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Abstract 

In chemistry-related disciplines, a vast repository of molecular structural data has been documented in scientific 
publications but remains inaccessible to computational analyses owing to its non-machine-readable format. Opti-
cal chemical structure recognition (OCSR) addresses this gap by converting images of chemical molecular structures 
into a format accessible to computers and convenient for storage, paving the way for further analyses and studies 
on chemical information. A pivotal initial step in OCSR is automating the noise-free extraction of molecular descrip-
tions from literature. Despite efforts utilising rule-based and deep learning approaches for the extraction process, 
the accuracy achieved to date is unsatisfactory. To address this issue, we introduce a deep learning model named 
YoDe-Segmentation in this study, engineered for the automated retrieval of molecular structures from scientific docu-
ments. This model operates via a three-stage process encompassing detection, mask generation, and calculation. Ini-
tially, it identifies and isolates molecular structures during the detection phase. Subsequently, mask maps are created 
based on these isolated structures in the mask generation stage. In the final calculation stage, refined and separated 
mask maps are combined with the isolated molecular structure images, resulting in the acquisition of pure molecular 
structures. Our model underwent rigorous testing using texts from multiple chemistry-centric journals, with the out-
comes subjected to manual validation. The results revealed the superior performance of YoDe-Segmentation com-
pared to alternative algorithms, documenting an average extraction efficiency of 97.62%. This outcome not only high-
lights the robustness and reliability of the model but also suggests its applicability on a broad scale.

Keywords Deep learning, Image segmentation, Molecular structure detection, Optical chemical structure 
recognition

Introduction
A significant amount of molecular structure data is 
embedded within chemistry-centric literature. How-
ever, this valuable information remains largely untapped 
owing to inadequate curatorial practices and the 
absence of comprehensive open-access repositories [1]. 

Furthermore, the inherent format of these molecular 
structures does not lend itself to straightforward com-
puter interpretation [2]. Consequently, data scientists 
are frequently tasked with the manual extraction of these 
molecular structures from scientific texts—a process 
that, when manually executed, is both labour-intensive 
and susceptible to inaccuracies [3]. This underscores the 
necessity for automated, precision-focused extraction 
methods, essential for reintroducing and enhancing the 
accessibility of chemical data in open-access reposito-
ries. The retrieval of molecular structures from academic 
papers is the foundational procedure in optical chemical 
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structure recognition (OCSR) [4]. Once extracted, these 
2D molecular structure visuals can be seamlessly tran-
sitioned into simplified molecular-input line-entry sys-
tem (SMILES) representations [5], facilitating scientific 
inquiry.

The field of OCSR has witnessed substantial evolu-
tion over the past decades, with a growing emphasis 
on harnessing deep learning. These methodologies can 
effectively identify atoms and bonds in pristine chemi-
cal molecular structure illustrations, enabling the recon-
struction of chemical molecular structures or their direct 
transmutation into encoding formats like SMILES or 
DeepSMILES [6–11]. However, noise-free molecular 
structures are not always readily available. These need to 
be often derived from academic literature or 2D images 
to obtain complete, noise-free chemical molecular struc-
ture descriptors. Notably, efforts toward molecular 
structure extraction do not reflect the progress made in 
molecular structure recognition, and research in the for-
mer area is limited.

Recently, studies focusing on deriving complete, noise-
free molecular structure descriptions from texts or 2D 
images have been classified into two primary catego-
ries. The first employs rule-based techniques, targeting 
the extraction of molecular descriptors from 2D visuals, 
whereas the latter is anchored in deep learning to extract 
molecular structures. Herein, we present an overview of 
the molecular structure segmentation algorithms that 
have gained prominence in contemporary research. The 
second phase in the optical structure recognition appli-
cation (OSRA) involves segmenting molecular struc-
tures. This segmentation process determines molecular 
structures based on the dimensions of the rectangular 
bounding box surrounding the pertinent region, com-
bined with the ratio of black to white pixels within this 
box [12]. Another tool, ChemSchematicResolver (CSR), 
can efficiently segment images that contain only labels 
and molecular structures [13]. Both of these segmenta-
tion techniques are predicated on rule-based algorithms.

In a 2019 study, Staker et al. introduced a deep-learn-
ing-oriented OCSR tool [14], harnessing the capabilities 
of U-Net [15] for molecular structure segmentation. This 
model estimates the likelihood of each pixel in an image 
being part of a particular structure. Pixels predicted 
to be part of the molecular structure are subsequently 
masked, ensuring the segmentation of the entire molecu-
lar structure.

