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Abstract 

While a multitude of deep generative models have recently emerged there exists no best practice for their practically 
relevant validation. On the one hand, novel de novo-generated molecules cannot be refuted by retrospective valida-
tion (so that this type of validation is biased); but on the other hand prospective validation is expensive and then 
often biased by the human selection process. In this case study, we frame retrospective validation as the ability 
to mimic human drug design, by answering the following question: Can a generative model trained on early-stage 
project compounds generate middle/late-stage compounds de novo? To this end, we used experimental data that con-
tains the elapsed time of a synthetic expansion following hit identification from five public (where the time series 
was pre-processed to better reflect realistic synthetic expansions) and six in-house project datasets, and used 
REINVENT as a widely adopted RNN-based generative model. After splitting the dataset and training REINVENT 
on early-stage compounds, we found that rediscovery of middle/late-stage compounds was much higher in public 
projects (at 1.60%, 0.64%, and 0.21% of the top 100, 500, and 5000 scored generated compounds) than in in-house 
projects (where the values were 0.00%, 0.03%, and 0.04%, respectively). Similarly, average single nearest neighbour 
similarity between early- and middle/late-stage compounds in public projects was higher between active com-
pounds than inactive compounds; however, for in-house projects the converse was true, which makes rediscovery 
(if so desired) more difficult. We hence show that the generative model recovers very few middle/late-stage com-
pounds from real-world drug discovery projects, highlighting the fundamental difference between purely algorithmic 
design and drug discovery as a real-world process. Evaluating de novo compound design approaches appears, based 
on the current study, difficult or even impossible to do retrospectively.

Scientific Contribution This contribution hence illustrates aspects of evaluating the performance of generative 
models in a real-world setting which have not been extensively described previously and which hopefully contribute 
to their further future development.
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Introduction
De novo generative drug design is a current technique of 
interest [1, 2], not least due to cost pressures [3] and cur-
rent endeavours to integrate computational and experi-
mental work into Design-Make-Test-Analyze (DMTA) 
cycles [4]. Looking back, de novo design algorithms have 
been developed since at least the 1980s [5]. For some 
time, the mainstream method was the combination of 
fragment-like building blocks with genetic algorithms [6, 
7]. Nowadays, due to the rapid growth of computer hard-
ware including GPU computing, machine learning and 
deep neural networks applied to molecular generative 
models have become tractable [8–10].

As with any method, validation–and how to perform 
validation in a practically relevant manner–has been 
discussed actively [11]. In the early stages of deep gen-
erative models, many researchers only concentrated on 
how the model produced novel compounds efficiently by 
copying the distribution of the training dataset, referred 
to as distribution-learning. Therefore, the principle per-
formance metrics developed were validity, uniqueness, 
novelty, and diversity which are included in benchmarks 
such as MOSES and Fréchet ChemNet Distance [12, 13]. 
However, in a practical drug discovery process, goal-
directed optimization is much more important. The gold 
standard of measuring model performance would be to 
synthesize and test de novo molecules experimentally 
(and compare to a baseline control [14]); however, this is 
intractable for all models considering the experimental 
resource requirement, given the number of models avail-
able and the number of de novo molecules  proposed2. 
Recently the CACHE initiative started, whose aim is to 
validate computationally suggested or generated com-
pounds by experimental testing; however, this activity 
is limited in scope due to the cost of synthesizing novel 
structures [15]. In order to fill the need for goal-directed 
benchmarking, Guacamol [16] has been developed, 
which contains benchmarks such as rediscovery of and 
similarity to known active compounds. Although this 
benchmark is very practical for generative model uti-
lized in lead optimization stage, the dataset is retrieved 
from ChEMBL [17] and just removes the target com-
pound from the training dataset, where then the task is 
to rediscover those removed compounds computation-
ally. However, analogues may still remain in the training 
dataset (of which there are often many, given ChEMBL 
is constructed from publications which often contain 
SAR of related compounds), and suggested novel mol-
ecules may well be active although not being contained in 
the dataset, and hence also this type of validation has its 
shortcomings.

A real-world interpretation of generative models in 
the drug discovery context remains difficult, and the 

current work attempts to better understand this by ret-
rospectively applying performance measures to genera-
tive models applied to public and private drug discovery 
data sources. The objective of the task is hence to achieve 
late-stage project compounds, given information from 
early-stage compounds, in a limited number of steps, 
and hence in a sample-efficient way (for a more detailed 
recent evaluation of the sample efficiency of different 
methods see a recent study [18]). This early/late data 
split strategy is in analogy to ‘time-split’ validation in the 
QSAR area, where splitting data into training and test 
sets along the time domain has been proposed before 
[19].

However, drug discovery is not ligand discovery, and 
drug discovery does not only consist of optimizing 
a single objective in a proxy assay system [20]. More 
specifically, during the lead optimization stage of a 
drug discovery project, multiple-parameter optimi-
zation (MPO), for parameters such as primary target 
activity, activity against off-targets, and also physico-
chemical and ADME properties such as permeability, 
intrinsic clearance, solubility etc. need to be optimized 
simultaneously [21], an area which has found consid-
eration only in few computational studies [22, 23]. In 
reality the MPO process is very complicated in a drug 
discovery project, because the target profile could be 
easily changed (and even multiple times) during the 
course of a project, where new problems appear every 
step along project progress (Fig.  1) [24]. In this work, 
we attempted to see whether generative models can be 
validated retrospectively, on the one hand with public 
data mapped onto a pseudo-time axis, and on the other 
hand with real-world project data from different pro-
jects in a pharmaceutical company.

Regarding the architecture of the deep genera-
tive model, we decided to use one of the widely used 
approaches in the field, namely REINVENT [25, 26]. 
Recently, many architectures of generative models for 
de novo design have been published such as recur-
rent neural network (RNNs) [27], convolutional neu-
ral network (CNNs) [28, 29] and graph convolutional 
neural network (GCNN) [30]. In the drug discovery 
field, although there are many models including vari-
ational auto encoder (VAE) [1], and Generative Adver-
sarial Networks (GAN) [31], due to the success of NLP, 
which was driven by many techniques like long-short 
time memory (LSTM) [32], gated recurrent unit (GRU) 
[33] and attention mechanism [34], language models 
have found great resonance [22, 23, 35, 36]. We chose 
REINVENT as the generative model in this study, an 
RNN-type language model with the ability to perform 
goal-directed optimization through fine-tuning and 
reinforcement learning, due to its availability, flexibility 
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and wide use making results herein more relatable 
[37–43].

