
Alon et al. Journal of Cheminformatics          (2023) 15:106  
https://doi.org/10.1186/s13321-023-00777-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

Continuous symmetry and chirality 
measures: approximate algorithms for large 
molecular structures
Gil Alon1*  , Yuval Ben‑Haim2 and Inbal Tuvi‑Arad2*   

Abstract 

Quantifying imperfect symmetry of molecules can help explore the sources, roles and extent of structural distortion. 
Based on the established methodology of continuous symmetry and chirality measures, we develop a set of three‑
dimensional molecular descriptors to estimate distortion of large structures. These three‑dimensional geometrical 
descriptors quantify the gap between the desirable symmetry (or chirality) and the actual one. They are global param‑
eters of the molecular geometry, intuitively defined, and have the ability to detect even minute structural changes 
of a given molecule across chemistry, including organic, inorganic, and biochemical systems. Application of these 
methods to large structures is challenging due to countless permutations that are involved in the symmetry opera‑
tions and have to be accounted for. Our approach focuses on iteratively finding the approximate direction of the sym‑
metry element in the three‑dimensional space, and the relevant permutation. Major algorithmic improvements 
over previous versions are described, showing increased accuracy, reliability and structure preservation. The new 
algorithms are tested for three sets of molecular structures including pillar[5]arene complexes with  Li+,  C100 fullerenes, 
and large unit cells of metal organic frameworks. These developments complement our recent algorithms for calcu‑
lating continuous symmetry and chirality measures for small molecules as well as protein homomers, and simplify 
the usage of the full set of measures for various research goals, in molecular modeling, QSAR and cheminformatics.

Keywords Symmetry, Chirality, Molecular descriptors, Supramolecular chemistry, Unit cells, Hungarian algorithm, 
Fibonacci lattice

Introduction
Symmetry is an eye-catching phenomenon that expresses 
the beauty and mystery of nature. In chemistry, it is fre-
quently perceived as a driving force that controls the 
shape of molecular structures, defines selection rules for 

the interaction of light and matter, and determines the 
terms and mechanisms of chemical reactions [1]. While 
perfect symmetry is conceptually appealing, numerous 
experimental and computational studies show that actual 
structures are only approximately symmetric [2–6]. Vari-
ous reasons lead to distortion of otherwise symmetric 
molecules, including conformational flexibility, dynam-
ics, chemical processes, physical conditions, crystalliza-
tion conditions and the chemical environment. In many 
of these cases, describing the molecules at hand from 
the perspective of their deviation from the original sym-
metric geometry provides deeper understanding of the 
molecular systems. Such a treatment can highlight anom-
alous cases, and shed light on mechanisms of symmetry 
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breaking. Mathematically, the description is based on 
the treatment of symmetry as a continuous quantita-
tive parameter of the molecular structure, rather than a 
binary yes/no property. This approach was developed 
by Avnir and coworkers in the early 90’s of the twenti-
eth century, in the form of the continuous symmetry 
measure (CSM) [7–9], the continuous chirality measure 
(CCM) [10], and the continuous shape measure (CShM) 
[11]. In recent years we had considerably improved the 
algorithms that calculates the CSM and CCM for small-
to-medium sized molecules [12] as well as for protein 
homomers [13]. Here we extend our methodology to 
large molecular systems which are beyond the reach of 
previous algorithms.

Given a distorted molecular structure and a symme-
try point group G, the CSM algorithm searches for the 
nearest structure that belongs to G and maintains the 
same connectivity as the original molecule. The distance 
between the original structure and the nearest symmetric 
structure defines the symmetry measure. The continuous 
chirality measure follows by calculating the minimum 
CSM with respect to all the achiral point groups, Sn. In 
the last three decades, this set of symmetry and chiral-
ity measures were extensively applied for describing vari-
ous chemical phenomena in studies related to the crystal 
structure of inorganic compounds [3, 14, 15], reaction 
paths and reactivity [16–18], dynamics and temperature 
[19–21], protein structure and activity [22–24], quantita-
tive structure–activity relationship (QSAR) [25, 26], and 
many more. Beyond measuring symmetry and chirality, 
the CSMs and CCM can be used to estimate structural 
elongation, planarity and conformational flexibility, for 
both symmetric and asymmetric structures [20, 24]. In 
addition, the method was applied to other fields such as 
image processing [27] and archeology [28, 29].

Finding the nearest symmetric structure is the main 
challenge of the CSM method, as it is unknown a priory, 
and may change even between conformers of the same 
molecule. This property turns CSMs into powerful global 
descriptors of the three-dimensional structure capable of 
distinguishing between various conformers of the same 
molecule. This ability stands at the heart of the concept of 
symmetry maps, an analysis tool for distorted structures 
[30, 31]. From a mathematical perspective, a structure 
that belongs to G is represented by a three dimensional 
vector (which represents the direction of the symmetry 
operation) and a permutation of the set of atoms (which 
represents the action of the symmetry operation on the 
molecule’s atoms). As the number of atoms increases, the 
number of possible permutations increases as well, and 
calculating the CSMs becomes computationally inten-
sive. To overcome this obstacle, we improved the algo-
rithm for small-to medium-sized structures, by utilizing 

the connectivity map of the molecule to scan only struc-
ture-preserving permutations [12]. This improvement 
increased the accuracy and speed of the calculation, 
making the method applicable to much larger molecules 
compared to the original algorithm [8].

For very large molecular systems, with branched struc-
tures and complex connectivity maps, scanning all the 
permutations, even only the ones that preserve the con-
nectivity map, becomes computationally intensive. For 
this purpose, Dryzun et  al. [9] developed an approxi-
mate algorithm to calculate CSMs. Instead of searching 
for all possible permutations, their algorithm iteratively 
searches for an approximate direction of the symmetry 
element and its related permutation, until convergence 
is reached. While this approach is relatively fast, it may 
result with a permutation that breaks the connectiv-
ity map of the structure. To overcome this obstacle, we 
recently modified the method for protein homomers, 
utilizing the amino acids sequence to reduce the size of 
symmetry-equivalent groups of atoms, and force the 
code to preserve both the sequence and the chains struc-
ture. The Hungarian algorithm [32] was applied to effi-
ciently solve the assignment problem and find the best 
permutation [13]. This approach is based on our prior 
knowledge of the protein sequence, and may become less 
effective when such information is absent, for example 
in the case of supramolecular structures and nanostruc-
tures. Finding the nearest symmetric structure in such 
cases without losing information on their connectivity 
maps requires a different methodology. In this study we 
present several algorithms for approximate calculation of 
symmetry and chirality measures that differ by their level 
of structure preservation and efficiency. Our set of algo-
rithms provides a comprehensive toolkit for structural 
analysis that can be used to explore different sources of 
distortion, including conformational and topological dis-
tortion. In what follows we review the CSM methodol-
ogy, present the details of the new algorithms, and use 
them to analyze three sets of molecules with various lev-
els of approximate symmetry: pillar[5]arenes,  C100 fuller-
enes and large unit cells of metal organic frameworks 
(MOFs).