In 2021, Rajan et al. presented a deep-learning-centric 
OCSR tool named DECIMER, encompassing a molecu-
lar structure segmentation module called DECIMER 
Segmentation [16]. The foundation of this program is the 
Mask R-CNN [17] framework, paired with a molecular 
structure detection algorithm. DECIMER Segmentation 

first recognises segments of the molecular structure and 
masks these identified regions by scanning the entire 
document page. Subsequently, this mask is augmented 
via pixel seeding, masking the entire molecular region. 
Thereafter, the molecular structures are isolated by seg-
menting these masked sections within the document. 
However, a notable drawback emerges during mask 
expansion, where adjacent non-chemical sections of the 
molecular structures also get masked. This introduces 
a considerable amount of noise within the segmented 
molecular structures. In their evaluation, Rajan et  al. 
curated a dataset of 25 articles from three distinct jour-
nal categories (Molecules, Phytochemistry, and Journal of 
Natural Products) to evaluate the efficacy of their model. 
Their analysis showed that, on average, ~ 11.2% of the 
segmented molecular structures contained noise, pre-
dominantly originating from non-chemical structures.

In this study, we introduce a refined method for the 
automated, noise-free extraction of molecular structures, 
termed YoDe-Segmentation. This process is segmented 
into three primary phases. Initially, the molecular struc-
ture detection phase employs the YOLOv5 network 
model, specifically modified with a tailored prediction 
frame, to identify and subsequently crop molecular struc-
tures found within academic literature. The subsequent 
phase, referred to as the mask stage, utilises the Deep-
Labv3 network model to process these cropped molecu-
lar structure images, yielding a corresponding mask map 
of the molecular structure. The final phase encompasses 
denoising and differentiating the mask. Here, the molec-
ular structure mask procured via the DeepLabv3 network 
model undergoes further refinement via an enhanced 
seed algorithm. This procedure results in the acquisition 
of a pristine molecular structure descriptor (as shown in 
Fig. 1).

Molecular structure detection
During the molecular structure detection phase, we used 
the YOLOv5s model from the YOLOv5 network devel-
oped by Ultralytics [18]. Our computational environment 
operated on Python version 3.9, with PyTorch 1.6 serving 
as the deep learning framework [19].

To train the YOLOv5 network model, we curated a 
dataset sourced from papers published in the Journal of 
Medicinal Chemistry during 2010, 2011, and 2012. Ran-
domly selected articles were converted into PNG image 
format via the Python Office package [20]. From this 
collection, a subset of 1933 images showing molecu-
lar structures was selected. The manual annotation of 
each molecular structure in the image was facilitated 
using the LabelImg tool [21]. Each molecular structure 
was meticulously enclosed within a singular rectangu-
lar boundary, with each boundary encompassing only 
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one complete molecular structure. Cumulatively, 17,241 
labelled regions were obtained. This collection of anno-
tated images formed the training dataset for the YOLOv5 
model. The dataset was divided into training and valida-
tion sets with 90% and 10% accuracy, respectively. The 
YOLOv5s model from the YOLOv5 network, comple-
mented by pretrained models and preset hyperparam-
eters supplied by Ultralytics, was employed. The model, 
set with a batch size of four, underwent training across 
300 epochs on a robust computing server outfitted with 
an NVIDIA 1080Ti, 64 GB of RAM, and a 16-core Intel 
Core i7-11700 CPU.

After training the YOLOv5 network model utilising 
the defined dataset and computational resources, we 

employed the model to identify and crop the molecular 
structure areas within the images. These cropped depic-
tions essentially comprised two constituents: the integral 
molecular structure and accompanying noise. This pre-
liminary output had three significant limitations:

1. Incompleteness of the cropped molecular structure 
images (Fig. 2).

2. Occasional occurrence of multiple molecular struc-
tures within a single predictive frame (Fig. 3).

3. The Presence of noise is delineated as the simultane-
ous inclusion of complete chemical molecular struc-
tures and unrelated non-chemical elements within 
the cropped images (Fig. 4).

Detecting the molecular structures 
by YOLOv5 model

Obtaining the masks of the molecular
structures by DeepLab v3 model

Denoising Separating

Extracting the molecular structures

The detected molecular structures

Cropping the molecular 
structures

Articles

Masks of the molecular structures
The cropped molecular structures

Masks without noise

PDF to JPG or PNG

The extracted molecular structures
Fig. 1 Graphical workflow summary for YoDe-Segmentation
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To effectively address these limitations, we imple-
mented solutions at distinct phases of the YoDe-Seg-
mentation process. The initial issue was addressed in 
the current stage, while the subsequent issue was man-
aged via precise preprocessing in the following stage 
and refined image processing in the final stage. The 
final issue was addressed by employing an advanced 
seed algorithm in the last stage.