Materials and methods
Dataset
For the public dataset, a variety of targets with differing 
mechanisms of action were chosen such as G protein-
coupled receptors (GPCR), kinase, and kinase receptor; 
data for five targets were selected from Excape-DB [44], 
namely for DRD2 (Dopamine Receptor D2, 4341 active 
compounds), GSK3 (Glycogen synthase kinase 3, 4646 

active compounds), CDK2 (Cyclin-dependent kinase 
2, 2065 active compounds), EGFR (Epidermal Growth 
Factor Receptor, 4777 active compounds), and ADRB2 
(Adrenergic receptor β2, 2616 active compounds). The 
quantitative rationale was to select datasets which have 
been well studied in previous publications and which 
include more than 1000 compounds individually with 
pXC50 values (Additional files 1, 2, 3, 4, 5: Dataset 1 to 
5). For the in-house dataset, six projects were collected 
from TEIJIN Pharma’s in-house database which also 
include more than 1000 compounds individually. These 
are named here as A, B, C, D, E, and F. Figure 2 and Addi-
tional file 6: Table S1 show the number of compounds for 
each dataset, separated by activity values and ‘early’, ‘mid-
dle’ and ‘late’ stage annotations, further details of which 
are explained in the following.

Time series pre‑processing
Public dataset
The public dataset utilized in this study was derived from 
ExCAPE-DB. All targets are well-studied and include 
more than 1000 bioactivity data points with pXC50 val-
ues. The simplified molecular-input line-entry system 
(SMILES) strings were obtained from ExCAPE-DB for 
all molecules, and canonicalized using the RDKit (ver-
sion 2020.09.01) component “RDKit Canon SMILES” 
and “Speedy SMILES De-salt” in the KNIME (version 
4.3.4). However, this public database contains no ‘pro-
ject registration date’ and the compounds deposited in 
the underlying databases (ChEMBL [17] and PubChem 
[45]) are usually done by publication or grouped upload, 
not reflecting realistic project time series optimization. 
Therefore, in order to mimic the time series of a practi-
cal drug discovery process that increases the activity 

Fig. 1 An example of a trajectory of compounds from hit 
identification to clinical candidate. The white circles and lines 
(dotted one: hit to lead, and solid one: lead optimization) represent 
the compound and the trajectory of compound optimization. The 
X- and Y- axis represent the value of parameters which are better 
if the values are larger. It can be seen that multiple properties matter 
in optimization (where in particular the X-axis subsumes a large 
number of additional properties), and that optimization is usually 
not linear in practice

Fig. 2 The datasets used in this study include wide range of activity. The thresholds for activity classes generally are pXC50 values of less than 6 
for low, over 6 to less than 7 for middle, over 7 to less than 8 for high, and over 8 for ultra-high compound activity
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with time elapsed, data was mapped onto a ‘pseudo-time 
axis’ as follows. We transformed the data by principle 
component analysis (PCA) using Datawarrior (ver 5.2.1) 
[46], and then the following three steps. (1) The canoni-
cal SMILES of the public dataset were input to calculate 
the FragFp [47] fingerprints. The FragFP fingerprints 
were used to calculate the normalized PCA components 
of 3 components. (2) Then, these components alongside 
pXC50 value of each compound (in total 4 dimensions) 
was used to obtain another PCA score of 3 components. 
These 3 final PCA components hence include informa-
tion on both similarity of compounds in fingerprint space 
as well as bioactivity. (3) Finally, the Euclidean distance 
of all compounds in each dataset to the compound that 
has lowest pXC50 value was calculated using the final 
3 PCA components. This process introduces an order-
ing of compounds in bioactivity space (from low to high 
potency), as well as chemical space (from a low potency 
starting point, to high potency compounds with increas-
ing dissimilarity to the starting point). We are aware that 
this process does not necessarily resemble a real-world 
drug discovery project, but it at least represents com-
pound progression towards higher-potency compounds, 
which, given the limited availability of public domain 
timestamped project data is the only practically feasi-
ble option we were able to identify for a public dataset. 
Then, the datasets were divided by both the activities and 
pseudo-stages.

To categorize the activities, pXC50 thresholds for activ-
ity classes in most projects are less than 6 for “low”, over 6 
to less than 7 for “middle”, over 7 to less than 8 for “high”, 

over 8 for “ultra-high”. To categorize the stages for public 
projects already transformed into a pseudo time-series, 
those from the beginning of the compounds to 50%, 25% 
(accumulated from 50 to 75%), and 25% (accumulated 
from 75 to 100%) were classified into early, middle and 
late stage, respectively. As an example, Fig.  3 shows the 
DRD2 dataset, with compounds classified across the dif-
ferent stages of the drug discovery ‘project’ mapped onto 
the pseudo-time axis, as well as the different bioactivity 
ranges used in this work.

In‑house dataset
The in-house dataset was retrieved from TEIJIN Pharma 
Ltd’s Database, and we selected 6 projects (A to F) which 
have more than 1000 bioactivity datapoints of pXC50 val-
ues. The date of completed synthesis for in-house com-
pounds was recorded in the TEIJIN database for a given 
project. Consequently, being different from public data-
set, we directly used the date for the time-series of the 
in-house dataset. An additional difference from the pub-
lic dataset was that we know there was at least one addi-
tional property to be improved for each project that was 
not on-target activity, such as metabolism, physicochem-
ical properties, etc., and this can even change at different 
timelines of the project [21]. Hence a second objective 
of using this dataset, apart from benchmarking genera-
tive models, was to evaluate to what extent the structures 
generated by de novo generative models actually follow 
the optimization trajectory across a set of real-world 
drug discovery projects. Regarding data classification 
along the bioactivity axis, for projects A, B, C, D, the 

Fig. 3 An example of data division according to stages and bioactivities. The region of α that consists of more than middle activity compounds 
in the stage of early corresponds to the training dataset for fine-tunning to produce focused agent. The region of β consists of low and middle 
activity compounds in the middle and late stage, and the region of γ consists of more than high activity compounds in the middle and late stage. 
The X-axis is unitless
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setting of activity classification was the same as public 
dataset. However, for projects of E and F, given the bio-
activity distribution in those cases, thresholds for activity 
classes have been set to less than 7 for “low”, over 7 to 
less than 8 for “middle”, over 8 to less than 9 for “high”, 
over 9 for “ultra-high”. As for the classification of stages of 
in-house projects, 500 or 1000 was selected based on the 
progression of bioactivity in order to evenly split activity 
groups.

Regional classification and similarity analysis
In order to establish ‘project progress’ with respect to 
potency, we next defined intervals α, β and γ (as shown 
in Fig. 3 for the DRD2 dataset) in bioactivity space as fol-
lows. The region α is compounds with over middle activ-
ity in the early stage, while the region β is compounds 
with low and middle activity in the middle and late stage 
and region γ is compounds with high and ultra-high 
activity in the middle and late stage. We then analyzed 
progression in the bioactivity domain across differ-
ent project stages (i.e., to which extent potency could 
be optimized by the model) by calculating the average 
similarity of generated molecules to the single nearest 
neighbour (aSNN) present in a given part of the dataset, 
based on the Tanimoto similarity of Morgan fingerprints 
using RDKit [12, 48] and with the aSNN calculations per-
formed as implemented in MolScore [39].

