molecule associated 
with the largest-mass peak M1 has the formula associated 
with the coefficients f 1 . We often refer to  f i as the true 
molecular formula associated with Mi where no confu-
sion may arise; and define f  to be the true whole-spec-
trum formula annotation. The calculated mass of the i-th 
peak is given by

me is the electron mass, and Z the charge of the ion, 
which assuming the ion is singly charged is +1 or −1 , 
depending on ion mode.

Likely candidate formulae
In mass spectrometry the error in Mi is given as a rela-
tive quantity e.g. a typical instrument may have an error of 
10−5Mi , or 10 ppm. The meaning of this error from a sta-
tistical point of view is not clearly defined in the existing 
literature; for example, given an arbitrary number of mass 
measurements, how many would possess a measurement 
error exceeding this value? Regardless, due to the existence 
of a mass error, which increases with analyte mass, it is not 
always possible to determine f i from Mi with certainty. 

(5)E = [E1,E2, . . . ,EN ],

(6)m = [m1,m2, . . . ,mN ].

(7)(E1)fi1(E2)fi2 . . . (EN )fiN ,

(8)Mcalc
i = Mcalc(f i) =

N
∑

k=1

fikmk − Zme.

However, one may at least define a list of likely candidate 
formulae, if it is further assumed that the experimental 
masses are normally distributed random variables centred 
on Mcalc

i  and with standard deviation σi,

Notably, we use the standard deviation of the measure-
ment error, which is not equivalent to the mass error 
usually given for mass spectrometers, but has statistical 
meaning. The ci-th candidate, described by a chemical 
formula (E1)ni1[ci] . . . (EN )niN [ci] , with stochiometric coef-
ficients ni[ci] , is defined so that its calculated mass lies 
within δ standard deviations of the measured mass peak 
Mi i.e.

where �M
ci
i  is the signed mass deviation for candidate ci 

with formula ni[ci] and mass Mci
i  and N cand

i  is the total 
number of candidates for Mi . If an element does not 
appear in the chemical formula its corresponding sto-
chiometric coefficient is zero. A set of formulae that sat-
isfy equation (10) are said to lie within a δ window. In this 
work, as in ref. [42], we generally use δ = 3 , correspond-
ing roughly to a 99.7% confidence interval, but different 
values of δ will lead to different sized candidate formula 
lists. In addition, for convenience, the candidate formulae 
are ordered with respect to the absolute mass deviation, 
i.e.

Note that while ni[1] is the candidate formula with the 
smallest absolute mass deviation |�M1

i | , it may not be 
the best formula assignment with respect to the mass 

(9)Mi ∼ N (Mcalc
i , σi).

(10)|�M
ci
i | =

∣

∣Mi −M
ci
i

∣

∣ ≤ δ σi,

(11)M
ci
i = Mcalc(ni[ci]), for 1 ≤ ci ≤ N cand

i ,

(12)

ni[1], ni[2], . . . , ni[N
cand
i ] implies that

|�M1
i | < |�M2

i | < . . . < |�M
N cand
i

i |.

Table 1 User-specified parameters and scoring function choices, along with their definitions

Parameter Equations Description

E ,m,N (5)-(6) The alphabet of elements, their masses, and their number

δ = δ1 (10) Threshold for likely parent-candidate formula selection

δ2...Npeak (24) Threshold for likely fragment-candidate formula selection

Mlower , Mupper (25) The minimum and maximum plausible masses for parent ions

Inoise (4) Intensity cutoff for fragment masses

sne (20) Normalized edge-count score

sLBJ (22) Li-Bohman-Jayatilaka product score

sv (18) MZmine 2 normalised vertex count
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spectrum as a whole; we expand on this below. The con-
struction of lists of all mathematically possible candidate 
formula containing some or all of the elements in the 
alphabet and lying within certain limits of the measured 
mass peak comprises a variant of the knapsack prob-
lem, known as the money-changing problem see e.g. [42, 
44, 46], whose solutions for molecules of weight up to 
M = 1000 can be easily and efficiently read off from a 
molecular formula tree [44].

A problem that may arise in practice is the choice of 
σi for an arbitrary mass spectrum. One possible way of 
obtaining this value is by empirically measuring the mass 
deviation of a large number of known compounds (and 
fragments) on the particular instrument, and then esti-
mating σi based on the aforementioned assumption of 
the error being normally distributed. If this cannot be 
done, then the experimentalist may choose to intention-
ally overestimate σi . While this introduces a number of 
additional candidate formulae, one can nonetheless be 
reasonably confident that the correct formula will be 
taken into account.

The subformula restriction
We have assumed that most mass peaks in the spectrum 
arise from a dominant parent molecule, which is nothing 
other than assuming that separation and purification of 
the unknown has been (somewhat) successful. Assuming 
further that each fragment arises from a unimolecular 
dissociation reaction we are led to the subformula restric-
tion [37], namely that

which is a formalisation of the assumption that the atoms 
in any fragment ion in the mass spectrum must be a sub-
set of the atoms in the parent ion. The partial order sym-
bol � can be read as “precedes or is equal to”, and it is 
transitive [36] i.e.

As before, we extend the meaning of this symbol to the 
corresponding molecular formula e.g. for a hydrocarbon 
parent C2H2 , we may write CH2 � C2H2 , which means 
[1, 2] � [2, 2] with respect to alphabet [C,H] . However, 
C4H4 � C2H2 , or equivalently, [4, 4] � [2, 2] . Devising 
the subformula restriction allows us to define the neutral 
loss formula of f i , with respect to f 1:

Equation (13) then implies that lik ≥ 0 , for all 1 ≤ k ≤ N  , 
which means li is always a valid molecular formula (with 
non-negative coefficients).

(13)
f i � f 1, which means that fik ≤ f1k , for all 1 ≤ k ≤ N

(14)f i � f j and f j � f k implies f i � f k .

(15)li = f 1 − f i.

