
Probst  Journal of Cheminformatics          (2023) 15:113  
https://doi.org/10.1186/s13321-023-00784-y

METHODOLOGY Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

An explainability framework for deep 
learning on chemical reactions exemplified 
by enzyme-catalysed reaction classification
Daniel Probst1* 

Abstract 

Assigning or proposing a catalysing enzyme given a chemical or biochemical reaction is of great interest to life sci-
ences and chemistry alike. The exploration and design of metabolic pathways and the challenge of finding more 
sustainable enzyme-catalysed alternatives to traditional organic reactions are just two examples of tasks that require 
an association between reaction and enzyme. However, given the lack of large and balanced annotated data sets 
of enzyme-catalysed reactions, assigning an enzyme to a reaction still relies on expert-curated rules and databases. 
Here, we present a data-driven explainable human-in-the-loop machine learning approach to support and ulti-
mately automate the association of a catalysing enzyme with a given biochemical reaction. In addition, the proposed 
method is capable of predicting enzymes as candidate catalysts for organic reactions amendable to biocatalysis. 
Finally, the introduced explainability and visualisation methods can easily be generalised to support other machine-
learning approaches involving chemical and biochemical reactions.

Keywords Machine learning, Enzymatic reactions, Explainable machine learning, Cheminformatics

Introduction
Most chemical reactions occurring within living organ-
isms are catalysed by proteins or protein complexes 
called enzymes. Enzymes have a high substrate specific-
ity, are not consumed or changed by the reaction, can be 
produced from renewable sources, and are themselves 
biodegradable. The identification and classification of 
associations between enzymes and the reactions they 
catalyse is of great interest across fields. For biologists, 
this includes the mapping of an enzyme and its substrates 
into a metabolic network, which is an integral part of 
connecting experimental data with established domain 

knowledge, the creation of genome-scale metabolic mod-
els to enable the analysis of omics data, and the computa-
tional design of synthetic metabolic pathways [1–4]. For 
medicinal chemists, the association of enzymes with their 
substrates is essential to the process of target-based drug 
discovery and to predict the metabolic fate of a drug can-
didate in an organism or specific organ [5, 6]. Meanwhile, 
process chemistry and material science are interested in 
the discovery and engineering of enzymes that catalyse 
known or novel chemical reactions to produce new mate-
rials or drugs, increase the efficiency of synthetic routes, 
or replace existing synthetic routes with more environ-
mentally friendly enzyme-catalysed alternatives [7–9]. To 
support these efforts, a multitude of computational mod-
els have recently been proposed that enable the predic-
tion of a required enzyme for a given reaction—generally 
relying on complex deep neural network architectures or 
expert-curated rules, both presupposing the existence of 
large data sets of biochemical reactions annotated with 
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correct enzyme classifications [10–14]. However, com-
pared to other data in biology and chemistry, data sets 
containing annotated enzyme-catalysed reactions are 
exceedingly small and imbalanced in regard to enzyme-
class distribution, complicating the application of data-
hungry deep learning techniques, ultimately resulting in 
low predictive power—especially for underrepresented 
enzyme classes [12, 15–17].

The classification of enzymes and enzyme-catalysed 
reactions, and therefore their association, using EC 
numbers (see Methods for a detailed description of the 
EC number classification scheme) remains a manual 
task carried out by the Nomenclature Committee of 

the International Union of Biochemistry and Molecu-
lar Biology (IUBMB) [18, 19]. With Rhea, the expert-
curated knowledgebase of chemical and transport 
reactions of biological interest, an effort was started 
to annotate enzyme-catalysed reactions catalysed by 
enzymes found in UniProtKB with ChEBI identifiers 
and EC numbers [17]. While this effort started to pro-
vide much-needed additional data, the requirement for 
extensive involvement of experts in the curation and 
classification of enzyme–reaction associations causes 
slow growth of annotated enzyme-catalysed reac-
tion data sets. The resulting lack of data shows a need 
for automation in order to enable further progress in 
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Fig. 1 Explaining enzyme-catalysed reaction classifications. Enzyme-catalysed reactions (1) are classified using three different models. Model ECX 
predicts the class (2a), model ECXY predicts the class and subclass (2b), and model ECXYZ predicts the class, the subclass, and the sub-subclass (2c). 
The input to all models is a binary DRFP encoded reaction SMILES that allows a mapping between input and molecular fragment. Using Shapley 
additive explanations (SHAP), the inputs’ influence on the classification can be traced back to a molecular fragment (2a–c)
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machine learning involving enzyme-catalysed reactions 
so as to reach the impact and utility of comparable 
approaches such as recent advancements in computer-
assisted synthesis planning (CASP) that can draw from 
data sets containing millions of organic reactions [20, 
21].