Model training
We used REINVENT 2.0 (from https:// github. com/ 
Molec ularAI/ Reinv ent accessed 14/09/20, now cor-
responding to branch reinvent.v.2.0) [26] as a de novo 
generative design strategy, given its wide use in the field 
[49]. Figure  4 shows the workflow of this study using 
the REINVENT framework, which is described in more 
detail as follows:

(i) Pretraining of prior model
Compounds were prepared in accordance with the 
REINVENT pipeline [26] as standardized non-isomeric 
SMILES. The Prior network was pre-trained on a dataset 
of 1,442,368 compounds derived from ChEMBL where 
the molecules were restrained to containing between 
10 and 50 heavy atoms and elements {H, B, C, N, O, F, 
Si, P, S, Cl, Br, I} [17]. Only for public dataset, the com-
pounds included in the ChEMBL dataset were omitted. 
In the pre-training, the Prior network was trained for a 
total of 10 epochs with a batch size of 128 with an adap-
tive learning rate starting from 0.0005. All other settings 
were set to default [26]. All neural network training was 
conducted on an NVIDIA GeForce GTX 1650 Ti.

(ii) Data preparation and transformation
We next utilized the dataset of each project (either public 
or in-house) for fine-tuning, whose compounds were also 
processed as described in (i). Since the purpose of fine-
tuning is to focus on the higher activity compounds, the 

Fig. 4 Workflow of this study (for details see main text). As options, Inception and diversity filter (DF) could be used in the sampling process of (iv).

https://github.com/MolecularAI/Reinvent
https://github.com/MolecularAI/Reinvent
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compounds chosen for this step were early-stage com-
pounds with above-average activity (region α).

(iii) Model generation and training
For focused agent network The Pre-trained prior net-
work obtained in (i) was fine-tuned by the compounds 
prepared in (ii), and the model obtained here was called 
the Focused Agent network. During fine-tuning, the pre-
trained prior network was trained for a total of 10 epochs 
with a batch size of 128 with an adaptive learning rate 
starting from 0.0005. The other settings were adopted as 
default [26].
Random forest model for the reinforcement learning scor-
ing function All compounds in the early stage were used 
to build a classification model which was used as the scor-
ing function for reinforcement learning (RL) to optimize. 
Compounds possessing above average activity were clas-
sified as active and those below average activity classified 
as inactive. The dataset was divided into 70% training and 
30% test, and ECFP6 descriptors [50] (1024 bit, radius: 3) 
were generated using RDKit (version 2020.09.01) Chem 
functions [48] while a Random Forest (RF) (Python (ver. 
3.7.10), scikit-learn (ver 0.24.2) library RandomForest) 
ensemble.RandomForestClassifier function was used for 
machine learning [51] (Additional file  6: Fig. S1). The 
parameters of RF were set as follows; max_depth: 20, n_
estimator: 100, others: default setting. RL was performed 
for 500 steps with a batch size of 128, a sigma value of 128 
and learning rate of 0.0001.

(iv) Compound generation
The compounds were generated from the Focused Agent 
network from (iii) and scored by the in silico classification 
model from (iii) repeatedly as the RL framework. 5000 de 
novo molecule were sampled in total from the final net-
work. The highest-ranked 100 and 500 compounds were 
selected according to the in silico classification score for 
subsequent analysis.

(v) Evaluations
As basic metrics, validity, uniqueness and novelty were 
calculated for all runs which have also been used in pre-
vious work [12, 16]. Validity is the fraction of correctness 
that a SMILES string translates to a real structure. Low 
validity is indicative of a poorly behaving model that has 
struggled to learn the SMILES grammar. Uniqueness 
is the fraction of unique molecules, where non-unique 
molecules are defined as having canonical SMILES 
that match those previously sampled or in the same 
batch. Low uniqueness is indicative of a poorly behav-
ing model that is ‘stuck’ in a particular region of chemi-
cal space. Novelty is the ratio of valid, unique canonical 

SMILES not present in the training dataset (pre-training: 
ChEMBL, fine-tuning: above average activity compound 
in the early stage of each project which locates in region 
α), and low novelty indicates the model cannot generalize 
beyond the training data, which is precisely the aim of de 
novo design. All these calculations were implemented in 
Python 3.7.10 using the original code following the equa-
tions below, Eq. 1–3, where Ngen represents the number 
of generated compounds, Nval represents the number of 
valid compounds, Nuni represents the number of unique 
compounds in generated compounds, and Nunk repre-
sents the number of unknown compounds in generated 
compounds [52].

Finally, the highest-scored compounds selected from 
(iv) were evaluated by the following metrics. The calcula-
tion of these metrices was implemented in Python 3.7.10.

1. Rediscovery ratio, defined as Eq. 4, in order to assess 
whether experimentally confirmed highly- or ultra-
highly active compounds were generated, where Nre-
dis represents the number of generated compound 
which agreed with the real high or ultra-high activity 
compound in the middle or late stage.

2. aSNN in the middle stage, to evaluate whether gen-
erated compounds were similar to compounds from 
the middle stage of a given project with high or ultra-
high activity.

3. aSNN in the late stage, to evaluate whether generated 
compounds were similar to compounds from the late 
stage of a given project with high or ultra-high activ-
ity (which means that the generative model behaves 
similarly to ‘real world’ projects, to the extent cap-
tured by the data used in this work and at that stage).

Generative models and options
Control experiment: prior network only
As a baseline to compare to RL we generated compounds 
from the pre-trained prior network only, called “Control” 

(1)Validity (%) =
Nval

Ngen
× 100

(2)Uniqueness (%) =
Nuni

Nval
× 100

(3)Novelty (%) =
Nunk

Nuni
× 100

(4)Rediscovery (%) =
Nredis

Ngen
× 100
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in the following. The aim of this baseline was to investi-
gate the effect of fine-tuning and reinforcement learning 
using the dataset prepared in this study.

Focused learned agent network (FL)
We generated compounds from focused learned agent 
network, namely these compounds were generated with-
out the effect of reinforcement learning.

Reinforcement learning (RL)
This represents the ‘vanilla’ approach of this work, 
employing only Reinforcement Learning.

Diversity filters (DF)
The next variation was the use of a “diversity filter (DF)” 
[26], which has been shown before to give an increase 
in the structural diversity of compounds generated [42, 
53]. The parameters of DF were set to default as follows; 
name: IdenticalMurckoScaffold, nbmax: 25, minscore: 
0.4. This run is called “RL-DF”.