The subformula graph
Aside from the subformula restriction, for a collection of 
fragments in a mass spectrum, one may also intuit that 
it is likely (but not guaranteed) that f i � f j , for a given 
pair of fragment masses Mi and Mj , where Mj > Mi . A 
convenient way to encode these relationships for a collec-
tion of molecular formulae present in a mass spectrum is 
via the subformula graph (SG), as illustrated in Fig. 2(b). 
Typically, a graph is defined by two sets; a set of NV  ver-
tices, or nodes, and a set of pairs of vertices, called edges. 
Since the SG is a (weakly) connected graph, due to the 
root vertex f1 being connected to all other vertices, it can 
be defined as

Each of the vertices Vi represents a distinct annotated 
mass peak Mi in the mass spectrum labeled by formula 
f i , so in an SG we can refer vertices and mass peaks 
interchangeably.2 Note that the set of edges in the SG 
is entirely determined by the whole-spectrum formula 
annotation F  , since if f i � f j then the pair of vertices 
(Vi,Vj) , or edge, must be in the SG set. We may also 
sometimes write Vi � Vj , an abuse of notation, which 
implies a subformula restriction on the corresponding 
formula associated with the vertices, or mass peaks. It is 
important to note that not all mass peaks can be labelled 
by a (fragment) formula of the analyte. In these cases, if 
the assumption of unimolecular dissociation holds, the 
masses may have originated from instrumental or chemi-
cal noise. Thus, NV ≤ Npeak for any arbitrary SG.

Subformula graphs made from candidate formula lists
Since there is uncertainty concerning the assignment of 
a molecular formula to a particular mass peak, we sug-
gest that ranking whole-spectrum formula annotation 
may be better than assigning the formula with the small-
est mass deviation to each mass separately. The first step 
in developing this idea is to define the set of all possible 
whole-spectrum assignments n[c] . Naively, this is just 
the set of candidates {ni[ci]}

i=Npeak
i=1  taken over all com-

binations of c1, c2 . . . cNpeak
 . This is evidently a very large 

number: if there were only two candidates per mass peak 
(and in practice there may be hundreds) the number 
would be 2Npeak . For our purpose, we consider this num-
ber impractically large. In order to navigate this massive 
search space, we first define the concept of a valid whole-
spectrum annotation: n[c] is valid iff ∀i, ni[ci] � n1[c1] . 

(16)

SG(f ) =

{

(Vi,Vj)

∣

∣

∣

∣

Vi ≡ f i, Vj ≡ f j , f i � f j

}

2 In the mathematical literature, the definition of a graph also includes its 
vertex set; here, in the interests of brevity and readability, we leave these 
vertices defined implicitly.
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In other words, all fragment candidate formulae must 
be subformulae of the parent candidate formula. This 
implies that for some n1[c1] , in order to compute a possi-
ble whole-spectrum annotation one only need to choose 
from a subset of all candidates {ni[ci]}

ci=N cand
i

ci=1  ; those 
which are subformulae of n1[c1] . This reduces the time 
required to generate feasible candidates, as the search 
space is reduced from all possible formulae to all possible 
subformulae of n1[c1] , which is much smaller. Also, due 
to the subformula constraint, we can encode any valid 
whole-spectrum assignment n[c] as an SG, with each ver-
tex instead associated with the corresponding candidate 
formula,

Here n[c] is a particular whole spectrum formula annota-
tion defined for candidates ci in c , which has  size Npeak , 
but as before there are only NV [c] ≤ Npeak vertices in the 
SG, due to the subformula restriction.

Number of vertices in the candidate subformula graph
A key observation that can be made is that the value of 
NV [c] for any given SG(n[c] ) depends only on the choice 
of the parent candidate n1[c1] , as the subformula restric-
tion is applied with respect to the parent. By Occam’s 
razor, we can therefore conclude that a parent candidate 
which possess a higher NV [c] is a better (more parsi-
monious) “explanation” for the fragment mass than one 
with a lower NV [c] , since we do not need to assume that 
many mass measurements either have an anomalously 
high mass deviation, or originate from noise. This singu-
lar principle underpins many of the existing methods for 
molecular formula annotation that uses fragment infor-
mation, such as those of Pluskal and coworkers  [14], 
Grange and coworkers [7], or Meringer and coworkers 
[37]. In the latter method, the criterion for an “anno-
tated” fragment mass is the existence of a candidate 
fragment formula ni within some mass deviation of Mi , 
while in the former two methods, the criterion is instead 
the existence of a corresponding neutral loss li which is a 
subformula of the parent, within some mass deviation of 
the mass difference M1 −Mi . Since every ni satisfying the 
subformula restriction possess a valid li , the two methods 
are equivalent for a sufficiently large δ , where the prob-
ability of an anomalous mass measurement possessing a 
deviation surpassing the window is negligible. The above 
naturally allows for a score sv(n1[c1]) to be computed for 
a given parent candidate formula, based on the normal-
ised vertex count

(17)

SG(n[c]) =

{

(Vi,Vj)

∣

∣

∣

∣

Vi ≡ ni[ci], Vj ≡ nj[cj], ni[ci] � nj[cj]

}

.

with NV  defined as before. This is equivalent to Eq.  1, 
which is the “MS/MS score” used by Pluskal and cowork-
ers [14].

Parent subformula graphs
Following on from the observation regarding the impor-
tance of the parent candidate formula, and to further 
reduce the number of SGs, since the search space may 
still be potentially intractable, we consider the parent 
subformula graphs,

where ni[s1] denotes, for some candidate formula ni[k] , 
the smallest k such that ni[k] � n1[c1] . In other words, 
every fragment mass Mi is annotated with the molecu-
lar formula possessing the least mass deviation, sub-
ject to the constraint that it is a subformula of n1[c1] . 
Clearly,  there are only N cand

1  graphs of this type, one 
for each parent candidate, meaning these SGs can be 
uniquely labelled by and thus used to score each n1[c1] . 
We also can define a neutral loss parent-candidate 
subformula graph, NSG(n1[c1]) , the counterpart to 
PSG(n1[c1]) , except that each vertex Vi is labeled by the 
neutral-loss formula with least mass deviation (with 
respect to M1 −Mi ) li[s1] . Our later results indicate 
that this corresponds a worse approximation of the cor-
rect fragment formula annotation than the PSG. Thus, all 
metrics (detailed in the next section) computed are cal-
culated with respect to the PSG, as opposed to the NSG.