The available methods for the automated, computa-
tional classification of enzymes and their association with 
reactions can be divided into two approaches: Methods 
predicting an enzyme classification from the amino acid 
sequence or tertiary structure of an enzyme [22–25], and 
methods predicting an enzyme classification from the 
reaction catalysed by an enzyme, where the enzyme clas-
sification is the aforementioned EC number. The focus of 
this article is on the latter of the two approaches, assum-
ing no knowledge of an enzyme’s sequence or structure. 
Many of the methods to computationally predict the class 
of an enzyme based on the catalysed reaction rely on the 
explicit mapping or typing of atoms, bonds, or functional 
groups; a predefined set of physicochemical and topolog-
ical descriptors; or the balancing of reaction equations, 
which requires significant preprocessing and manual 
curation [26–31]. Other approaches include similarity 
searches based on molecular fingerprints and substruc-
ture matching algorithms [32, 33]. While the average 
accuracy of these data-driven methods has been high, 
they remain error-prone in edge cases and in predicting 
the many enzyme subclasses and sub-subclasses where 
little training data is available. A notable recent approach, 
setting the state-of-the-art, is the rule-based approach 
BridgIT by [34]. However, while this method has excel-
lent accuracy and allows for explainability due to its 
rule-based rather than data-driven nature, the rules have 
to be created and continuously updated by experts with 
a deep knowledge of enzyme-catalysed reactions. This 
superior performance of rule-based compared to data-
driven methods, the continuing need for expert curation 
of databases, and the existence of commission oversight 
show a need that goes beyond current approaches [17]. 
While the superior performance of rule-based methods 
can be attributed to a lack of sufficiently large and bal-
anced data sets, the lack of adaption of an automated 
annotation process can have multiple possible reasons, 
including the absence of model explainability or trust, a 
lack of utility, or a failure to identify the limits of appli-
cability [35, 36]. A potent solution to these is explainable 
machine learning, which can increase acceptance and 
usability as well as identify the limits and edge cases of 
a model, and has been widely used in genetics, health-
care, or education [37–39]. However, recent approaches 
in explainable machine learning in chemistry remain lim-
ited to models trained on single molecular entities rather 
than reactions [40–42].

Here, we introduce explainability to a multilayer per-
ceptron that predicts the EC number of an enzyme given 
a reaction without the need for balancing the reaction or 
any other form of reaction curation. We provide a tool 
that can support and eventually fully automate enzyme–
reaction association and classification by introducing 
three main advancements. (i) We report multiple mod-
els capable of predicting the classes, subclasses, and sub-
subclasses of enzymes that catalyse a given reaction with 
overall accuracies of 98, 97, and 95 per cent, respectively, 
while requiring minimal training resources, enabling 
continuous retraining. (ii) By mapping the molecular 
fragments occurring in the reactions to the vector entries 
that act as input for a neural network classifier, we ena-
ble the use of the DeepLIFT algorithm (implemented as 
DeepSHAP) to annotate fragments and atoms with their 
respective classification contributions, providing chemi-
cal explainability for all described models  (Fig.  1(1)). 
(iii) We develop and implement a generalised approach 
for the visualisation of numerical annotations for mol-
ecules and reactions, which we use to visualise the 
classification contributions that explain a model’s per-
ception of an input reaction  (Fig.  1(2a–c)). Based on 
these advancements, we introduce an approach that can 
be used as a human-in-the-loop machine-learning solu-
tion for the transition to the fully automated annotation 
of enzyme-catalysed reactions. Furthermore, our system 
has the potential to support the prediction of catalys-
ing enzyme candidates for organic reactions amendable 
to biocatalysis, making it a utility for the exploration of 
the enzymatic reaction space by chemists and biolo-
gists alike. The resulting models, data, and libraries are 
made accessible as a hosted web application and a locally 
installable Python package that includes a graphical and 
command-line interface in addition to a Python API. The 
modular architecture of the system allows for easy exten-
sion or the reuse of specific components in virtually all 
machine-learning tasks involving chemical or biochemi-
cal reactions.