Inception
The purpose of “Inception” [26] is to keep track of pre-
viously well scored compounds and to randomly expose 
a subset of them to the agent, thus helping to direct the 
learning. The parameters of Inception were set as follows; 
memory_size: 20, sample_size: 5. In this study, 30 com-
pounds that were at least of ’high’ activity in early stage 
were used. (It is noted that although we used inception 
mode in any runs, since we set sample_size: 0 other than 
“Inception” run, inceptions were not executed.)

Consequently, there are five different ways the 
generative model was run, which were Pre-trained 
prior network (Control), RL, RL-DF, RL-Inception, 
RL-DF-Inception.

Compound clustering
To investigate the profiles of the activity of real (public 
and in-house) compounds according to the time elapsed 
quantitatively, we used compound k-means clustering as 
implemented in sklearn.cluster using ECFP6 fingerprints 
calculated using RDKit [48] and cluster size: 10. Then, we 
counted the number of compounds in each cluster and in 
each region (α, β and γ in Fig. 3).

Furthermore, to understand the chemistry of generated 
compounds, we examined it by visual inspection, using 
DRD2 compounds as an example. From each cluster the 
centroid structure of each cluster was selected as a repre-
sentative, and the structure which has the highest pXC50 
value was selected as the highest-scoring structure of its 
cluster.

Negative log likelihood
To investigate the real compounds located in α, β and γ 
are reflected in the agent network, we calculated negative 
log likelihood (NLL) using the compounds in α, β and γ, 
separately. The function in REINVENT 2.0 (likelihood_
smiles function from models.py)26 was used.

Results and discussion
Dataset characterization across the bioactivity and time 
domain
We firstly aimed to understand the distribution of our 
datasets across the time and bioactivity domain, the 
results of which are shown in Fig. 5. For the public pro-
jects, the aSNN between α and γ are much higher (by 
around 0.1) than those between α and β. However, for 
the in-house projects, the aSNN between α and γ were 
mostly similar to, or lower than, values between α and β 
except for project C. The underlying reason is likely that 
chemical series from publications including high-activity 
ligands were quite different from those with lower activi-
ties (hence giving area β a different composition), which 
is the result of different ligands (which different activ-
ity) being reported in different publications, w.r.t. both 
chemistry and publication date, given that those were 
the criteria used for dataset assembly here. On the other 
hand, for the in-house dataset this wasn’t really the case, 
meaning that in relatively more cases late-stage high-
activity space was still in a chemical area similar to that 
occupied at project start (although the situation is quite 
different for different projects). It can clearly be seen that 
both classes of datasets hence behave differently, which 
is entirely expected from the way they were constructed 
(see methods section for details).

Metrics of generated compounds (validity, uniqueness, 
and novelty)
Next, we calculated the validity, uniqueness, and nov-
elty of the generated compounds. The results for RL are 
shown in Additional file 6: Table S2. The validity for each 
target was over 98%. The uniqueness of generated com-
pounds for the public dataset was relatively high, from 
39.4% (GSK3) to 82.2% (DRD2), while the corresponding 
value for the in-house datasets was much lower, ranging 
from 15.1% (project F) to 50.9% (project E). The novelty 
of each target was over 70% (for detailed results see Addi-
tional file 6: Tables S3–5). Through all the runs, regard-
less of targets, the validity and novelty were high enough, 
over 95% and 70%, respectively, which are appropriate in 
practice. The lower uniqueness values in in-house data-
sets ranging from 15.1% (project F) to 50.9% (project 
E) might reflect more congeneric compounds used in 
focused learning compared to the combination of differ-
ent publications in public datasets. Across projects, the 



Page 8 of 17Handa et al. Journal of Cheminformatics          (2023) 15:112 

uniqueness of the RL-inception runs were lower than 
the other runs, from 36.4% (GSK3) to 59.8% (DRD2) for 
the public dataset, and from 19.4% (project F) to 40.8% 
(project E) for the in-house dataset which is lower than 
for the original RL runs. However, if the DF was used as 
an option, the low uniqueness was completely recovered, 
both for the RL-DF run, as well as the combination with 
Inception, with values ranging from 99.0% (project B) to 
99.8% (CDK2) for the RL runs, while values for RL-DF-
inception ranged from 96.8% (project B) to 98.5% (DRD2 
and ADRB2). This underlines the importance of using 
diversity filters to ensure uniqueness of generated struc-
tures across the different situations considered here [40].

Rediscovery
We next analyzed the rediscovery rates of generated 
compounds using RL alone, the results of which are 
shown in Fig.  6. For public projects, other than GSK3, 
we could find compounds identical to real high activity 
compounds. The percentage of rediscovery for DRD2, 
CDK2, EGFR, and ADRB2 were 0.30%, 0.13%, 0.52%, and 
0.09% for all 5,000 generated compounds, respectively; 
when using the in silico classification score for rank-
ing 1.0%, 0.8%, 1.0%, and 0.4% of the 500 highest-scored 
generated compounds represented known actives, while 
this was the case for 2%, 3%, 2%, and 1% for the top 100 
scored generated compounds, respectively. For in-house 
projects, only the generative models for project A and 
B could find identical compounds to the real high activ-
ity compounds. The percentage of rediscovery in project 
A and B were 0.10%, and 0.15% for all 5,000 generated 
compounds; when using in silico classification scores for 
further selection 0.20% and 0.00% of the top 500 scored 
generated compounds represent known actives, while the 

top 100 scored generated compounds had no rediscovery 
(more details are shown in Additional file  6: Table  S6). 
This decrease of rediscovery and lack of enrichment 
achieved by additional ranking of in silico classification 
model indicates that prospective performance may be 
poor, and indeed in the case of project B retrospective 
performance was marginally better than random (Addi-
tional file  6: Fig. S1). Hence, we consistently find that 
rediscovery was much higher for public projects than 
in-house projects. Rediscovery was less than 1% for all 
generated compounds, and less than 3% for the top 100 
scored compounds (Fig.  6), which is significantly lower 
than in a previous study: In work by Segler et. al. [54] 
where the rediscovery ratio was around 10% for two bio-
activity endpoints (which were growth inhibition end-
points though, namely inhibitory activity for Plasmodium 
falciparum and Staphylococcus aureus). However, meth-
odological differences exist: In this previous study the 
test dataset was selected randomly and removed from 
the training dataset, which means that congeneric com-
pounds might still exist in the training dataset, and then 
the generative models were fine-tuned. This explains the 
high rediscovery rates; however, this situation doesn’t 
really resemble a real-world drug discovery situation. On 
the other hand, in a study performed by Atance et. al. 
[55], which removed a test dataset for DRD2 completely 
from the training dataset, the percentage of rediscovery 
was less than 1%; the condition of this study was more 
similar to ours with respect to conditions and results 
obtained.