Scoring parent‑candidate subformula graphs
A number of possible ways of ranking different parent 
candidate formulae may be derived based on the PSG. 
They could be, for instance, based on the presence of 
specific edges in the PSG (neutral losses), or specific ver-
tices (e.g weighting by the intensity of the masses corre-
sponding to formulae annotations in the PSG) or some 
general topological feature of the PSG, which may also 
be parameterised  empirically to optimise its perfor-
mance in distinguishing between correct and incorrect 
formulae. However, to most clearly demonstrate that 
scoring metrics based on the PSG possess an advantage 
above and beyond the well-accepted and closely related 
“MS/MS score”, and to maximise interpretability of our 
method over performance, we instead define three dif-
ferent scoring functions based purely on the connectivity 
of the PSG, which are not parameterised with empirically 

(18)sv(n1[c1]) = NV [c])/Npeak

(19)

PSG(n1[c1]) =

{

(Vi,Vj)

∣

∣

∣

∣

Vi ≡ ni[s1], Vi � Vj

}

.
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derived weights and are arguably the simplest that can be 
conceived. The first is the normalized edge count

where 
∣

∣PSG(n1[c1])
∣

∣ is the number of edges in 
PSG(n1[c1]) . The normalising factor (Npeak)(Npeak − 1)/2 
represents the maximum number of (undirected) edges 
that could be entertained in a graph of Npeak vertices; 
the theoretical maximum number of vertices in the PSG. 
This corresponds to using the number of child-parent 
subformula relationships as a measure of how well the 
spectrum is annotated as a whole. The next is the graph 
density

The normalising factor here is similar to before, but is 
instead based on a graph with NV ≡ NV [c1] vertices, the 
actual number of vertices in the PSG rather than the the-
oretical maximum. A shortcoming of this scoring func-
tion, which precludes its use, is that a subformula graph 
with only two vertices and one edge, which is likely incor-
rect, will have the maximal possible graph density score 
of 1. Since the normalised vertex count is small for this 
case, the graph density score may be corrected by using

Multiplying the graph density score with the vertex 
count (Eq. 18) penalises the overall score considerably in 
the just-mentioned deficient two-vertex one-edge case. 
Simultaneously, in cases where differing candidate for-
mulae possess very similar or identical normalised vertex 
counts, incoporation of the graph density score allows 
for better discrimination between candidates. For con-
venience, we have labeled this score by the initials of the 
authors in this paper, but we also call it the product score. 
Regardless of the scoring function used, the actual opti-
mum whole of spectrum formula assignment is obtained 
as one which maximises that score,

where “func” is the chosen scoring function.

Subformula graph versus Böcker and coworkers’ 
fragmentation tree
We note that the “fragmentation tree”, or the maximum 
colourful subtree of Böcker and coworkers [36] can be 
readily related to the terminology of this work. For exam-
ple, the “colourful” constraint corresponds to the annota-
tion of each mass peak with a unique candidate formula. In 

(20)sne (n1[c1]) =
2
∣

∣PSG(n1[c1])
∣

∣

Npeak(Npeak − 1)
,

(21)sgd (n1[c1])) =
2
∣

∣PSG(n1[c1])
∣

∣

NV (NV − 1)

(22)sLBJ (n1[c1]) = sv (n1[c1]) sgd (n1[c1]).

(23)f = arg max
c1

sfunc (n1[c1]),

our case, we circumvent the large search space of this prob-
lem by enforcing the heuristic of assigning each fragment 
mass to a subformula ni[S1] with respect to a given candi-
date n1[c1] . Strictly speaking, this is only an approximation 
of the optimal fragment mass assignments. However, if the 
approximation is truly optimal, then the maximum colour-
ful subtree with respect to n1[c1] can simply be expressed 
as the maximum spanning tree within PSG(n1[c1] ), which 
is a much easier computational problem to solve than the 
NP-hard maximum colourful subtree problem (see [36]). 
Indeed, in the nomenclature of our work, the “brute force” 
algorithm for computing the maximum colourful subtree 
involves enumerating all possible (valid) SGs and finding 
the maximum spanning tree in each[36]. Given our interest 
is only the assignment of formulae to mass peaks and not a 
description of the hierarchy of fragmentation events in the 
mass spectrum, and like Guillevic and coworkers [42], we 
do not attempt to find this maximum spanning tree.

Differing measurement precision for parent and fragment 
ions in noisy spectra
In mass spectra where the parent does not appear clearly 
(e.g. due to low concentration, high fragmentation or over-
lapping mass spectra of other compounds), one might be 
inclined to think there are more interfering masses. This 
suggests that a smaller value of δ should be used for frag-
ment masses than for the parent,

The intuition is that this will reduce the likelihood that 
interfering masses are mistakenly given annotations  in 
the subformula graph scoring procedure. This notion was 
tested in our results section.

Finding the parent ion in noisy spectra
It may be the case that the largest mass M1 in the spectrum 
is not the parent mass, due to interfering masses. In this 
case, we can locate the correct parent mass and then assign 
the correct parent formula, by widening the set of parent 
candidate formula,

Here Mp is the mass of a potential parent, which we refer 
to as a “candidate mass”, since it is analogous to a candi-
date formula. It is assumed that the parent ion mass lies 
between an upper bound mass Mupper and a lower bound 
mass Mlower . Therefore Nlower and Nupper correspond to 
indices of the smallest mass peak larger than Mlower and 
smaller than Mupper respectively. To eliminate potential 
interfering masses in noisy spectra, for each potential 

(24)δ = δ1 > δ2...Npeak

(25)
f = arg max

p ∈ [Nupper,Nlower]

c ∈ [1,N cand
p ]

smethod(np[cp]).