Methodology
Review of the CSM method
Let us briefly review the fundamentals of the CSM meth-
odology [7, 8, 12]. We consider a given molecule A of 
N atoms, that belongs to the symmetry point group G, 
where G is either Cn (n = 2, 3, 4, 5,…) or Sn (n = 1, 2, 4, 
6,…). Recall that by definition, S1 = Cs and S2 = Ci. Let 
Q =

{
Qk : 1 ≤ k ≤ N

}
 be the set of coordinate vectors 

of the molecule’s atoms, and let Q0 = 1
N

∑N
k=1Qk be its 

geometric center of mass. We are looking for a symmetry 
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operation T  , which generates a cyclic point group of type 
G. Note that T is a rotation (either proper or improper) 
by an angle of 360◦/n . In both cases, T  is determined by a 
3-dimensional direction vector, which we denote by νsym . 
The continuous symmetry measure (CSM) is defined by:

where

and the minimum is over all the symmetric (i.e. T-invari-
ant) structures 

{
Pk : 1 ≤ k ≤ N

}
 and all possible direc-

tion vectors νsym . Equivalently,

where π is a permutation of the set of atoms {1, 2, . . . ,N } 
which preserves the atom types and the molecule’s con-
nectivity map, and the cycles of π are of size 1, 2, or n. 
Note that the value of 2 is only allowed when G = Sn or 
G = C2.

In our previous work [12, 13] we developed two algo-
rithms for evaluating the CSM: The first one finds the 
exact value of M(G) in Eq. (3) by enumerating the struc-
ture preserving permutations, that is, permutations that 
satisfy the condition: π(i) ↔ π( j) if and only if i ↔ j, for all 
pairs of atoms (i, j). Here we denote by i ↔ j the existence 
of a bond between atoms i and j. This algorithm, which 
we will call here the exact algorithm, shows excellent per-
formance for small and medium sized molecules, and for 
larger molecules with a small number of structural sym-
metries [12]. For example, for fullerene,  C60, all the atoms 
are in the same equivalence class. There are 2.73 ×  1043 
permutations that define a C2 operation, but only 32 of 
them preserve the structure of the molecule [12].

The second method focuses on protein homomers. 
Here the number of atoms does not allow scanning all 
structure preserving permutations. We therefore find 
an approximation for the CSM value by performing 
permutation-direction iterations (as explained below) 
[13]. A partial reduction of the number of permutations 
is achieved by exploiting the amino-acids sequence to 
define equivalence classes based on the types of the atom 
as well as its residue’s designation and sequence num-
ber. Thus, a  Cα of alanine with sequence number 3 on 
chain A can only be permuted with  Cα of alanine with 
sequence number 3 on another chain, but not with  Cα of 

(1)S(G) = 100 ·M(G)/D

(2)M(G) = min




N∑

k=1

∣∣Qk − Pk
∣∣2


; D =

N∑

k=1

∣∣Qk −Q0
∣∣2

(3)M(G) =
1

2n
min

n∑

i=1

N∑

k=1

∣∣∣TiQk −Qπ i(k)

∣∣∣
2

different residues, or other alanine residues with different 
sequence numbers. The rest of the permutation is found 
using the Hungarian algorithm [32]. Further improve-
ments are achieved by exploiting the protein polypeptide 
chain structure, making sure that the permutation does 
not break the chains, and carry each chain in its entirety 
to another chain: for protein homomers with more than 
two chains, the Hungarian method is used at the chain 
level as well, in order to find bijections between the dif-
ferent chains and piece them together to a complete per-
mutation [13].

Methods for general large molecules
As molecules become larger, the size of the equivalence 
classes increases, and the feasibility of a CSM calcula-
tion that performs an exhaustive search over all possible 
permutations reduces considerably. Unlike proteins, the 
atoms of large molecular structures do not have sequence 
identifiers that can help reduce the number of possible 
permutations. The challenge with such molecules is to 
find a good approximation to the CSM within a reason-
able calculation time. We have developed several algo-
rithms that successfully face this challenge, as described 
below.

Permutation‑direction iterations
Our algorithms are based on the process, first described 
by Dryzun et  al. [9], of going back and forth between 
estimating the direction vector νsym and estimating the 
permutation π . An initial guess for a direction vector is 
based on the best line or plane that fits the geometric 
centers of all the equivalence groups of the molecule at 
hand, after outliers are removed. Two additional perpen-
dicular direction vectors are taken into account in order 
to equally span the three-dimensional space [9].

Next, we perform an iterative process in which we 
update each time the permutation π and the vector νsym:

Given the current vector νsym , the permutation is esti-
mated by using a greedy algorithm. One first calculates 
the distance matrix A =

(
Aij

)
 , where

and T  is the symmetry operation corresponding to the 
vector νsym.

Let the smallest entry in the matrix A be Ai0j0 . The per-
mutation value π(i0) is set to j0 , and the row and column 
of this entry are greyed out. Then, the smallest entry 

(4)
Aij =

∣∣TQi − Qj

∣∣2 for 1 ≤ i ≤ N , 1 ≤ j ≤ N
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from the remaining values in the matrix is chosen, to set 
another permutation value, and so on.

Given the permutation, the optimal vector for this per-
mutation νsym is found by an exact analytical method [9, 
12], which later serves to find a new permutation and so 
on, until convergence is achieved.

The Hungarian algorithm
A more sophisticated approach to finding the permuta-
tion, taken in our previous work [13] applies the Hungar-
ian algorithm [32] to the matrix A . The algorithm finds a 
permutation π for which the sum 

∑N
i=1 Aiπ(i) is minimal. 

This approach takes into account the interaction between 
different choices of the permutation values.

We should note that both approaches—the greedy algo-
rithm and the Hungarian algorithm [32]—yield permuta-
tions that are not guaranteed to preserve the structure of 
the molecule. In practice, this depends on the symmetry 
level of the molecule. For molecules of high symmetry 
level, the approximate algorithms will tend to find the right 
permutation, and consequently, the bonding structure 
will be preserved, either fully or with a high preservation 
rate. For highly asymmetric molecules, this will not always 
hold, as permutations which do not preserve the bonding 
structure could attain lower values of the target function, 
thereby creating imprecisions in the CSM calculation. We 
elaborate more on this issue in the Results section.