We found that rediscovery (the percentage of known 
actives present in the de novo-generated compounds), 
was greater in public projects (1.60%, 0.64%, and 0.21% 
of the top 100, 500, and all 5,000 generated compounds, 

Fig. 5 Average of single nearest neighbour similarity (aSNN) between training and test compounds. The aSNN for all projects for low or high 
activity real compounds were largely different from public and in-house projects. It can be seen that the profiles in Public dataset (aSNN 
of α-β < α-γ) was different from in-house (mostly, aSNN of α-β > α-γ). The cut-off values of aSNN considered similar was set to be 0.3
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respectively) than that in in-house projects (where the 
values were 0.00%, 0.03%, and 0.04%, respectively). This 
shows that the public dataset which was mapped on a 
pseudo-time axis behaves fundamentally different from a 
real-world drug discovery project, leading to very differ-
ent numerical results.

Similarity Analysis of generated compounds to middle 
stage compounds
To investigate whether the generative model can pro-
duce compounds similar to known actives, we next 
calculated the aSNN (average Similarity of the Near-
est Neighbour) between the generated compounds and 
known active compounds. The aSNN between generated 
compounds and the real compounds which belong to 
the middle stage are shown in Fig. 7a to c (all the value 
of aSNN can be seen in Additional file 6: Table S7). For 
the public projects, given all of 5,000 generated com-
pounds, aSNN through the projects of high/ultra-high 
activity compounds were much higher than that of low/
middle activity compounds (the average of aSNN across 
projects for low/middle/high/ultra-high activity was 
0.304/0.367/0.420/0.408, respectively) [56]. Hence, for 
the public dataset, and given the particular way this 
dataset was constructed, optimization towards the sin-
gle objective of primary target activity was possible. For 
the in-house projects those trends were inconsistent (the 
average of aSNN across projects for low/middle/high/
ultra-high activity was 0.431/0.425/0.427/0.348, respec-
tively). For project A and B the aSNN to high activity 
compounds was higher than the corresponding value for 
low/middle activity compounds; however, for projects C 
to F the aSNN of generated compounds to high/ultra-
high compounds was conversely lower than that to low/

middle activity compounds (Fig. 7a). We can hence con-
clude that both datasets behaved very differently: While 
for the public dataset evolution towards the chemical 
space of higher-potency compounds was generally pos-
sible, this was not the case for the in-house projects 
analyzed.

Next we analyzed the compounds selected by the in 
silico classification model to investigate the effect of this 
data processing step. For the public dataset we found 
that the aSNN of the 500 compounds highest ranked by 
the in silico classification model was much higher than 
when all generated compounds were used, namely the 
compounds generated were more similar to the ultra-
high activity compounds (the average of aSNN through 
projects for low/middle/high/ultra-high activity was 
0.329/0.424/0.531/0.540, respectively). For the in-house 
projects the compounds generated were more similar 
to the high activity compounds as well, but this is not 
the case for ultra-high activity compounds (the average 
of aSNN through projects for low/middle/high/ultra-
high activity was 0.527/0.534/0.543/0.442, respectively). 
This trend held for the 100 compounds highest ranked 
by the in silico classification model, where the aSNN 
across projects for low/middle/high/ultra-high activ-
ity was 0.343/0.443/0.531/0.540 (for public data) and 
0.563/0.579/0.602/0.489 (for in-house data), respectively. 
Especially for GSK3 and CDK2, the aSNN of high/ultra-
high compounds was more than two times higher than 
when using all generated compounds (Fig.  7b, c). Fur-
thermore, in project C and F when using top 100 scoring, 
the aSNN of high activity compounds were higher than 
that of low/middle activity compounds (Fig.  7c). Hence 
we can conclude that filtering by an in silico classifica-
tion model has an overall beneficial effect to select higher 

Fig. 6 Rediscovery of compounds was higher for public projects than in-house in the reinforcement learning (RL) setting. For further details see 
Additional file 6: Table S6
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activity compounds across most of the public and in-
house datasets, with the magnitude of the effect widely 
varying.

Similarity analysis of generated compounds to late stage 
compounds
Next, we analysed the aSNN between generated com-
pounds and the real compounds which belong to the 
late project stage, which usually means both greater 
chemical evolution, and more bioactive (or generally 
optimized, with respect to the objective properties) com-
pounds. Generally speaking, the assumption was that 

the more time elapsed, the more difficult it will be for 
the model to generate compounds similar to real late-
stage project compounds. The results of this analysis 
are shown in Fig.  7d to f (all the value of aSNN can be 
seen in Additional file 6: Table S7). It can be seen that the 
value of most aSNNs was lower than those in the mid-
dle stage (Fig.  7a–c). In the public projects, given all of 
5,000 generated compounds, the aSNN of generated 
compounds to high/ultra-high activity compounds was 
higher than that to low/middle activity compounds (the 
average of aSNN values across projects for low/middle/
high/ultra-high activity being 0.259/0.297/0.341/0.404, 

Fig. 7 Average of single nearest neighbour similarity (aSNN) between generated and middle/late stage’s test compounds. The aSNN 
between generated compounds from all projects in reinforcement learning (RL) for (a, d) all 5,000 compounds generated, for (b, e) 
the highest-scored 500 compounds by an in silico classification model, and for the (c, f) highest-scored 100 scored compounds by an in silico 
classification model to the real compounds in middle (a to c) or late (d to f) stage are shown. From a to c, it can be seen that activity model 
selection generally increases aSNN, with the magnitude of the effect widely varying across projects, from d to f, generally speaking, values are 
lower than in a to c (for middle-stage compounds), and hence long-term compound evolution is much more difficult to model than short-term 
compound evolution. The cut-off values of aSNN considered similar was set to be 0.3
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respectively). However, this was not the case with the 
in-house projects, with the average aSNN values across 
projects for low/middle/high/ultra-high activity being 
0.376/0.357/0.361/0.311, respectively (Fig.  7d). Hence, 
we can conclude that again both types of projects behave 
differently; for the public dataset evolution towards the 
chemical space of higher-potency compounds was gener-
ally possible, but not so for the in-house projects.

Then, to investigate the effect of score filtering, we ana-
lyzed the top scored of the generated compounds. Although 
the absolute value of aSNN was higher when we using top 
500 (with the average aSNN across projects for low/middle/
high/ultra-high activity being 0.281/0.336/0.402/0.516 for 
the public datasets and 0.455/0.429/0.441/0.370 for the in-
house datasets) as well as the top 100 compounds (with the 
average of aSNN across projects for low/middle/high/ultra-
high activity being 0.289/0.349/0.414/0.517 for the public 
datasets and 0.490/0.464/0.479/0.394 for the in-house data-
sets), there were not as drastic changes compared to those 
in the middle stage when performing the same analysis 
(Fig. 7b, c, e, f). We can conclude that score filtering in the 
late stage is more difficult compared to the middle stage, 
and this might be derived from the greater time elapsed 
(and hence chemical space evolving) since the generation of 
the models.