Page 11 of 22Li et al. Journal of Cheminformatics          (2023) 15:104  

parent candidate of mass Mp , we create a filtered mass 
spectrum before the computation of the PSG. The p-fil-
tered spectrum simply has all mass peaks Mf < Mp with 
a base-peak normalized intensity If  below the thresh-
old value Inoise removed. Creating a separate p-filtered 
mass spectrum for each parent candidate mass Mp pre-
vents possible parent masses, which could potentially be 
of very low intensity, from being discarded, while at the 
same time allowing low intensity fragment masses (which 
are likely to be noise) to be filtered out. Of course, this 
method can work only if the molecular ion is detectible 
in the spectrum, a fact which might not be known a pri-
ori. Also, the method will fail if a potential parent has a 
formula that is a subformula of another potential candi-
date of a greater mass. In particular, it will be unable to 
distinguish a parent [Mp]+ from adducts of it (e.g [Mp + 
Na]+).

Benchmarking‑choice of data sets
The three data sets below have been chosen to exhibit 
quite different characteristics: relatively large and well 
validated and isotopologue pruned MS2 , non-isotopo-
logue pruned, and some spectra from GC-MS analysis 
of floral semiochemicals, taken from recently published 
studies. The latter provides a real example using crude 
solvent extracts of natural compounds separated firstly 
by GC and analysed by EI-MS to test how accurate the 
method is at determining the molecular formula from 
complex samples. All benchmarking datasets were com-
pared with the vertex score sv , corresponding to the “MS/
MS” score.

CASMI 2016 competition: LC‑MS/MS data
The Computational Assessment of Small Molecule Iden-
tification 2016 (CASMI 2016) data comprises 622 monoi-
sotopic spectra [47]. This data set was curated as part 
of a blind competition held to benchmark the reliability 
of current computational methods for molecular struc-
ture determination from MS2 , with electrospray ioniza-
tion being the soft ionization method used. It comprises 
mostly non-volatile metabolites, almost all analysed 
in positive ion mode. The data set contains molecules 
which may contain the 11 elements CHNOFSiPSClBrI. 
Formula annotations were available for the parent and 
fragment ions. These annotations were the best formula 
after some recalibration and “tie-breaking” procedures 
were used. For this data set, we assume σi = 1 ppm. We 
refer to the original publications for further details. Data 
was obtained from the MassBank database [48]. We also 
investigated whether our method could resolve binary 
mixtures of spectra from the CASMI-2016 dataset. 
Methological details, as well as the results this investiga-
tion are included in the Additional  file 1.

RECETOX 2021 GC‑EI‑MS data: environmental pollutants
The RECETOX (Research Centre for Toxic Compounds 
in the Environment) exposome library of 386 high resolu-
tion GC-EI-Orbitrap MS spectra was curated for the pur-
pose of identifying anthropogenic pollutant compounds, 
and contains compounds with a “broad physicochemical 
diversity and toxicological importance” [49]. The mole-
cules in this library contain the 10 elements CHNOFSiP-
SClBr. Unlike CASMI 2016, since these are GC-EI-MS 
spectra, and no post-hoc de-isotoping was performed, 
isotopologue masses were present in the spectra. For this 
data set, we assume σi = 3 ppm. Out of the 386 spectra, 
240 contained a detectable monoisotopic molecular ion. 
In some cases, the monoisotopic (parent) mass may have 
been removed in the data cleaning process if the abun-
dance was too low. Again unlike CASMI 2016, only the 
parent mass, rather than fragment masses, were anno-
tated with the corresponding molecular formula. The 
data was downloaded from the supplementary material 
of the original reference.

ORCHID 2023 GC‑EI‑MS data: sexually deceptive West 
Australian orchid semiochemicals
The dataset of twenty compounds was obtained from 
previous studies [50–56] on the pollination chemistry of 
sexually deceptive West Australian orchids. Mass spec-
tra were acquired using EI-TOFMS on a Waters GCT 
Premier TOF-MS connected to an Agilent 5975 GC 
equipped with a BPX5 [(5% phenyl polysilphenylene-
siloxane), 30 m x 0.25 mm x 0.25 µm film thickness, SGE 
Australia] column, using helium as a carrier gas. The MS 
data is derived directly from biological extracts where 
target volatile compounds were separated by GC and is 
useful to test the method for determining molecular for-
mulae of target compounds in the presence of potentially 
co-eluting background metabolites. In general, these 
samples contain very low amounts of the targeted com-
pounds, in a complex sample matrix. For this data set, we 
assume σi = 10 ppm and the elements CHNOS are pre-
sent. We also set Mupper and Mlower to 250 and 130 Da 
respectively, as all compounds in this dataset lie within 
this mass range. We also show that each whole-spectrum 
annotation can be presented as a two-dimensional frag-
ment plot (2DFP), which is analogous to graphical repre-
sentations of 2D NMR data; see Fig. 6 for a more detailed 
explanation of the plots.

Fragment formulae identification
The choice of whether or not to compute the PSG or 
NSG leads to potentially a different assignment of frag-
ment formulae even for the same parent formula, since 
the formula with least mass deviation to Mi is not neces-
sarily the formula with least mass deviation to M1 −Mi . 
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This means that the performance of our method will 
differ depending on if the PSG or NSG is used. Thus, in 
order to assess whether computing the PSG or NSG leads 
to the best performance, we decided to directly assess the 
rate of identification of fragment formulae depending on 
whether the PSG or NSG is computed. Note that in the 
case of NSG computation, each vertex corresponds to a 
formula assignment to neutral loss M1 −Mi instead of 
an assignment to Mi . To convert this neutral loss formula 
back to a fragment formula ni[c1] so we can check the 
correctness of the annotation, we simply take the (vec-
tor) difference f 1 − l1[1] , where f 1 is the correct parent 
formula.