The Fibonacci lattice algorithm
The original algorithm of permutation-vector iterations 
[9] starts with a direction vector which is an educated 
guess, hoping that through the iterations, the direction 
vector will converge to the optimal one. However, there 
is a risk that the iterative process will converge to a local 
minimum and not to the global one. In order to increase 
the reliability of the method, we devised the following 
strategy: A set of k vectors on the unit sphere, S , is cho-
sen such that the points are as equally spaced as possible 
on the sphere. A sequence of permutation-vector itera-
tions is performed, starting at each of the vectors in S.

Finding a set of M unit vectors which are equally 
spaced on the sphere is, in general, an unsolved math-
ematical problem. However, there is a well known way 
to produce M unit vectors which are almost equally 
spaced. This set is called The Fibonacci lattice [33, 34]. It 
is defined as follows:

For any 0 ≤ k ≤ M − 1,

(5)θ = π
(√

5+ 1
)
k; x = 1−

2k
M − 1

; r =
√
1− x2

(6)uk = (x, r cos θ , r sin θ)

The set FM =
{
uk |0 ≤ k ≤ M − 1

}
 is called the Fibo-

nacci lattice of size M . Figure 1 presents a Fibonacci lat-
tice of size 500.1

We use all of the vectors in FM as starting points for 
the permutation-direction iterations. The implementa-
tion of this algorithm can be sped up by parallel com-
putation: The set FM is divided into subsets, and each 
processor performs the iterations with the vectors in its 
assigned subset as initial vectors.

The approximate structure preserving algorithm
As discussed above, scanning only structure preserv-
ing permutations is considerably advantageous over the 
original CSM algorithm [7, 8], making it faster and more 
accurate [12]. However, for large molecules its running 
time can be too long for a feasible or efficient calcula-
tion. On the other hand, the approach of the approximate 
permutation-direction iterations algorithm is operative 
on any molecular size, but can often yield permutations 
that do not preserve the structure. In these cases, the 
nearest symmetric structure, which serves as the ref-
erence structure for the CSM calculation, may lose its 
chemical essence making the CSM result less informa-
tive. We now present a new algorithm, which attempts 
to bridge these two approaches and have the benefits of 
both. The algorithm performs permutation-direction 
iterations as in the approximate algorithm, but instead 

Fig. 1 Fibonacci lattice of size 500

1 The concise presentation of the Fibonacci lattice in Eqs. (5) and (6) is 
based on a code that was published under the Stack Overflow platform 
by the user Fnord. After testing this code and confirming its reliability, we 
applied it in the CSM software. The original code is available at: https:// 
stack overfl ow. com/ quest ions/ 96008 01/ evenly- distr ibuti ng-n- points- on-a- 
sphere. Accessed 2023, July 28.

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
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of using the Hungarian algorithm [32] for estimating the 
permutation, it searches for the best structure preserv-
ing permutation with respect to the distances matrix 
(4). As detailed below, this algorithm uses information 
from the distances matrix to prioritize the search for the 
permutation.

Recall that the exact (structure preserving) algorithm 
for small molecules [12] performs a recursive enumera-
tion of the permutations in the following way: at each 
step, we define a partial assignment of permutation val-
ues; these assignments determine restrictions on the 
permutation values of the other atoms, according to the 
connectivity map of the molecule and the expected cycle 
structure of the permutation. An atom with a minimal 
number of permutation options is chosen, and for each 
option, this permutation value is assigned and the algo-
rithm continues recursively.

In our new algorithm, which we call the approximate 
structure-preserving algorithm, in each permutation-vec-
tor iteration, the permutation is chosen as follows: We 
build the distances matrix (4), and perform a search for 
a structure preserving permutation as in the exact algo-
rithm, but in the recursive step we prioritize assignment 
values π(i) = j for which Aij is small: Given the options 
j1, . . . , jk for values of π(i) , we sort them according to the 
value Aij and perform the recursive calls from the mini-
mum value and up. Whenever the algorithm reaches a 
full permutation π , the sum S(π) =

∑N
i=1 Aiπ(i) is cal-

culated, and in the end, the permutation for which S(π) 
is minimal is returned. As soon as the first permutation 
is obtained, the corresponding S(π) is set as a threshold 
for the next partial permutations. For a partial permuta-
tion µ , defined for a set T  of atoms, if the sum 

∑
i∈T Aiµ(i) 

is already larger than the minimal value of S(π) so far 
obtained, there is no point in carrying on the search 
from µ . By prioritizing assignment values with small cor-
responding entries in the distance matrix, we increase 
the likelihood of finding the best permutation fast. The 
algorithm contains a time limit, after which the search is 
terminated.

Obtaining upper and lower bounds on the CSM
For large molecules, when the exact algorithm is unfeasi-
ble, it is advantageous to obtain upper and lower bounds 
for the CSM. Instead of bounding the expression M(G) in 
(2), we bound the related expression

In this expression the average in (2) over i = 1, 2, . . . , n 
is replaced by the value for i = 1 . Note that for n ≤ 2 (i.e. 
when G is Cs or Ci), M̂(G) = M(G) , and for n > 2 , M̂(G) 

(7)M̂(G) =
1

2
min

N∑

k=1

∣∣TQk −Qπ(k)

∣∣2

is a reasonable approximation of M(G) . Indeed, the 
approximate algorithms settle for minimization of M̂(G) 
[9, 13].

Consider the approximate algorithm, paired with the 
Hungarian method [32] for finding the permutation, 
and the Fibonacci lattice method for the initial direc-
tion vectors, with a large number of initial points. We 
claim that this method produces a lower bound for 
M̂(G) (which is a lower bound to the CSM when G is 
Cn or Sn with n ≤ 2 ). Indeed, if the Fibonacci lattice is 
dense enough, one of its vectors will be close enough to 
the optimal direction vector; and the permutation found 
by the Hungarian algorithm [32] for this vector, will sat-
isfy 1

2

∑N
k=1

∣∣TQk −Qπ(k)

∣∣2 ≤ M̂(G) , as the Hungarian 
method finds the minimum over all permutations, not 
just the structure preserving ones.