In absolute terms, a similarity above ca. 0.3 in ECFP4/
Tanimoto space (as a broad rule of thumb) often indicates 
similar bioactivity [57], which was in many cases reached 
by the current projects. Hence, in absolute terms, it 
seems that the chemistry generated should be suitable for 
drug discovery.

However, public and in-house projects behaved vastly 
different throughout the current analysis, which is under-
standable given the differences in how both datasets 
were constructed. For in-house datasets, the aSNN were 
mostly higher than 0.3; however, the aSNN to the real 
high or ultra-high active compounds was across projects 
consistently lower (Fig. 7) than to the real low or middle 
active compounds. This could be influenced by the some-
what artificial setup of this study, where we focused on a 
single objective, namely on-target activity; however, dur-
ing any practical drug discovery project the consideration 
of multiple (and often competing) objectives is inevitable 
[20]. This is supported by the analysis shown in Fig.  5, 
where it is clear that in real projects compound evolu-
tion does not simply follow an optimization of on-target 
activity. Consequently, it is more difficult to reproduce a 
compound trajectory from real-world project data, com-
pared to that of just optimizing on-target activity, which 
is what we consistently also observe from our results in 
this study; our setup (single property optimization) is a 
potential limitation to consider during interpretation, 
especially of in-house projects.

The effect of in silico classification model accuracy 
on rediscovery and aSNN
Next, we investigated the relationship between in silico 
classification model predictivity, learning curves and 
rediscovery/aSNN, to evaluate whether better bioactiv-
ity models also lead to higher values across these perfor-
mance measures. The results of this analysis are shown 
in Additional file 6: Fig. S1a, where balanced accuracies 
were acceptable for use in practice. We also investigated 
the relationship between the classification accuracy and 
rediscovery/aSNN (to the late stage compounds with 
high/ultra-high activity) in Additional file  6: Fig. S2. It 
can be seen that there is a positive correlation to aSNN 
 (r2 values from 0.249 to 0.463), therefore, a more accu-
rate classification model is more likely to result in higher 
aSNN of de novo compounds than a less accurate one. 
However, this is not guaranteed due to it being only a 
weak correlation. Moreover, we investigated the result-
ing scores of the in silico classification model on the real 
compounds in sub-groups α, β and γ, shown in Addi-
tional file 6: Fig. S3. Unsurprisingly, the α compounds are 
scored highest as they are also the training compounds 
representing the positive class. The compound scores for 
γ were higher than β in all projects except in-house pro-
jects D and F, suggesting that these models could guide 
RL to high activity compounds more frequently than 
low activity. Finally, we checked the learning curve for 
each target in Additional file  6: Fig. S4 and found they 
could reach the higher scores close to 1.0. However, the 
representative scores for the γ sub-group were objec-
tively lower (0.1–0.8) than RL-achieved scores (usually 
0.7–1.0). This highlights that optimizing for high-scoring 
molecules is not necessarily going to generate molecules 
from the same distribution as the γ sub-group. In prac-
tice, this is not known apriori and exemplifies the dif-
ficulty in applying such routine QSAR models that may 
contain unexpected applicability domains, for example, 
predicting high-activity (γ sub-group) molecules with 
relatively low probabilities of activity. It is also worth not-
ing that low predicted probabilities of activity do not nec-
essarily translate to a negative prediction, as the optimal 
classification threshold may exist anywhere in the 0–1 
range [58]. Therefore, maximizing the binary label [0, 1] 
as a reward in RL based on an optimal decision threshold 
instead of the predicted probability may result in higher 
aSNN in these cases.

The effect of reinforcement learning on rediscovery 
and aSNN
To investigate the low performance on rediscovery, we 
evaluated RL thoroughly. Here, we compared the redis-
covery and aSNN in FL and RL across all of targets and 
projects to investigate the effect of RL (Fig. 7, Additional 
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file  6: Table  S6, Figs. S5,6). On the one hand, regarding 
the rediscovery, we could not reach a distinctive conclu-
sion; the values in FL for all of 5,000/top 500/top 100 gen-
erated compounds were 0.13/0.80/3.00 (public dataset), 
0.01/0.10/0.00 (in-house dataset), and those in RL were 
0.21/0.64/1.60 (public dataset), 0.04/0.03/0.00 (in-house 
dataset) (Additional file 6: Table S6). The absolute values 
of the rediscovery were too low to compare and lead to a 
conclusion.

On the other hand, regarding aSNN we could obtain 
another perspective. The comparison of aSNN results 
for low/middle/high/utra-high activity compounds 
of FL and RL in public dataset were as follows; all of 
5,000 generated against middle stage compounds: 
0.280/0.301/0.301/0.268 (FL) and 0.304/0.367/0.420/0.408 
(RL), top 500 generated against middle stage 
compounds: 0.317/0.402/0.433/0.397 (FL) and 
0.329/0.424/0.531/0.540 (RL), top 100 generated against 
middle stage compounds: 0.332/0.449/0.519/0.476 (FL) 
and 0.287/0.326/0.403/0.490 (RL); all of 5,000 generated 
against late stage compounds: 0.243/0.255/0.275/0.287 
(FL) and 0.259/0.297/0.341/0.404 (RL), top 500 generated 
against late stage compounds: 0.274/0.304/0.362/0.407 
(FL) and 0.281/0.336/0.402/0.516 (RL), top 100 generated 
against late stage compounds: 0.343/0.443/0.531/0.540 
(FL) and 0.289/0.349/0.414/0.517 (RL) (Fig.  7, Addi-
tional file  6: Fig. S5, 6). Comparing the difference in 
aSNN between late-stage low/middle activity and high/
ultra-high activity, we see that for RL aSNN was higher 
for high/ultra-high, whereas for FL aSNN was higher for 
low/middle activity compounds.

Furthermore we compared aSNN results of FL and 
RL for in-house dataset in the same manners; all of 
5,000 generated against middle stage compounds: 
0.331/0.318/0.301/0.251 (FL) and 0.431/0.425/0.427/0.348 
(RL), top 500 generated against middle stage 
compounds: 0.510/0.507/0.499/0.405 (FL) and 
0.431/0.425/0.427/0.348 (RL), top 100 generated against 
middle stage compounds: 0.559/0.570/0.577/0.459 (FL) 
and 0.470/0.442/0.456/0.387 (RL); all of 5,000 generated 
against late stage compounds: 0.288/0.277/0.273/0.239 
(FL) and 0.376/0.357/0.361/0.311 (RL), top 500 generated 
against late stage compounds: 0.527/0.534/0.543/0.442 
(FL) and 0.455/0.429/0.441/0.370 (RL), top 100 generated 
against late stage compounds: 0.563/0.579/0.602/0.489 
(FL) and 0.490/0.464/0.479/0.394 (RL) (Fig. 7, Additional 
file 6: Fig. S5, 6). We see that for in-house datasets, the 
aSNN to the high/ultra-high activity compounds were 
mostly similar or less than that to low/middle activity 
compounds for both FL and RL. In the worst scenario, 
RL strategy failed to improve over FL such as the case of 
aSNN in top 100 and 500 generated compounds against 
the late-stage compounds (Additional file  6: Fig. S6). 