Spectra removed and choice of element alphabets
Unless otherwise stated, we discarded all spectra that 
contained only the parent mass peak, since our method 
relies on the presence of fragmentation information. We 
also discarded spectra in which the parent mass peak is 
not present, or spectra where there is only one parent 
candidate formula. The number of spectra that remain 
for analysis then depends on the choice of alphabet. 
Following others [40] we sometimes use a fixed “base” 
alphabet comprising the elements CHNO and then any 
of the elements in PFSClBrI, if those were also present 
in these molecules. We denote this CHNO+. Likewise, 
CHNOP+ denotes a base alphabet of CHNOP and then 
any of the elements in FSClBrI, CHNOPF+ is the base 
alphabet of CHNOPF and any of the elements in SClBrI. 
Outside of benchmarking, in actual untargeted analysis, 
it is clearly not possible to know for certain beforehand 
which elements are present and which are not. How-
ever, we justify these alphabets in practice for the case of 
SClBrI, since the presence of these elements can be iden-
tified with high probability from the presence of strong 
isotopologue mass peaks. In the case of the elements F 
and P, those elements are rather less common for natural 
systems, and one may know beforehand that the sample 
may (or may not) contain compounds possessing these 
elements. Table 2 summarises the number of spectra in 
these categories, along with some results, which are dis-
cussed later.

Validation metrics
To assess the number of correctly identified spectra we 
used the rank r of the correct parent molecular formula, 
based on the scoring method used (should two parent 
candidates possess identical scores, its mass deviation is 
used to break the tie), and the relative ranking position 
(RRP),

We report averages of the RRP value, and also provide 
a histogram of average RRP as a function of number of 
likely candidates.

The correctness of our whole-spectrum (i.e fragment 
formulae, not just parent formula) annotation for the 
CASMI 2016 data set was measured using the true posi-
tive rate,

and the positive predictive value,

We decided not to use the true negative rate, since our 
method can either incorrectly identify a noise peak with 
a formula, or correctly identify a fragment peak, but 
annotate it with the wrong formula. The TPR and PPV 
could not be used for the RECETOX 2021 library since 
fragment masses were not annotated. In tests for both 
the parent and fragment formula annotations, we define 
a “match” or positive hit as an exact formula match to the 
monoisotopic peak.

Program and availability
A Python 3 program that implements the methods 
described in this paper and generates 2DFPs from an 
input mass spectrum is available at github.com/
seanli9604/subformula_graph, alongside all 
data analysed and scripts used to perform data analy-
sis. An archived version is available at 10.5281/
zenodo.7937927. The program is split up over five 
modules. The formula module generates the molecu-
lar formulae needed for our method using the molecular 
formula tree method in our earlier work [44]. The spec-
trum_reader module parses mass spectra in a variety 
of file formats, and corrects for the electron mass (and 
proton masses in the case of MS/MS), the mass_spec-
trum module computes and scores the PSGs, and the 
visualisation module generates the 2-dimensional 
fragment plots. Finally, the constants module con-
tains symbols, nominal masses, exact masses, and DBE of 
the elements CHNOFSiPSClBrI, which can be modified 
should the user wish to include custom elements and/or 
isotopes. The Python libraries networkx, matplot-
lib, seaborn, netCDF4, numpy and pandas are used 

(26)RRP =
r − 1

Ncand − 1
.

(27)
TPR =

No. of formula matching the reference annotation

Total number of reference annotations
,

(28)

PPV =
No. of formula matching the reference annotation

Total number of annotations by our method
.
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in the program. Currently accepted file formats for mass 
spectra are CSVs, MassBank data files (.msp), JCAMP-
DX, or netCDF (.cdf ).

A key advantage of using the molecular formula tree 
method for mass decomposition is that the method 
allows for a list of molecular formula trees of all 
masses m < M , encoding all possible molecular for-
mulae with nominal mass m, to be pre-computed [44]. 
This optimisation considerably improves the speed of 
our program, since our method requires Npeak ∗ N

cand
1  

mass decompositions to generate all whole-spectrum 
formula annotations with respect to one parent mass 
M1 . With this optimisation, it only took 464 s to ana-
lyse all mass spectra in the CASMI-2016 data set 
(CHNOPF+), 102 s for the RECETOX data set and 44 s 
for the ORCHID data set, suggesting that our program 
can be used for high-throughput applications.

In our analysis, it was assumed that the (neutralised) 
parent formula possesses an non-negative integer ring 
plus double bond (RDBE) parameter, all fragment for-
mulae possess non-negative (but not necessarily inte-
gral) RDBE values, and that each parent candidate 
formula contained more than 25% carbon by mass.

Details of the computer used
A standard Lenovo 81GC laptop with 8Gb of physi-
cal memory installed, an Intel(R) Core(TM) i7-8550U 

CPU, 4 cores, 8 logical processors, and a clock speed of 
1.8GHz was used for all calculations.

Results and discussion
Fragment formula annotation
The results on the mean true positive rate (TPR) and 
positive predictive value (PPV) for fragment formulae 
identification is shown below in Fig. 3. In both the PSG 
and NSG case, TPR rapidly increased while PPV slowly 
decreased as the mass deviation limit increased. The 
rapid increase of the TPR as mass deviation increases is 
consistent with the increased proportion of fragment for-
mulae that can be assigned a formula as the mass devia-
tion increases. However, the PSG resulted in a notably 
higher number of correct fragment formulae annota-
tions, with a mean PPV value of ≈ 0.996 even at the mass 
deviation cutoff of 5 ppm, in contrast to the 0.970 PPV of 
the NSG at the same mass deviation value. On the other 
hand, the TPR in the PSG case is generally lower than 
the TPR of the NSG case. However, past the mass devia-
tion cutoff of 4ppm, the TPR of PSG becomes greater. 
The TPR of both methods plateau as the mass deviation 
cutoff increases further, due to the in-built restriction 
that any fragment formula candidates need to possess an 
RDBE value of zero or above.