Consider, on the other hand, the approximate struc-
ture-preserving algorithm. This algorithm calculates 
the minimum over some of the direction vectors v0 , and 
some of the structure preserving permutations π , of the 
expression 1

2
min

∑N
k=1

∣∣TQk −Qπ(k)

∣∣2 . Its value is, 
therefore, bigger or equal to M̂(G).

Results and discussion
In order to assess the efficiency and accuracy of the algo-
rithms we tested them with three sets of molecules with 
various levels and sources of distortion. The first two 
sets were chosen so that both the exact and approxi-
mate CSM calculations can be performed, in order to 
compare the results and evaluate the performance of 
the various approximate algorithms. The first consisted 
of a set of highly flexible conformers of pillar[5]arene 
complexed with a  Li+ ion in the gas phase. The second 
consisted of isomers of  C100 fullerene. Different combi-
nations of pentagons and hexagons that characterize the 
topology of each isomer, create diverse ellipsoidal-like 
structures with various symmetries. As a third set, we 
analyzed the crystallographic unit-cells of several MOFs, 
each with thousands of atoms, to test the applicability of 
the approximate algorithms on very large structures. For 
each set we calculated symmetry and chirality measures, 
the level of structure preservation, and the time of calcu-
lation. Details of each analysis are described next.

Pillar[5]arene‑Li+ complexes
Pillar [n]arene represents a class of supramolecular sys-
tems, originally synthesized by Ogoshi and coworkers 
[35, 36], with pillar-shaped architecture and double rim 
structure. Recent studies show that their superior host–
guest abilities, planar chirality, and the ability to undergo 
self-assembly processes with highly symmetrical struc-
tures stem from their unique shape [37–39]. Pillar[5]
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arene, presented in Fig. 2, is the most common member 
of this family, for which five-fold rotational symmetry has 
been reported [36]. The high number of rotatable bonds 
gives rise to hundreds of conformers, which are gener-
ally close in energy. As will be shown below, the actual 
structure of these conformers can often be quite far from 
symmetry. In order to correctly describe the manifold 
of conformers of this molecular system, and distinguish 
between them, tools that provide a global description of 
the geometrical parameters are needed. Such description 
can contribute to better understanding of host–guest 
interactions, as was recently shown for crown ethers [40]. 
The size of the pillar[5]arene molecule, with 75 atoms, 
allows for CSM calculation with the exact algorithm. 
On the other hand, the flexibility leads to high distor-
tion levels, making the evaluation of the CSM with the 
approximate permutation-direction iterations approach, 
quite challenging. Therefore, this system is suitable for 
benchmark purposes. Although the host itself can be 
distorted, for the purpose of testing our algorithms we 
enforced distortion even further and inserted a  Li+ ion 
to the center of the host. Previously we showed that the 
symmetry of the related host, 18-crown-6, is strongly 
influenced by the presence of alkali ions, particularly 
 Li+, and that this distortion is related to the host–guest 
binding energy [40]. The small size of the ion prevents 
direct interaction with all the oxygen atoms of the host, 
forcing the last to fold in order to increase its interaction 
with the guest. The cavity of pillar[5]arene is larger than 
18-crown-6, and it is therefore reasonable to assume that 
its tendency to distort with respect to either the fivefold 
or twofold symmetries will be significant when a  Li+ ion 
is used as a guest.

Conformation analysis
A pillar[5]arene molecule with perfect D5 symme-
try with  Li+ ion in its center (Fig.  2), was subjected to 

conformation analysis calculation in the gas phase, using 
the LowModeMD algorithm [41] implemented in MOE 
[42]. The Amber10:EHT basis set was used with an 
energy window of 20 kcal/mol. This calculation created 
647 conformers which were filtered to remove duplicates 
based on their energy, radius of gyration and the CSM 
with respect to C5, C2 and Cs point groups (were the last 
serves as chirality measure as explained below). The exact 
algorithm of the CSM was used for this purpose. We used 
thresholds of 0.0001 kcal/mol for the energy, 0.05 for the 
radius of gyration, and a relative threshold of 5% for the 
CSMs. If the differences between two conformers, for all 
parameters, were equal or below these thresholds, they 
were considered equal, and one of them was deleted. The 
lowest energy conformers within an energy window of 8 
kcal/mol were then optimized with Gaussian [43], at the 
M06/6-31g(d) level including D3-dispersion corrections 
[44], followed by a second stage of duplicates filtering, 
as described above. This process resulted with 159 con-
formers within an energy range of 20.4 kcal/mol. These 
define our pillar[5]arene data set.

Symmetry analysis of pillar[5]arenes
For each conformer of the pillar[5]arene set we calculated 
the distortion with respect to C5, C2 and Cs point groups 
for the host molecule without the  Li+ ion and excluding 
the hydrogen atoms. Table  1 summarizes results based 
on the exact CSM algorithm, teaching that none of the 
conformers in our dataset had perfect C5 symmetry. Two 
conformers had perfect C2 symmetry. We note that S(Cs) 
is a measure of chirality in this case since the distance 
of the pillar[5]arene structure from higher order achiral 
structures (belonging to e.g., Ci, S4, S6,… point groups) 
is larger. As seen in Table 1, all the conformers are chi-
ral to some degree. Although our focus is benchmark of 
symmetry algorithms, a note about the energy is in place. 
Generally, direct correlation between energy and symme-
try or chirality was not detected for this set. The complex 
with the minimal energy is not the most symmetric. This 
is not surprising given the size of the  Li+ ion compared to 
the pillar[5]arene cavity and the expected prevalence of 

Fig. 2 Pillar[5]arene with  Li+ ion in a perfectly symmetric D5 
conformation

Table 1 Descriptive statistics for 159 conformers of pillar[5]arene

CSM values were calculated with the exact algorithm

Relative Energy 
(kcal/mol)

S(C5) S(C2) S(Cs)

Mean 7.4018 9.6912 2.4485 3.5025

Standard deviation 3.6098 1.4267 1.5982 1.1635

Minimum 0.0000 6.5696 0.0000 1.8117

Median 7.1712 9.5697 2.2816 3.3873

Maximum 20.4235 12.9361 7.0320 6.5419
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host–guest electronic interactions over the symmetry of 
the host.