Maintaining structural integrity is crucial for the 
seamless extraction of complete chemical molecular 
structures from scholarly literature. This necessitates 
the YOLOv5 model to recognise and crop the entire 
molecular structure during detection. To enhance the 
integrity of the structures identified, we broadened the 
predictive frame size facilitated by YOLOv5 to enable 
comprehensive detection of molecular structures. 
However, a minimally extended frame could result 
in incomplete molecular captures, while an overly 

expanded frame might contain additional non-chemical 
structural noise.

Subsequently, we studied the impact of three distinct 
predictive frame expansions—10, 20, and 30 pixels—
on a dataset consisting of 200 molecular structure-
bearing images. These images were extracted from 
articles circulated in the Journal of Medicinal Chemis-
try, with those images from the initial training dataset 
being excluded. The results indicated that a 10-pixel 
augmentation ensured the completeness of 98.7% of 
the molecular structures, while 20 and 30 pixels incre-
ments ensured structural completeness. However, the 
30-pixel enlargement presented a downside, introduc-
ing a higher noise quotient in the molecular structure 
imagery. Based on these experimental results, we set 
the expansion parameter of the molecular structure 
detection model at an optimal 20 pixels, as shown in 
Fig. 5.

Fig. 2 Images showing only incomplete chemical molecular structures

Fig. 3 A prediction frame with multiple molecular structures

Fig. 4 Images with both complete chemical molecular structures and non-chemical molecular structure elements
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Obtaining the masks
To address the second issue, we initially employed a 
semantic segmentation model to process cropped images, 
facilitating noise removal and attaining a molecular 
structure mask map. The DeepLabv3 semantic segmen-
tation model [22], provided by Google, was instrumen-
tal in achieving this. Using the trained YOLOv5 model, 
we created a training dataset for DeepLabv3 compris-
ing cropped images. The YOLOv5 model was deployed 
to detect and crop images derived from articles in the 
Journal of Medicinal Chemistry from 2010 to 2014. Sub-
sequently, LabelMe [23], a tool designed for semantic 
segmentation annotation, was utilised to annotate the 
images randomly. This resulted in the labelling of 11,726 
images demarcating molecular structures using poly-
gons. We allocated 90% of the final dataset for training 

purposes and remaining 10% for validation. This trained 
model exhibited the capacity to mask components of 
molecular structures within cropped images, thereby 
generating the corresponding mask maps (Fig. 6).

Denoising and separating the masks
During the molecular structure identification phase, 
YOLOv5 demonstrated remarkable efficiency in rec-
ognising molecular structures within images. How-
ever, there were occurrences where the detection frame 
encompassed more than a single molecular structure, 
leading to the emergence of masks containing multiple 
comprehensive molecular structures during the molec-
ular structure mask acquisition phase (Fig.  7). Given 
our objective of individually extracting each molecular 

Prediction frame with no expanding 
Prediction frame with expanding 10 pixels
Prediction frame with expanding 20 pixels
Prediction frame with expanding 30 pixels 

Fig. 5 Example of different-sized prediction frames. Molecular structures are complete when expanded by 20 or 30 pixels but incomplete 
with a 10-pixel expansion or no expansion

DeepLabv3

The cropped molecular structure image The mask of the molecular structure
Fig. 6 Use of the DeepLabv3 network model to process the cropped molecular structure image and generate the mask map

Fig. 7 A prediction frame with multiple complete molecular structures
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structure so that every resultant image encapsulated 
a single molecular structure, it became imperative to 
manipulate the created mask maps. This manipula-
tion involved transforming maps that contained several 
molecular structures into multiple distinct mask maps, 
each presenting a single molecular structure.

While securing molecular structure masks, DeepLabv3 
could recognise the molecular structure; however, some 
noise was observed (Fig.  8). Consequently, a fraction of 
the produced mask maps contained noise. We addressed 
this issue by applying denoising and separation method-
ologies to the initially created mask maps.

The resulting mask map presented two exclusive pixel 
values: 0 and 128. The pixel value of 128 was provisionally 
assigned to serve as a molecular structure mask, effec-
tively concealing noise. Following this, we employed a 
region-filling algorithm [24] to compute the pixel counts 
of each distinct mask. Among these, the mask with the 
maximal pixel count was discerned as the representative 
mask for the molecular structure.