These results suggest that for a given mass deviation 
cutoff, the NSG will successfully annotate more frag-
ments in the mass spectrum, but for any given annotated 

Fig. 3 The mean PPV and TPR obtained for the fragment annotations, computed via constructing the PSG (denoted by “V”) and the NSG (denoted 
by “NL”) as a function of the mass deviation cutoff ( σi ), obtained by applying our method to all 622 compounds in the CASMI 2016 dataset
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fragment formula, computing the PSG is more likely to 
result in the correct annotation. For our purposes, we 
choose to compute the PSG as a means for annotating 
fragment formulae (and evaluating rankings), contrary to 
existing methods, which often rely on performing mass 
decompositions directly on mass differences. In addition, 
the above also suggests that, at least for mass deviations 
close to σi = 1 ppm , the fragment formulae assigned 
by the PSG heuristic are correct in the vast majority of 
cases, if the parent candidate formula is correct.

Overall performance of the formula annotation methods
Table 2 shows the performance of our scoring functions, 
in relation to the vertex score sv , in terms of obtaining 
r = 1 , r ≤ 2 , and r ≤ 4 for the correct parent formula.

• On the CASMI data set, our two scoring functions 
and the (normalised) vertex score performed simi-

larly with the smallest alphabet, about 86.6−90.3% 
success rate in obtaining r = 1 . We note a slight 
increase in the success rate of all categories, and a 
decrease in the mean RRP, for both of our scoring 
functions compared to the vertex score We expect 
a lower success rate with larger alphabet size, since 
there are more available candidates, and this is 
indeed observed; in this case the advantage of the 
normalized-edge and LBJ product scores becomes 
apparent over the normalised vertex count score. 
Also, as we relax the constraint from r = 1 , all meth-
ods perform better: the LBJ product score has the 
best success rate for obtaining r ≤ 4 , and also for all 
but the smallest alphabet, in obtaining r ≤ 2 , a fact 
that is also borne out in the averaged relative rank 
positions, 〈RRP〉.

• On the other hand, for the RECETOX data set over 
the alphabet CHNO+, the performance for obtaining 

Table 2 Overall percentage success rates for predicting the rank of the correct parent formula ( r = 1 , r ≤ 2 , or r ≤ 4 ) for the different 
data sets, for different alphabets, and for the different scoring functions. The average relative ranking position 〈RRP〉 and the average 
number of mass peaks 

〈

Npeak

〉

 is also reported. For the RECETOX data set, -ClBr indicates removal of molecules with more than three of 
these atoms, due to potential isotope peak interference

% Success rate per

Data set Element Rank r Scoring function No. of Total no.
〈

Npeak

〉

Alphabet 〈RRP〉 sne sLBJ sv Spectra Of spectra

CASMI CHNO+ 1 90.3 87.7 86.6 236 575 24.8

≤ 2 93.6 93.2 91.9

≤ 4 97.0 97.5 95.3

〈RRP〉 0.016 0.020 0.027

CHNOP+ 1 80.0 82.4 72.1 365

≤ 2 89.9 91.2 84.7

≤ 4 94.2 94.8 91.2

〈RRP〉 0.050 0.042 0.073

CHNOPF+ 1 71.2 76.3 58.9 438

≤ 2 82.6 87.0 73.5

≤ 4 90.0 92.0 83.8

〈RRP〉 0.058 0.046 0.091

RECETOX CHNO+ 1 66.2 64.7 59.4 133 240 56.4

≤ 2 80.1 80.1 76.4

≤ 4 87.0 90.1 87.8

〈RRP〉 0.19 0.19 0.20

CHNO+ -3ClBr 1 77.5 75.5 68.1 94 45.1

≤ 2 87.0 87.0 81.5

≤ 4 89.1 93.5 90.2

〈RRP〉 0.09 0.09 0.11

ORCHID CHNOS 1 30.4 47.8 13.0 23 23 141.0

≤ 2 47.8 56.5 26.1

≤ 4 56.5 87.0 30.4

〈RRP〉 0.024 0.055 0.096
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r = 1 is lower at 58.4−66.2% for all scoring functions; 
but, interestingly, the mean RRPs are not as high as 
might have been predicted from these success rates. 
Indeed, looking at how many formulae possess r ≤ 2 , 
and r ≤ 4 , we see a rapid rise, up to 90.1% for the LBJ 
product score function with r ≤ 4 . Although a part of 
the decreased performance of all three methods may 
be attributed to the estimated experimental error, 
σ = 3 ppm , further investigation showed that the poor 
success rate for the correct formula in first place was 
due interference from isotopologue mass peaks in the 
spectrum. This was shown by removing all compounds 
with three or more chlorine or bromine atoms from 
the data set, and noting that the success rate increased 
significantly, with the normalised edge scoring func-
tion performing the best at 77.5% of correct parent for-
mulae obtaining r ≤ 1 and the mean RRPs also halving. 
This demonstrates that our method are a direct com-
plement to isotopic distribution-based methods; being 
significantly more effective in the case of mass spectra 
containing less isotopic information, as in the CASMI 
data set.

• For completeness, we consider the ORCHID data set, 
even though it was not chosen for validating formula 
annotation for a single, known parent mass. Neverthe-
less, we see an extremely poor performance from the 
vertex count score; it was only 30.4% accurate even in 
ranking the correct formula within the top four candi-
dates. We conclude that the vertex or “MS/MS score” 
is not viable for locating the molecular ion and its cor-
responding formula in practice. What is very surpris-
ing is that the correct formula obtained r ≤ 4 for the 
LBJ scoring function in 87.0% of the spectra; recall that 
for these spectra from compounds in low amounts as 
parts of complex mixtures, all mass peaks greater than 
130 Da were considered potential parents.