Hence, we conclude that for public dataset RL strategy 
can work well; however, for in-house dataset it has no 
benefit over FL in this evaluation. However, as discussed 
in the previous section the classification model accuracy 
may affect RL strategy (notably late-stage high-activity 
compounds in in-house projects B, D and F result in low 
predicted activity scores, Additional file 6: Fig. S3), influ-
encing whether the generative model can highly active 
compounds or not.

The effect of diversity filter and inception on rediscovery 
and aSNN
We next investigated whether variations of the proto-
col, namely the use of a diversity filter and inception, 
were able to improve performance metrics. Rediscovery 
obtained when using those options is shown in Addi-
tional file 6: Table S6. Compared with the result of RL, we 
could not find any beneficial effect of a DF and inception 
when evaluating rediscovery. The aSNN results across 
model options in the middle stage are shown in Addi-
tional file 6: Fig. S5 and those for late stage are shown in 
Additional file 6: Fig. S6. We also could not find any effect 
of DF and inception which contribute to an increase in 
the similarity of generated compounds to high or ultra-
high activity compounds when evaluating aSNN. How-
ever, especially for DF, this option surely contributed to 
avoidance of mode collapse when evaluating uniqueness 
and novelty (Additional file 6: Table S4, 5) [59]. This can 
be seen by the increased variance in the learning curve 
in Additional file 6: Fig. S7 where the RL-DF model must 
consistently identify new areas of chemical space that 
maximize the scoring function, compared with that of 
RF in Additional file 6: Fig. S4. Additionally, we investi-
gated aSNN between the generated compounds from RL 
with/without DF and high/ultra-high activity compounds 
at the late stage for every 50 step. The result is shown in 
Additional file 6: Fig. S8 where it can be seen that RL-DF 
kept low aSNN even when aSNN of RL increased accord-
ing to the steps. So, the effect of DF should be thought as 
fitting for purpose, such as scaffold hopping. Regarding 
inception, it has also shown before that it could contrib-
ute to the lead optimization process [26]; however, in the 
current study there is no beneficial effect observed.

Predictive cluster analysis
According to the investigation we performed so far, the 
generated compounds for the public dataset had better 
rediscovery ratio and aSNN than the in-house dataset 
(Figs.  6, 7). Firstly, we investigated the real activity of 
each compound, and concluded that the public dataset 
which was transformed on a pseudo-time axis has an 
explicit relationship between activity and pseudo time; 
however, for the in-house dataset this relationship was 
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much less profound (Fig.  5). In order to investigate 
this difference from the viewpoint of each compound’s 
topology and predictivity for late-stage active com-
pounds, we further analysed the public and in-house 
dataset by counting the compound’s number in each 
region α, β, and γ after clustering by k-means. This 
analysis was meant to show whether each project had 
predictive or unpredictive clusters for the generative 
model. Specifically, if the number of compounds com-
ing from α is not zero (i.e., active early stage compounds 
are contained in a given cluster) and the number of 
compounds from γ (i.e., late-stage active compounds) is 
higher than the number of compounds from β (i.e. late-
stage inactive compounds), this is a ‘predictive’ cluster 
for the generative model, in the sense that the chemi-
cal space of the late-stage, desirable compounds is pre-
sent in the early stage for the generative model (and 
vice versa for ‘unpredictive’ clusters). Table 1 shows the 
results of this analysis. It can be seen that for the pub-
lic projects, most projects had more predictive clus-
ters than unpredictive (the numbers of clusters which 
predictive/unpredictive in DRD2 was 7/1, for GSK this 
was: 4/4, for CDK2 4/3, for EGFR 5/4, and for ADRB2 
5/5). On the other hand, in in-house projects, all of the 
models had more unpredictive clusters than predic-
tive (the numbers of cluster predictive/unpredictive in 
project A was 0/6, in project B 1/5, in project C 1/6, in 
project D 0/5, in project E 0 /7, and in project F 1/3; 

Table  1). Even in the projects which have predictive 
clusters, the number of contents were highly biased; 
the compound’s number in each region α/β/γ for B of 
predictive cluster ID 6 were 112/0/2, those for C of pre-
dictive cluster ID 8 were 1/20/82, and those for F of pre-
dictive cluster ID 2 were 26/0/1. Based on this result, 
we conclude that the difference of rediscovery ratio and 
aSNN between the public and in-house projects might 
be based on whether projects have predictive clusters 
(and to which extent this is the case), or not. In this 
sense, we can formulate as a success criterion to uti-
lize generative models in the drug discovery process is 
that we require seeds of promising compounds in the 
training dataset. Active learning might be a stepwise 
approach here. It should also be mentioned that the 
evaluation performed here is based on known actives 
only – hence, we were not able to evaluate the quality 
of potential ‘false positive’ compounds. We should note 
that this study focused on the ligand-based approach. 
Another method, that is free from QSAR modeling, is a 
structure-based approach, and recently there has been 
more research in this approach combined with genera-
tive models; see the references in detail [18, 39, 40, 60].

Analysis of negative log likelihood
Additionally, to investigate from another perspective of 
the difference of the result in the public and in-house 

Table 1 Clustering of real compounds (public and in-house dataset) by k-means (k = 10) and classification into α, β, and γ. If the 
number of α is not zero and that of γ is more than that of β, this seemed to be predictive of classification accuracy for the generative 
model (light grey column). On the other hand, if the number of α is not zero and that of γ is less than that of β, this seemed to be 
unpredictive (dark grey column)

Public DRD2 GSK3 CDK2 EGFR ADRB2

Cluster ID α β γ α β γ α β γ α β γ α β γ

1 57 0 0 1 11 35 0 10 11 5 50 75 13 4 28

2 160 123 127 24 47 48 1 38 21 44 7 1 7 188 13

3 131 35 155 5 80 35 7 1 1 6 58 76 99 266 33

4 150 53 238 0 72 0 64 167 27 63 56 460 15 7 143

5 60 11 132 24 538 226 21 27 75 72 35 5 45 154 10

6 170 60 139 7 47 71 85 203 144 5 77 211 8 9 0

7 387 200 298 0 100 133 6 16 30 37 83 60 1 7 43

8 123 145 272 70 605 219 7 12 47 262 470 174 19 54 30

9 4 8 68 18 9 19 30 63 140 27 171 319 22 15 170

10 82 90 16 2 23 5 1 0 0 31 0 0 43 14 120

Predictive: 7 clusters Predictive: 4 clusters Predictive: 4 clusters Predictive: 5 clusters Predictive: 5 clusters