Figure  3 presents correlation plots between the exact 
algorithm and two approximate algorithms: The Hun-
garian algorithm and the approximate structure-pres-
ervation algorithm for S(C5). Figure  4 presents similar 
correlations for S(C2) with four algorithms (Hungarian, 
approximate structure preservation, greedy and Fibo-
nacci lattice with 100 directions coupled with the Hun-
garian algorithm). Additional figures are provided in 
Additional file  1 :  Results for the other approximate 
approaches for S(C5) which were similar to the Hun-
garian algorithm (Additional file  1: Fig.  S1), and results 
for S(Cs) which were similar to S(C2) (Additional file  1: 
Fig. S2). It is striking to see how the approximate struc-
ture-preserving algorithm outperforms all other algo-
rithms, with perfect correlation for S(C5) and very good 
correlations for S(C2) and S(Cs). For a D5-symmetric 
pillar[5]arene, there is a single C5 rotation axis, and five 
different C2 rotation axes. Naturally, when the number 
of possible permutations is small, it is more likely that 
an algorithm that is forced to preserve the structure will 
converge to the correct direction of the rotation axis in 
space. When the algorithm is not forced to preserve the 
structure, the calculation can converge with a different 
permutation, which can either be related to a direction 
of true rotation axis in the molecule with higher CSM, 
or a direction that is related to a permutation that does 
not preserve the structure. Therefore, even a Fibonacci 
lattice with 100 directions in space provides only an 
approximate value for the CSM. The Fibonacci method 
can potentially be improved by increasing the number 
of directions on the expanse of the computational effort. 
However, calculations with 500 directions for pillar[5]
arene had minor effect on S(C5) and negligible effect on 
S(C2) and S(Cs). When more directions are added, the 
calculation becomes much slower, and is not justified 
here. Nevertheless, as discussed above, the method does 
provide a lower bound to the CSM for C2 and Cs symme-
tries. Comparing the correlations of the Hungarian and 
greedy algorithms, both of them are less accurate as com-
pared with the other algorithms, with the first showing 
somewhat better correlation with the exact algorithm.

Another striking finding from Fig.  4 and Additional 
file 1: Fig. S2 is the high agreement between all the algo-
rithms when the distortion level is low. As seen in Fig. 3B 
and Additional file  1: Fig.  S1, when the CSM is smaller 
than ~ 2, all the approximate algorithms reach the same 
CSM as the exact algorithm. A value of 2 for pillar[5]
arene means that the distortion is not very high. As an 
example, Additional file  1: Fig.  S3 shows a distorted 
structure for which S(C2) = 1.8918 superimposed on its 
nearest C2-symmetric structure. For other molecules 

Fig. 3 Approximate versus exact values of S(C5) for the pillar[5]arene 
dataset. A Hungarian algorithm B Approximate structure preservation 
algorithm. Magenta line represents the y = x curve

Fig. 4 Approximate versus exact values of S(C2) for the pillar[5]arene 
dataset. A Hungarian algorithm B Approximate structure preservation 
algorithm. C Greedy algorithm. D Fibonacci lattice with 100 
directions. Magenta line represents the y = x curve
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the specific threshold of 2 may vary, but the principle 
remains: when the distortion is relatively low, all algo-
rithms reach the same CSM. This finding provides us 
with a very basic guideline for interpreting the values of 
approximate CSMs: as structural descriptors, they can 
distinguish between conformers regardless of their sym-
metry, but their interpretation as structure preserving 
symmetry measures is most likely guaranteed when the 
level of distortion is low. When the distortion is high, 
the nearest symmetric structure may not preserve the 
chemical essence of the structure in terms of its chemical 
bonds, yet still maintains its symmetric shape.

Another measure of accuracy of the approximate CSMs 
is the level of structure preservation with respect to the 
connectivity map of the molecules [12], displayed in 
Table  2. The approximate structure preservation algo-
rithm reaches 100% by definition, while the other algo-
rithms preserve 63–90% of the structure, depending on 
the algorithm and point group. Comparing Tables 1 and 
2 we note that structure preservation is better when the 
CSM is small. Thus, structure preservation with respect 
to the C2 and Cs point groups is better than with respect 
to C5. In addition, as one may expect, the structure pres-
ervation with the Hungarian algorithm is somewhat bet-
ter as compared with the greedy algorithm, and further 
improved upon using the Fibonacci lattice approach, 
particularly for C2 and Cs, where more than one direc-
tion is possible. Finally we recall that true Cs symmetry 
is unlikely for pillar[5]arene and it is used here due to its 
interpretation as a continuous measure of chirality.

Last but not least, let us discuss the time of calculation. 
We ran the code using 1 core on our Intel(R) Xeon(R) 
Gold 6130 CPU@2.10  GHz server. Table  3 presents the 

total time for calculating the CSM for 20 conformers 
(one after the other) taken from the pillar[5]arene data 
set. Most of the calculations were completed within a few 
seconds and even less than that, with an average time per 
molecule of 0.05–6.51 s. The size of the molecule makes 
the exact algorithm faster than all others, since it scans 
a smaller number of permutations. Among the approxi-
mate approaches, the greedy algorithm is the fastest, with 
the Hungarian and the approximate structure preserva-
tion algorithms coming next with negligible differences 
between them. The Fibonacci lattice algorithm naturally 
requires longer time for computation, up to ~ 100 times 
longer when 500 directions are taken into account.

C100 fullerenes
The Fullerene family of molecules is an allotrope form 
of carbon, characterized with hollow structures. Fuller-
ene molecules generally display high symmetry, with the 
most abundant fullerene,  C60, showing icosahedral sym-
metry [45]. Chiral fullerenes have also been documented 
[46, 47]. Fullerenes have numerous applications that 
exploit their unique symmetry, in host–guest chemistry, 
solar cells, catalysis, drug design, and cancer treatments 
[45–50]. Understanding the symmetry and chirality, of 
fullerenes, particularly when it is only approximate, can 
shed light on different distortive processes. Here we focus 
on fullerenes with 100 carbon atoms. Theoretical studies 
show that this system have 450 topological isomers that 
follow the isolated-pentagon-rule [51, 52].  C100 ions were 
recently detected experimentally as original constituent 
of aerosol samples [53].