Dependence of success rate on the number of candidates
Figure 4 shows that there is a slightly better performance 
for sne and sLBJ over the sv scoring functions; at least one 
of the two scoring functions sne and sLBJ performs better 
than sv across all categories. We observe a general decrease 
in the success rate as the number of candidate formulae 
increases (correlated with the number of elements in the 
molecule). Overall, sLBJ performed slightly worse in cor-
rectly identifying formulae than the sne for the CHNO+ 

element inclusion list. However, this scoring function 
consistently outperformed other scoring functions for the 
other two element inclusion lists, especially for large num-
bers of candidate formulae. On the other hand, Fig. 5 shows 
that in the case of the RECETOX dataset, the three meth-
ods performed much more similarly, with again a slightly 
better performance for sne and sLBJ over the sv scoring 
functions, but only for the test cases with a relatively large 
( > 10 ) number of candidate formulae. In the other cases 
the performance was virtually identical. Overall, the results 
suggest that the increased ability (compared to sv for our 
scoring functions sne and sLBJ to discriminate between cor-
rect and incorrect parent formulae is most apparent when 
there is a large number of candidate formulae (e.g larger 
parent masses, larger alphabet).

Formula annotation for the ORCHID data in more detail
Overall, the molecular formula was correctly identified in 
11 out of 23 cases with sLBJ , and 7 out of 23 cases with sne , 
in comparison to just 3 out of 23 cases with sne . The cor-
rect molecular formula was in the top 4 ranked candidates, 
which is a reasonable number of candidates to examine and 
prune further manually, in 20 out of 23 cases with sLBJ and 
13 out of 23 cases with sne , compared to 7 out of 23 cases 
with sv . All test cases along with their ranks can be found 
in Additional file  1: Table S1 . In all cases, sLBJ produced 
better rankings for the correct formula than either sne or sv.

Due to the energy of bombarding electrons, it is possible 
that no trace of the intact molecular ion remains following 
ionisation. Indeed, this was the case with Compound 18; in 
this case, we decided that the “correct formula” is instead 
the largest fragment ion of the compound. However, in all 
other compounds in this data set, it was possible to iden-
tify the molecular ion and the corresponding candidate 
formula, even if the intensity is extremely low, and may 
be ordinarily discarded as “background noise” in the de-
noising process or during mass spectral interpretation. This 
result brings into question the missing molecular ions in 
EI-MS. Certainly, in some cases the ion may be truly absent 
(or below the detection limit of the instrument), but many 
other cases where one may report the molecular ion as 
absent, perhaps the molecular ion was still present, in trace 
amounts.

In some cases, the correct formula is ranked lower than 
a “similar” formula, containing one or two extra hydrogens 
(e.g Compound 7, refer to Additional file 1: Table S8 ). This 
is likely due to M + 1 or M + 2 isotopologue peaks that 

Fig. 4 The mean success rate of obtaining r = 1 for the correct parent formula using the scoring functions sne , sLBJ , and sv as a function 
of the number of likely parent candidates formulae Ncand (left) and mean RRP (right), for the CASMI data using the alphabets CHNO+ (top), CHNOP+ 
(middle) and CHNOPF+ (bottom). The number of spectra in each bin is given in parentheses

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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were mistakenly assigned a formula, and would not pose a 
problem in applications where the mass spectrum under-
goes de-isotoping and/or if a minimum intensity cutoff was 
also set for possible parent masses.

In this dataset, there are two notable test cases; Com-
pound 15(a) and Compound 20, where the correct for-
mulae were ranked very poorly by all three methods. 
In the case of Compound 15, the poor ranking may be 
attributed to the presence of a co-eluting compound. 
Raising the intensity cutoff to Inoise = 0.05 improves the 
rank of the correct formula drastically to fourth place 
with sLBJ . In the case of compound 20, its molecular mass 

is very small ( M = 130 ), so it is more likely for interfer-
ing ions that are significantly larger to be assigned for-
mulae that overlap with the molecular formula of interest 
(i.e the correct formula is a subformula of the proposed 
candidate). Indeed, if we eliminate all formulae with 
M > 200 , the correct formula C6H10O3 is now the top 
ranked formula with sLBJ (Additional file 1: Table S22).

In general, the method seems quite effective in terms 
of locating a likely molecular ion and molecular formula 
for the most abundant compound contributing to a given 
EI-MS spectrum. Furthermore, in the cases where the 
identity of a compound remains ambiguous, there exists 

Fig. 5 Breakdown of the rate of obtaining r = 1 for the correct parent formula (left) and RRP (right) for the entire RECETOX dataset (top) 
and the same dataset with compounds possessing three or more chlorine or bromine atoms removed (bottom)
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Fig. 6 2DFP generated from the PSG derived from the highest scoring (incorrect) parent candidate formula, C10H13N5O (top) and from the correct 
parent candidate formula, C8H12N2O (bottom), for Compound 1. The masses in the mass spectrum are coloured either blue or red, signifying 
the presence or absence of a suitable (fragment) formula annotation for the peak respectively. Each green dot denotes a pair of “explained” masses 
such that the annotated formula of one is a subformula of another
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extra information within the PSG, which can be used to 
discriminate between candidates; namely, the mass dif-
ference M1 −M2 and the sum of intensities of assigned 
fragment masses.

For example, an indication that a large, erroneous 
mass is proposed as the molecular ion is if the value of 
M1 −M2 – the difference between the putative molecu-
lar ion and the largest mass annotated with a fragment 
formula, is very large. In chemical terms, this means that 
the smallest possible neutral loss has a high mass. The 
assignment is especially dubious if the corresponding 
neutral loss also consists of multiple heteroatoms. Natu-
rally, there may be exceptions where a large M1 −M2 
value is chemically sensible. Thus, we do not incorporate 
this into the ranking scheme; the value of M1 −M2 is 
instead displayed explicitly in the 2DFP.