To navigate the residual noise and concurrently address 
the challenge posed by prediction frames featuring multi-
ple masks, we introduced a metric termed the pixel ratio 
(PR). This metric encapsulates the proportion of pixels 
in a given mask (denoted as  pmask) relative to the pixels 
in the largest mask within the frame  (plargest mask). Math-
ematically, the equation is:

It was observed that noise masks typically had a pixel 
count distinctly smaller than that of the molecular struc-
ture masks. Conversely, within a singular prediction 
frame, molecular structure masks bore relatively com-
parable pixel counts. As a logical progression, we com-
puted the PR for each mask. If the PR of a mask exceeded 
a specific threshold, it was deemed a genuine molecular 
structure mask; if it was below this threshold, it was des-
ignated as noise. We denoted this threshold as the pixel 
ratio threshold (PRT).

To empirically ascertain the value of PRT, assessments 
were performed on 70 masks, each containing multiple 
molecular structures, along with 70 masks characterised 

PR =

pmask

plargest mask

.

by noise. An analysis of the PR for each of these revealed 
that genuine molecular structures had PR values ranging 
from 0.55 to 1. By contrast, the noise masks were situated 
between 0 and 0.2. Informed by these findings, we desig-
nated the PRT as 0.5. Consequently, masks that exhibited 
a PR surpassing 0.5 were classified as genuine molecular 
structure masks, as exemplified in Fig.  9. Those falling 
below the PRT of 0.5 were classified as noise masks, as 
illustrated in Fig. 10. The final step encompassed execut-
ing image operations on each authentic molecular struc-
ture mask, paired with its corresponding cropped image, 
to derive a comprehensive and pristine molecular struc-
ture description.

Validation
To evaluate the efficiency of the YoDe-Segmentation 
process, we conducted an evaluation deploying a meth-
odology akin to that utilised in DECIMER Segmentation 
assessments. While DECIMER Segmentation typically 
encompasses the random selection of 25 articles from 
journals like Molecules, Phytochemistry, and Journal of 
Natural Products, our strategy sought to augment both 
the diversity and volume of the validation dataset. We 
included articles from an additional journal—Journal of 
Medicinal Chemistry—and escalated the article tally to 
100 for each journal, culminating in an aggregate of 400 
articles. These articles were then distributed across four 
subsets for a meticulous evaluation, with each subset 
embracing 100 articles, evenly distributed with 25 from 
each journal, including a contingent derived from the 
DECIMER Segmentation’s assembly.

Subsequently, we transformed these 400 articles into 
4549 PNG images utilising the Python Office package, 
resulting in groups with distinct image counts: 1229 in 
Group 1, 1059 in Group 2, 1089 in Group 3, and 1172 in 
Group 4. Manual scrutiny revealed the presence of 9140 
molecular structures dispersed across the groups, with 
2724 in Group 1, 2009 in Group 2, 2303 in Group 3, and 
2104 in Group 4. The ensuing phase involved quantifying 
the totality of accurately extricated molecular structures 
through YoDe-Segmentation and determining the extrac-
tion efficacy for each group.

Fig. 8 Mask maps with little noise
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Results and discussion
During the inaugural phase, which primarily focused on 
the detection of molecular structures, YoDe-Segmen-
tation demonstrated a remarkable precision of 99.92%, 
identifying 9133 molecular structures and falling short 
by a mere seven structures distributed unevenly across 
the journals (1 in Journal of Medicinal Chemistry, 3 in 
Journal of Natural Products, 2 in Phytochemistry, and 
1 in Molecules). Transitioning to the mask acquisition 
phase, we harnessed the capabilities of the DeepLabv3 
model to craft masks corresponding to the molecu-
lar structures and fabricate an associated mask map. 
Despite encountering minimal noise or the simultaneous 
depiction of multiple molecular structures within a sin-
gle mask image, the process continued to the denoising 

and segregating phases. Herein, we implemented an 
enhanced seed algorithm for the segregation and purifi-
cation of the mask image, ultimately yielding a depiction 
devoid of noise. The culmination of this stage manifested 
in the procurement of a pristine molecular structure rep-
resentation through meticulous image processing of the 
cropped molecular structure image.

YoDe-Segmentation supported the extraction of 97.62% 
molecular structures, with group-specific extraction 
rates of 97.17% for Group 1, 97.76% for Group 2, 97.65% 
for Group 3, and 98.05% for Group 4. A comprehensive 
breakdown of the performance metrics specific to each 
journal within the individual groups is shown in Fig. 11.