While applicable for an exact CSM calculation,  C100 
fullerene provides an algorithmic challenge for approxi-
mate CSM estimation due to variability in topology and 
the large number of permutations. Coordinates of the 
450 isomers of  C100 fullerene were downloaded from 
the fullerene library [52] without modifications. These 
structures are based on the Yoshida’s fullerene library 
and were further optimized by Tománek using the fast 
Dreiding-like force field [52, 54]. The data set is divided 
to 336 topologically asymmetric isomers (that belong to 
the C1 point group), 62 isomers with C2 symmetry, and 
31 isomers with Cs symmetry. The rest 21 isomers dis-
play higher symmetry. Examples of three isomers with 

Table 2 Structure preservation during approximate CSM 
calculations for 159 conformers of pillar[5]arene

Algorithm S(C5) (%) S(C2) (%) S(Cs) (%)

Structure‑preservation 100 100 100

Hungarian 67 86 85

Greedy 63 84 82

Fibonacci lattice (100 directions) 67 90 87

Fibonacci lattice (500 directions) 67 90 87

Table 3 User time (in seconds) for consecutive CSM calculation of 20 conformers of Pillar[5]arene

CSM Exact Hungarian Greedy Structure preservation Fibonacci with 100 
directions

Fibonacci with 
500 directions

S(C5) 0.95 2.22 1.53 2.31 18.25 130.16

S(C2) 0.95 1.95 1.14 2.07 14.43 104.40

S(CS) 1.00 1.95 1.20 2.04 16.01 115.72
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different symmetries are presented in Fig.  5. Our first 
goal was to test the set of algorithms on symmetric struc-
tures in order to see whether the approximate approaches 
can identify the correct symmetry. All methods were able 
to correctly estimate S(C2) for the C2-symmetric isomers 
and S(Cs) for the Cs-symmetric isomers. The CSM values 
varied between 0.0000 and 0.0004. The small non-zero 
CSM values result from negligible numerical inaccura-
cies of the original coordinates which are reasonable to 
ignore in this case. No significant differences were found 
between the different algorithms for these molecules.

The set of 336 asymmetric fullerenes was more chal-
lenging. For this set, we calculated the CCM as the mini-
mum of S(Cs) and S(Ci). The CSM with respect to the S4 
point group was also calculated but found higher than 
S(Cs) for all isomers and will not be discussed here. Since 
the asymmetry stems from the connectivity map of the 
molecule and not from conformational distortion, the 
nearest symmetric or achiral structure, regardless of the 
algorithm or the point group at hand, can not be a real 
molecule and atoms’ overlap is to be expected for this 
structure. Nevertheless, the CSM or CCM still have a 
mathematical meaning of a symmetry or chirality meas-
ure, since the reference structure found by the algorithm 
is the closest structure that belongs to the desired point 
group, as originally defined by Avnir and coworkers [7, 9, 
10].

To elaborate on this point, let us look at the distortion 
with respect to inversion symmetry of the asymmetric 
 C100 isomers. The exact algorithm returns the value of 
100 for S(Ci) for each one of the 336 isomers, since the 
nearest structure with inversion symmetry, that main-
tains the connectivity map of the molecule, collapses to 
the center of mass, and all atoms overlap each other. In 
this sense the exact CSM cannot distinguish between the 
different isomers. The Hungarian and greedy algorithms 
on the other hand, find Ci-symmetric structures with 
lower percentages of atoms’ overlap, that retain the hol-
low shape of the fullerene. Figure 6 displays the nearest 
Ci-symmetric structures of the C1 isomer presented in 

Fig. 5A, calculated with the Hungarian and greedy algo-
rithms. The resulting structures differ from each other 
and so are the values of S(Ci). The ability to distinguish 
between the original isomers makes the approximate 
CSMs better structural descriptors for this set of isomers. 
Therefore, relaxing the requirement of structure preser-
vation is advantageous in this case.

Which of the approximate CSM algorithms provides a 
more accurate answer to S(Ci)? Our main goal is to find 
the minimal CSM, but we also attempt to reach a refer-
ence structure that maintains, as much as possible, the 
chemical essence of the original molecule. For isomers 
of  C100 with C1 symmetry, calculation of S(Ci) with the 
Hungarian algorithm outperforms the greedy algorithm 
in both criteria: It finds smaller CSM values (Table  4) 
and reaches higher percentages of structure preserva-
tion as discussed below. The Fibonacci lattice algorithm 
is unnecessary here since the inversion point must be at 
the center of mass of the molecule and there is no need to 
test further directions in space. The approximate struc-
ture preserving algorithm reaches the value of 100 as the 
exact algorithm, with 100% of structure preservation, as 
expected.

Repeating this analysis for S(Cs) we found smaller CSM 
values as compared with S(Ci), for all algorithms and all 
the isomers. We can thus claim that CCM = S(Cs) in this 
case, that is, the chirality of the  C100 isomers stems from 
the lack of reflection symmetry. Figure 7 presents a box 
and whisker plot of the CCM calculated with the differ-
ent algorithms. Using the exact algorithm (as well as the 
approximate structure preserving algorithm) the nearest 
structure with reflection symmetry collapses to a planar 
surface, with a mean CSM of 27. In other words, the exact 
CSM can be interpreted as a planarity measure in this 
case. With the approximate algorithms, the nearest sym-
metric structures maintain the ellipsoid shape by overlap-
ping fewer atoms, leading to much smaller CSM values. 
We note that unlike the exact algorithm, the approximate 
algorithms predict that different isomers will have differ-
ent chirality levels. Additional file 1: Fig. S4 displays the 
nearest symmetric structure with reflection symmetry 
that was obtained for isomer #134 presented in Fig. 5A. 

Fig. 5 Examples of three isomers of  C100 from the Yoshida fullerene 
library that belong to different point groups. A Isomer 134 with C1 
symmetry; B Isomer 221 with C3 symmetry shown with blue line; C 
Isomer 126 with Cs symmetry shown with a red reflection plane

Fig. 6 Nearest structure with inversion symmetry for the C1‑isomer 
#134 of the  C100 fullerene set calculated by two approximate 
algorithms. A Hungarian algorithm, S(Ci) = 0.7296. B Greedy algorithm, 
S(Ci) = 1.2325. Original structure is presented in Fig. 5A
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In this sense the approximate CSM is a good 3D-shape 
descriptor. The Fibonacci lattice algorithm improves the 
Hungarian algorithm and finds reference structures with 
smaller CSM values. Increasing the number of directions 
to 500 improves the results even further, but with minor 
effect, therefore not shown here. Figure 8 shows that as 
compared with S(Ci), structure preservation for reflec-
tion symmetry is better with all algorithms, and further 
improves with the Fibonacci lattice algorithm. Table  4 
summarizes descriptive statistics of these calculations 
and Table 5 presents data on the time of calculation for a 
subset of 20  C100 fullerenes on our server. Unlike the pil-
lar[5]arene data set, here the exact algorithm was slower 
than some of the approximate algorithms. Particularly for 
S(Ci), an approximate algorithm that does not attempt to 
preserve the structure is much faster than an exact calcu-
lation. The greedy algorithm was the fastest algorithm for 
both S(Ci) and S(Cs).