Unpredictive: 1 cluster Unpredictive: 4 clusters Unpredictive: 3 clusters Unpredictive: 4 clusters Unpredictive: 5 clusters

In-house A B C D E F

Cluster ID α β γ α β γ α β γ α β γ α β γ α β γ

1 0 0 0 11 386 145 97 101 24 1 475 147 8 6 2 0 125 32

2 25 41 7 57 37 7 0 59 36 25 266 33 0 43 38 26 0 1

3 53 11 0 0 94 115 21 154 42 0 256 123 2 67 14 10 16 1

4 0 59 102 0 23 195 0 214 21 0 337 69 4 85 3 0 5 30

5 5 155 34 0 108 163 7 114 102 11 160 17 28 17 0 0 90 8

6 41 129 94 112 0 2 22 28 0 0 433 568 40 97 8 2 16 5

7 12 10 5 60 16 0 0 107 0 0 418 241 0 133 137 0 0 0

8 0 57 9 46 37 7 1 20 82 64 63 26 28 255 78 14 97 11

9 0 0 0 0 65 227 10 324 21 0 284 230 53 9 1 0 35 67

10 16 96 4 3 11 0 12 85 0 1 165 32 0 66 9 0 62 51

Predictive: 0 cluster Predictive: 1 cluster Predictive: 1 cluster Predictive: 0 clusters Predictive: 0 cluster Predictive: 1 cluster

Unpredictive: 6 clusters Unpredictive: 5 clusters Unpredictive: 6 clusters Unpredictive: 5 clusters Unpredictive: 7 clusters Unpredictive: 3 clusters
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dataset, we calculated NLL of real compounds located 
in α, β and γ with the prior network, the agent in FL, 
and the agent in RL. NLL reflects how likely the com-
pound is to be sampled from the model (prior or agent); 
if the value is small, the compounds are more likely to 
be sampled from the model, and vice versa [26]. The 
result is shown in Additional file 6: Fig. S9, where it can 

be seen that in any dataset (public/in-house) and area 
(α, β and γ) the NLLs of the agent in FL were smaller 
than that of the agent in RL. This suggests that the FL 
was at least most likely to rediscover molecules from 
these subsets, however, in practice rediscovery rates 
were still very low. Focusing on the NLL of the agent in 
RL, in the public dataset (Additional file 6: Fig. S9a–e), 

Fig. 8 Example of DRD2 compounds. For the comparison of real (a) and generated compounds (b: from pre-trained prior model, c: from RL model) 
by visual inspection. The number after CS is the number of compounds included in the same cluster
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the NLLs in γ were comparable to β; and in the in-
house dataset (Additional file  6: Fig. S9f–k) the NLLs 
in γ slightly higher than that in β in project B, D, and F. 
This likely also reflects the observation of lower empiri-
cal classification scores for γ in these projects. Hence, 
we can conclude that compared with in-house data-
set, in silico classification model of public dataset and 
therefore RL works better, and this reflects the better 
result of rediscovery and aSNN in public dataset than 
in in-house dataset.

Case study of generated compounds’ structure (DRD2)
In order to understand the chemistry of generated com-
pounds better, we next examined it by visual inspections 
via clustering, using DRD2 ligands as an example. Rep-
resentatives (most common structures (MCS) and high-
est scored structures (HSS)) from k-means clustering are 
depicted in Fig. 8. Compared to known ligands (Fig. 8a), 
there were some compounds that may require more care-
ful consideration with regards to ‘drug like’ properties or 
synthetic ease. Regarding molecules from the pre-trained 
prior model (Fig. 8b) there were, (1) two small, fragment-
like molecules present in the set (MCS b-3, MCS b-9), 
(2) many oxygen atoms present (MCS b-7, HSS b-3), 
(3) connections like hydrazine (MCS b-2 and b-8), and 
cycle to cycle connection by one attachment point like 
tetrahydropyran to pyrrolidine (HSS b-8). Regarding 
the generated compounds by RL (Fig. 8c) there were, (1) 
a few with long flexible chains (MCS c-1, MCS c-3), (2) 
sulfinyl groups present that are more commonly seen in 

antibiotics (HSS c-2, HSS c-4); however, there were no 
functional groups or idiosyncratic topologies without 
precedent in ChEMBL (i.e., the training data set). There-
fore, the process of fine-tuning and RL using real chemi-
cal datasets had a beneficial effect on the generation of 
practical chemical structures.

Conclusion
In this research we asked the question “Can a generative 
model trained on early-stage project compounds gener-
ate middle/late-stage compounds de novo?” To this end, 
we used experimental data from five public and six in-
house project datasets as reference datasets and inves-
tigated the ability of different REINVENT protocols (i.e., 
focused learning, reinforcement learning, inception and 
diversity filter) to model the elapsed time of a synthetic 
expansion following hit identification. In all protocols, 
we found that late-stage compound rediscovery was very 
small for all datasets, however, rediscovery and aSNN to 
late-stage compounds was greater for public projects than 
that for in-house projects. Upon further investigation, the 
underlying aSNN between early- and middle/late-stage 
compounds in public projects was higher between active 
compounds than inactive compounds; however, for in-
house projects the converse was true, thus posing a more 
conceptually difficult problem to model in-house datasets. 
We also investigated the effect of in silico classification 
model accuracy on reinforcement learning, identifying a 
weak positive correlation between classification accuracy 

Fig. 8 continued
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and de novo aSNN to late-stage compounds; concerningly, 
late-stage compounds achieved low classification model 
scores highlighting a disparity in maximizing such a score 
in as in RL and in actually mimicking human-driven hit 
expansion. Despite these observations, RL outperformed 
FL on aSNN for public datasets. Predictive cluster analy-
sis was performed further identifying that compounds 
from in-house datasets did have fewer predictive clusters 
than in public dataset, supporting the observation of RL 
having no benefit over FL for in-house datasets. Consider-
ing the difference in results between public and in-house 
dataset, objectively evaluating de novo compound design 
is hence, based on the current study, difficult retrospec-
tively, because RL is severely confounded by classification 
accuracy and applicability domain. From the practical per-
spective, we can formulate as a success criterion to utilize 
generative models in the drug discovery process is that 
we require seeds of promising compounds in the train-
ing dataset; active learning might be a stepwise approach 
here. At the same time, we have shown that the generative 
model recovers very few middle/late-stage compounds 
from real-world drug discovery projects, highlighting the 
fundamental difference between human and automated 
design, as well as the difference between single-objective 
and multi-parameter optimization, with the latter being 
the norm in real-world drug discovery projects.
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