Another indication of an incorrectly identified candi-
date formula is if the set of assigned molecular formu-
lae and fragment formulae possesses a high score, but a 
number of peaks with high intensity cannot be assigned 
a fragment formula. In the case of a very small amount 
of compound this is not a reliable indication, since back-
ground or co-eluting compounds may result in relatively 
high intensity interfering mass fragments. However, if the 
peak is both sufficiently large and not overlapping, then 
this indicator would suggest that the molecular formula 
assignment is not appropriate. A detailed walkthrough of 
how these indicators can be used to identify the correct 
formula from a collection of likely candidate formulae (as 
obtained ranked by our method), with regards to specific 
cases within the ORCHID data set, is included in Sec-
tion 3 of the Additional file  1.

Discussion and future work
In this section we will discuss some possible improve-
ments or further applications of our method.

Alternative scoring
A very clear point of improvement that can be made is 
in our scoring function for candidate formulae; our two 
scores directly encode the assumption that fragment for-
mulae are likely to be subformulae of each other, and so is 
a proof-of-concept that this fact alone allows for the cor-
rect annotation to be distinguished from incorrect ones. 
However, clearly our method is unlikely to perform opti-
mally with respect to any given data set. For example, a 
straightforward avenue for improvement is to weight the 
two components of sLBJ differently, for example

where w is some weighting factor that can be tuned for 
different classes of compounds, or different quality of 
data. Another way of improving our method is to utilise 

(29)sweighted = sv(n1[c1])
wsgd(n1[c1])

some other metric calculable from the SG, for example 
the length of the longest path or the size of the maximal 
(directed) clique in the SG. This could perhaps be uti-
lised as parameters in an MLR model, analogous to what 
was implemented in the software package BUDDY by 
Xing and coworkers   [43]. A third avenue of improve-
ment for our method would be by incorporating (non-
unit) weights into the edges of the SG, corresponding 
to rewarding certain (theoretical) neutral losses that are 
“logical” and penalising those that are “illogical”, per-
haps with a machine learning process to acquire optimal 
weights from data. These avenues were not explored in 
this work, because we wish to first open up the possibil-
ity of developing methods for formula identification via 
the topology of networks constructed by formula-subfor-
mula relationships, such as the PSG in this work. Conse-
quently, we believe it is best to first present the simplest, 
most interpretable scoring scheme before any additional 
complexity is introduced, to facilitate further develop-
ment and/or implementation of similar methods and so 
that the advantages/disadvantages and the general nature 
of this class of methods are not obscured by implementa-
tion or training details.

Incorporation of isotopic information
Another way of improving our method in a straightfor-
ward manner would be to incorporate isotopic informa-
tion into the score of a given parent candidate formula, 
which was done in ALPINAC, the software of Guillevic 
and coworkers [42] or MZMine 2/3 [14]. Aside from 
matching a simulated isotopic profile to the experimen-
tally measured profile in the mass spectrum, our method 
can also be used to construct a PSG that include isotopo-
logues, instead of only monoisotopic formulae. However, 
one would need to place appropriate restrictions on the 
maximum number/proportion of minor isotopic atoms 
for a given formula which would enable it to contribute 
significantly to the presence of some mass peak in the 
spectrum. Furthermore, it would also be necessary to 
build into the scoring function some way of taking into 
account the intensity of the mass peaks. As our main goal 
in this work is to propose and validate a new metric of 
evaluating whole-spectrum formula annotations, rather 
than create a comprehensive software tool for the analy-
sis of mass spectra, we do not explore this option here.

Conclusion
In this work, we clearly defined the concept of a sub-
formula graph, previously existing within the literature 
as a component of other methods, in slightly different 
forms and under various other names. The subformula 
graph represents formula-subformula relationships 
amongst parent and fragment formulae. It is not only 
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defined with respect to true parent/fragment formulae, 
but can also be constructed from putative (candidate) 
formulae annotations of a mass spectrum, and used to 
assess the validity of such an annotation.

We then show that, with respect to a particular par-
ent candidate formula, we can construct a unique 
whole-spectrum annotation, represented as a type of 
subformula graph, the Parent Subformula Graph (PSG). 
We then devised two scoring functions, both of which 
incorporate the network density of the PSG, which can 
be used to assess the appropriateness of parent candi-
date formulae based on the whole-spectrum annotation 
derived from it.

We implemented this method into a Python program, 
and validated it on the CASMI-2016 (MS/MS) and 
Recetox (EI-HRMS) datasets. We first show that should 
the correct formula be obtained, the annotation of the 
corresponding fragment ions are also mostly accurate, 
indicating that, for high resolution instruments, the 
PSG is generally a good approximation of the subfor-
mula graph constructed from the true parent and frag-
ment formulae.

Then, we demonstrate that our scoring functions con-
sistently outperformed a simple vertex count (the MS/
MS score, commonly used in existing software pack-
ages such as MZMine as a filter for parent candidate 
formula) at ranking the correct molecular formula 
favourably, especially in the case of large numbers of 
candidate formulae, in the case of both EI-MS and MS/
MS spectra.

We also demonstrate with a smaller set of (GC-)EI-MS 
orchid semiochemical data that not only can our method 
be applied to “non-ideal” mass spectra possessing signifi-
cant interfering masses, by repeatedly applying PSG con-
struction and candidate scoring to all masses between a 
certain threshold value for plausible molecular ions, we 
can also detect the correct molecular mass (should such 
a mass be available, even at very low intensities) and cor-
respondingly retrieve the correct molecular formula, as 
well as the whole-spectrum annotation.

In the case that multiple high-scoring candidate masses 
and/or formulae are obtained in the above method, we 
can represent the PSG generated as a 2D Fragment Plot 
(2DFP), which allows the analyst to investigate the likeli-
hood or the validity of a number of possible parent can-
didate formulae more easily than directly interpreting the 
mass spectra. This shows that our method can be used 
to assist experimentalists in mass spectral interpretation, 
in addition to simply providing a score or ranking for 
candidates. The fact that spuriously high scoring formu-
lae can be seen by examining the 2DFP also indicates the 
possibility of incorporating other features from the PSG 
into statistical models or machine learning methods for 

candidate formula identification, in order to boost the 
performance of the “naïve” method in this work.
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