Metal organic frameworks
As a third challenge we focused on crystal structures for 
which the exact algorithm cannot scan the permutation 
space in a reasonable time frame. Our purpose was to test 
whether perfect symmetry can be identified by approxi-
mate CSM algorithms, to estimate the time of calcula-
tion, and to evaluate the extent by which the structures 
of the initial sets of coordinates are preserved in the final 
sets. Coordinates of three crystals of MOFs with very 
large unit cells were retrieved from the Crystallographic 
Open Database (COD) [55]. Structures that contain all 
the molecules whose centroids fit inside a single unit cell 
were constructed using Mercury [56], and are presented 
in Fig. 9. Continuous symmetry measures with respect to 
several point groups were calculated with the Hungarian 
algorithm and are summarized in Table  6. Perfect sym-
metry, as expected from the space group, is clearly iden-
tified with 100% structure preservation. Our method 

Table 4 Descriptive statistics of CSM for 336 asymmetric isomers of  C100

CSM Exact Hungarian Greedy Structure 
preservation

Fibonacci with 100 
directions

Fibonacci with 
500 directions

S(Ci) Mean 100 0.8347 1.8239 100

Standard deviation 0 0.0843 0.5725 0

Minimum 100 0.6138 0.7364 100

Median 100 0.8227 1.8086 100

Maximum 100 1.1309 3.8252 100

S(Cs) Mean 26.9289 0.4897 0.7488 26.9289 0.2924 0.2372

Standard deviation 1.6458 0.1776 0.3218 1.6458 0.1168 0.0939

Minimum 22.7810 0.0802 0.0802 22.7810 0.0432 0.0426

Median 26.7276 0.5341 0.8045 26.7276 0.2964 0.2388

Maximum 31.8030 0.7872 1.6703 31.8030 0.6135 0.5371

Fig. 7 Box and whisker plot of CCM values for 336 asymmetric  C100 
isomers, calculated with different methods. Box boundaries represent 
25–75% of the data, horizontal line within the box is the median 
and the white star is the mean value in each box

Fig. 8 Box and whisker plot of the percentages of structure 
preservation for approximate CSM calculations for 336 asymmetric 
 C100 isomers. Left: S(Ci). Right: S(Cs). Box boundaries represent 
25–75% of the data, horizontal line within the box is the median 
and the white star is the mean value in each box
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correctly predicts that the unit cell of UHM-25-Ala-Boc 
[57] (Fig. 9A) that belongs to the P432 space group is chi-
ral, while the other two structures are achiral. We note 
that the non-zero CSM values of UHM-25-Ala-Boc are 
relatively small. This stems from the large number of 
atoms that significantly increases the normalization fac-
tor, D in (1). Results for the greedy algorithm were similar 
to the Hungarian algorithm, with a bit higher CSM in the 
lack of perfect symmetry in most of the cases (Additional 
file 1: Table S1), on the expense of lower structure preser-
vation (Additional file 1: Table S2). With regards to time 
of calculation, the greedy algorithm was significantly 
faster, and ranged between ca. 4–35 s per structure. The 
Hungarian algorithm required longer time in most cases, 
ranging between ca. 4–221 s per structure (Additional 
file 1: Table S3). The Fibonacci lattice algorithm required 
much longer calculation time and is not justified here.

Guidelines for effective usage
The CSM code offers several algorithms and many 
parameters that affect the accuracy and speed of the cal-
culation, as well as the chemical and mathematical inter-
pretation of the results. Choosing between all possible 
options is not always trivial, and may benefit from a trial 
and error strategy. Nevertheless, based on our current 
findings and previous studies [12, 13], we provide here 
several guidelines for the choice of algorithms for CSM 
and CCM analysis of molecular structures.

Small-to-medium sized molecules are suitable for 
an exact calculation, based on the structure preserv-
ing permutation algorithm [12]. The number of atoms is 
the first indicator of size. A molecule with up to several 
hundreds of atoms is generally considered medium sized 
here, but the bonding structure and the size of the sym-
metry equivalent atoms’ groups is also important, as they 
affect the number of possible permutations. Ignoring the 
hydrogen atoms is a common workaround that reduces 
the number of permutations and can speed up the cal-
culation. While the hydrogen atoms naturally affect the 
CSM value of a given molecule, they often have minor 
effect on the overall distortion trends of a set of related 
molecules. Another option for size reduction is to ana-
lyze the core structure of large molecules, particularly 
when this structure has a symmetric topology. Sets of 
molecular derivatives with a common skeleton, can espe-
cially benefit from this type of analysis [15].

Large structures for which the exact algorithm is not 
practical, are handled with approximate CSM calcula-
tions. Several algorithms can be used, and are selected as 
an interplay between calculation time and accuracy:

1. The Hungarian algorithm is our default choice for 
approximate CSM calculation, presenting a reason-
able compromise between speed and accuracy. This 
algorithm also excels in distinguishing between dif-
ferent molecules, and as such can be used with 
medium-sized molecules as well, like the fullerenes 
discussed above.

2. The approximate structure-preserving algorithm is 
more accurate than the Hungarian algorithm in its 
ability to find permutations that preserve the chemi-
cal essence of the structure. The resulting CSM val-
ues correlate well with the corresponding values of 
the exact algorithm, as seen for the sets of pillar[5]
arene complexes and the fullerenes presented here. 
The drawback is that these calculations take longer 
time.

3. The greedy algorithm is often the fastest choice 
among all approximate algorithms. It is a relatively 
crude approximation, showing the lowest accuracy 
in terms of structure preservation. Nevertheless, like 
the Hungarian algorithm it excels in terms of distin-
guishing between molecules.

4. The Fibonacci sphere algorithm with up to 100 direc-
tions can improve the accuracy of the Hungarian 
algorithm and find permutations that lead to smaller 
CSM values. The drawback is a longer calculation 
time. It is particularly useful for molecules with large 
equivalence groups of atoms, (e.g., highly symmetric 
nanoparticles) for which a slight change of the initial 
direction can help the code to find a better permuta-
tion. Increasing the number of directions beyond 100 
can increase the accuracy along with the time of cal-
culation.

5. In the special case of protein oligomers, one first 
need to make sure that chains’ length and sequence 
are equalized. Then the Hungarian algorithm is 
recommended together with special features of 
sequence preservation discussed in our previous 
publication [13].