According to the evaluation results, YoDe-Segmen-
tation performed excellently on articles sourced from 

Fig. 9 Separation example: The mask map has two complete molecular structure masks with pixel counts of 63,060 and 47,419. Their PR values are 
1 and 0.696, respectively. Both exceed 0.5; therefore, the corresponding molecular structures are separated and extracted
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the Journal of Natural Products, Phytochemistry, and 
Molecules despite the absence of training on articles 
from these specific journals. The average accuracy rate 
achieved by YoDe-Segmentation across these journals 
was 97.56%. Dissecting this further, the Journal of Natu-
ral Products registered an accuracy of 97.71%, Molecules 
of 96.95%, and Phytochemistry of 98.37%. When com-
pared with the extraction metrics of DECIMER Segmen-
tation, a discernible distinction emerges. The average 
extraction rate for DECIMER Segmentation across the 
three journals was 91.3%, with individual rates of 92.7% 
for the Journal of Natural Products, 92.8% for Molecules, 
and 86.3% for Phytochemistry (Fig. 12).

Delving deeper into the molecular structure detec-
tion phase, YoDe-Segmentation showed a minor over-
sight, failing to detect 0.08% of molecular structures. 
As we transition to the segmentation and extraction 
processes, ~ 2.3% of molecular structures exhibited 

discrepancies, either manifesting as incomplete extrac-
tions or being interspersed with noise. A closer exami-
nation revealed that a predominant fraction of these 
discrepancies stemmed from incomplete extraction, 
with only 0.1% of the images being plagued with noise. 
An analytical deep dive of the undetected or fragmen-
tarily extracted molecular structures unveiled certain 
trends: the majority of the overlooked structures were 
diminutive molecules. Simultaneously, incomplete 
extractions were primarily evident in the peripheral 
regions of molecular structures. Two recurring attrib-
utes surfaced in these aberrant images—a diminished 
resolution and the sporadic presence of coloured pixels 
within segments of the molecular structure, as shown 
in Fig. 13. An inherent limitation of the training data-
sets of YoDe-Segmentation was the paucity of images 
bearing these specific characteristics, leading to less-
than-ideal outcomes when processing such images.

Retaining the mask with the PR
greater than 0.5

Calculating the number of pixels 
for the masks

Extracting the molecular
structure

The molecular structure masks
generated by DeepLabv3

The denoised mask

The molecular structure detected by 
the YOLOv5 model

Fig. 10 Denoising example: The mask map contains two masks with pixel counts of 89,872 and 5,725. Their PR values are 1 and 0.063, 
respectively. Only the molecular structure with a PR of 1 is extracted
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Conclusion
In this study, we introduced YoDe-Segmentation, a new 
tool for extracting detailed molecular structures from 
scientific papers. Although we only used articles from 
the Journal of Medicinal Chemistry to train the tool, 
it also proved effective in handling articles from other 
journals. Impressively, it identified and extracted ~ 98% 
of the molecular structures present in our wide range 
of test documents, demonstrating both reliability and 
versatility.

However, the tool encountered challenges with cer-
tain types of images, particularly with the somewhat 
blurry images and those that lacked detail or contained 
coloured parts in the structures. These difficulties arose 
owing to the limited examples of such images in the 

training data. We are confident that adding our train-
ing data to include more of these types of images will 
enable YoDe-Segmentation to recognise and extract 
molecular structures from a wider variety of images.

In future studies, we will enrich our database with a 
greater variety of molecular structure images, includ-
ing those with lower resolutions and coloured compo-
nents. This enhancement will improve the performance 
of YoDe-Segmentation, ensuring its ability to extract 
high-quality molecular structure data reliably. This step 
is crucial for the next phase of our study, where we plan 
to develop methods for automatically translating these 
structures into specialised chemical notation systems 
like SMILES, SELFIES [25], and DeepSMILES [26]. 
This progression will refine the extraction process and 

97.00% 97.29% 97.16% 97.79%97.93% 97.35% 97.05% 98.47%97.55% 98.51% 96.69%
99.09%98.54% 97.58% 97.02% 98.38%

0.00%

10.00%

20.00%

30.00%
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Fig. 11 Overview of the YoDe-Segmentation validation results

92.70% 92.80% 86.20%
97.71% 96.63% 98.37%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

J. Nat. Prod Molecules Phytochemistry

DECIMER Segmentation YoDe-Segmentation

Fig. 12 Comparison of evaluation results between YoDe-Segmentation and DECIMER segmentation in three journals
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pave the way for exciting advancements in the chemical 
research field.
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OSRA  Optical structure recognition application
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SELFIES  Self-referencing embedded strings
RAM  Random access memory
CPU  Central processing unit
CSR  Chemical schema resolver
CNN  Convolutional neural networks
PR  Pixel ratio
PRT  Pixel ratio threshold
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