Table 5 User time (in seconds) for consecutive CSM calculation of 20 isomers of  C100 fullerenes

CSM Exact Hungarian Greedy Structure preservation Fibonacci with 100 
directions

Fibonacci with 
500 directions

S(Ci) 15.71 1.61 1.10 91.84

S(Cs) 15.54 14.15 2.09 460.65 171.72 857.00
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Calculation of the CCM follows a similar strategy as 
the CSM with one additional guideline. In many cases of 
chiral or asymmetric topology, the chirality stems from 

the lack of reflection symmetry. That is, S(Cs) is expected 
to be smaller than S(Ci) or S(Sn) with n > 2. Therefore, it is 
often enough to calculate S(Cs) in order to speed up the 
calculation of the CCM, as was done here for pillar[5]
arenes.

The CSM and the alignment problem
The problem of calculating the continuous symmetry 
measure is somewhat related to the problem of molecular 
alignment and RMSD (root mean square deviation) cal-
culations, where one is interested in finding the best fit 
between two structures.

More concretely, given two sets of atom posi-
tions—P =

{
Pk : 1 ≤ k ≤ N

}
 and Q = {Qk :

1 ≤ k ≤ N
}

 , alignment algorithms look for a permuta-
tion π of {1, 2, . . . ,N } and a spatial transformation T  such 
that the RMSD is minimized:

This problem has been widely discussed in the litera-
ture [60–62].

If we take P = Q , then the alignment problem becomes 
very similar to the problem of finding the CSM. However, 
when we look for symmetry, we have to exclude the triv-
ial solution where T  is the identity transformation. We 
also impose restrictions on the operation T  . In the con-
text of point symmetry, T  must generate a finite group. 
This means, for example, that if T  is a rotation around an 
axis vector, then the angle of rotation must be a multiple 
of 360◦/n where n is the order of the symmetry operation. 
In contrast, when we look for mere alignment, T  can be a 
rotation at any angle.

The continuous shape measure, CShM, originally 
developed by Pinsky and Avnir [11] as an extension of 
the CSM method, follows a similar strategy. It becomes a 
symmetry measure when the reference shape is symmet-
ric. Various applications of this approach for small mol-
ecules were published through the years for the analysis 
of e.g., coordination complexes and their distortion path-
ways, particularly with respect to platonic solids [30, 31, 
63]. The techniques described here could be applied, with 
some adjustments, to calculate shape measures as well 
as solving the alignment problems for large molecules. 
Progress in this direction has already been documented, 
in the form of alignment algorithms that calculate the 
RMSD while taking symmetry into considerations, utiliz-
ing, for example, the Hungarian algorithm [64, 65] and 
the greedy algorithm with some level of structure pres-
ervation [66].

(8)RMSD =

√√√√ 1

N

N∑

k=1

∣∣TPk − Qπ(k)

∣∣2

Fig. 9 A set of three MOFs, viewed along their unit cell c axis, 
without the hydrogens atoms taken from the COD IDs: A 4002650, B 
4003149, C 4002646
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Conclusions
The continuous symmetry and chirality measures esti-
mate the distance between a given molecule and its 
nearest symmetric (or achiral) structure. Preserving 
the connectivity map of the original molecule, although 
desired, was not a requirement in the original CSM algo-
rithm [7, 10]. Consequently, the approach was limited by 
the size of molecules that could be handled, an obstacle 
that was partially overcame by applying an approximate 
approach based on a permutation-direction search using 
the greedy algorithm [9]. In recent years, our group con-
siderably improved the method. We introduced the con-
cept of structure preserving permutations in order to 
reduce the number of permutations the code needs to 
scan, while preserving the connectivity map of the origi-
nal molecule [12]. We further improved the approximate 
algorithm for protein homomers by applying the Hun-
garian algorithm instead of the greedy algorithm in con-
junction with utilizing the sequence structure to reduce 
the number of permutations [13]. In this work, we took 
the method one step forward and developed a set of 
approximate algorithms that are suitable to any type of 
molecular structure. Our main goal is to provide a quan-
titative estimation to the symmetry and chirality content 
of molecules of any size. Our set of approximate CSM 
algorithms should thus be viewed as a collection of 3D 
geometrical descriptors for global structural analysis that 
fulfills the main criteria for good descriptors, in terms of 
interpretability, ability to differentiate between isomers 
and conformers, applicability for local structures, conti-
nuity, usage simplicity and efficiency [67]. As such, these 
descriptors are suitable for characterizing structural 
changes and play part in QSAR/QSPR modeling.

The accuracy of all the approximate methods described 
in this paper depends on the distortion level of the mol-
ecule with respect to the desired symmetry point group 
G. For molecules which are only slightly distorted, all the 
algorithms tend to find a permutation that preserve the 
structure (in terms of its connectivity map) either fully or 
with a high preservation rate. For highly distorted mol-
ecules, this does not always hold, as permutations which 
do not preserve the structure could attain lower values of 
the target function, thereby creating a bias between the 
exact and approximate CSMs.

Based on our calculations of three different sets of 
molecules (Pillar[5]arenes complexes,  C100 fullerenes, 
and MOFs), guidelines for effective usage of the differ-
ent algorithms were specified. These are based on the 
ability of the code to find structure preserving permuta-
tions (wherever relevant), the speed of the calculation 
and the ability of the CSM to distinguish between the 
studied molecules. In summary, we emphasize the ease 
and efficiency of using the CSM and CCM approach for 
structural analysis, which make them applicable as robust 
three-dimensional geometrical descriptors that can be 
used to follow dynamical processes and statistical studies 
on quantitative structure–activity and structure-proper-
ties relationships.

Abbreviations
CCM  Continuous chirality measure
COD  Crystallographic open database
CShM  Continuous shape measure
CSM  Continuous symmetry measure
MOF  Metal organic framework
QSAR  Quantitative structure activity relationship
QSPR  Quantitative structure property relationship
RMSD  Root mean square deviation

Table 6 Approximate CSMs of unit cells of MOFs, calculated with the Hungarian algorithm

Name UHM‑25‑Ala‑Boc [57] rht‑MOF‑pyr [58] MUF‑22 [59]

COD ID 4002650 4003149 4002646

Formula C36H32Cu2NO13 C33H15Cu6N6O19 C48H36N4O12Zn3

Space group P432 Fm3m R3c

Number of atoms 12,000 7552 2565

S(Cs) 0.0601 0.0001 12.7755

S(Ci) 0.0608 0.0000 0.0000

S(C2) 0.0000 0.0001 12.7755

S(C3) 0.0000 0.0000 34.0055

S(C4) 0.0000 0.0000 35.6589

S(S4) 0.0608 0.0000 35.6611

S(S6) 0.0608 0.0000 40.8096
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