Results
Enzyme classification using differential reaction 
fingerprints and a simple multilayer perceptron
Enzyme-catalysed reactions are stored as reaction 
SMILES, a string representation of a chemical reaction 
based on the molecular graphs of the participant sub-
stances [43]. As a first step, we encode these string rep-
resentations into a binary vector using the differential 
reaction fingerprint (DRFP), which we recently showed 
to provide state-of-the-art reaction representations by 
example of reaction yield predictions, performing at least 
as well as DFT-derived descriptors or transformer-based 
methods on a yield prediction task for organic reactions 
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[44]. A TMAP visualisation shown in Fig.  2 exemplifies 
the ability of DRFP-encoded enzyme-catalysed reactions, 
extracted from Rhea ( n = 7010 ), to be classified using 
the EC numbering scheme. Figure 2a is a visualisation of 
the entirety of the Rhea database coloured by the enzyme 
classes oxidoreductases (EC 1), transferases (EC 2), 
hydrolases (EC 3), lyases (EC 4), isomerases (EC 5), and 
ligases (EC 6). Figure 2b is a detailed view, displaying only 
transferases, coloured by the nine transferase subclasses 
found in Rhea: EC 2.1 (transferring one-carbon groups), 
EC 2.2 (transferring aldehyde or ketonic groups), EC 2.3 
(acyltransferases), EC 2.4 (glycosyltransferases), EC 2.5 
(transferring alkyl or aryl groups, with the exception of 
methyl groups), EC 2.6 (transferring nitrogenous groups), 
EC 2.7 (transperring phosphorus-containing groups), EC 
2.8 (transferring sulfur-containing groups), and EC 2.9 
(transferring selenium-containing groups). Finally, Fig. 2c 
shows the three sub-subclasses of glycosyltransferases, 
namely, hexosyltransferases (EC 2.4.1), pentosyltrans-
ferases (EC 2.4.2), and those transferring other glyco-
syl groups (EC 2.4.99). As these plots illustrate, DRFP is 
able to separate reactions according to all three levels of 
the EC classification. Furthermore, the plot shows that 
the fingerprint is capable of separating oxidoreductases 
(EC 1) exceedingly well, while there is a relative lack of 
distinct clustering for isomerases (EC 5). These findings 
reflect previous observations and are primarily caused by 
the diversity of reactions within a class [12].

Following the encoding of the enzyme-catalysed reac-
tions extracted from Rhea as DRFP fingerprints, three 
distinct models were trained on the data: ECX, ECXY, 
and ECXYZ. While all models share a simple multilayer 
perceptron (MLP) architecture with a single hidden layer, 
ECX, ECXY, and ECXYZ were trained with labels repre-
senting x.-.- (classes), x.y.- (classes and subclasses), and 
x.y.z (classes, subclasses, and sub-subclasses), respec-
tively. The specific architecture of the MLPs is described in 
Methods. In addition to the Rhea-extracted data, the pro-
cedure was repeated for our recently released ECREACT 
data set ( n = 81, 205 ), which extends the reactions from 
Rhea with reactions extracted from BRENDA, PathBank, 
and MetaNetX [12, 45–47]. The accuracies and f-scores of 
the models are shown in Table 1 together with the train-
ing times as well as the training and experimentation 
energy use. Results of ablation studies on models trained 
on the Rhea data set, where increasing fractions of the 
training set labels were shuffled, are shown in Table 2 and 

indicate robustness of the models to sporadically misclas-
sified training data. Figure 3 shows the confusion matrices 
for the tests of  ECXRhea,  ECXYRhea, and  ECXYZRhea in the 
first row (a-c) and the confusion matrices for  ECXECREACT 
,  ECXYECREACT , and  ECXYZECREACT  in the second row 
(d-f). Given the different sizes of the classes, subclasses, 
and sub-subclasses, the boxplots in Additional file  1: 
Fig. S2 yield further insights into the existence of challeng-
ing, low-accuracy cases of subclasses and sub-subclasses 
that have little effect on the overall accuracy when being 
evaluated together with the larger, better-trained classes 
but represent important edge-cases. For both Rhea and 
ECREACT, these challenging cases resulting in low pre-
diction accuracies are generally caused by (sub-)subclasses 
with a small number of samples, rather than larger (sub-)
subclasses with diverse samples (Additional file 1: Figs. S3 
and S4). This behaviour follows the examples established 
in our previous work on biocatalysed synthesis planning 
[12]. The comparatively poor overall accuracy of isomer-
ases (EC 5) can be explained by their function, which is 
to carry out modifications within a molecule, that would 
be assigned to other enzyme classes if they took place 
between two different molecules. This is shown in Fig. 3a,b 
where potential intramolecular transferases, which are 
classified as isomerases (EC 5), have been classified as 
intermolecular transferases (EC 2).

Overall, the observations show that a lack of training 
samples in under-represented classes, subclasses, and 
sub-subclasses leads to low accuracies in data-driven 
machine-learning approaches. Furthermore, the poorer 
performance of the models trained and tested on ECRE-
ACT compared to Rhea can likely be explained by the 
distribution of samples across classes as shown in Addi-
tional file  1: Figs.  S3 and S4, following the observations 
made within each data set. The following sections will 
introduce the methods and tools necessary to facilitate 
the bridging of expert curation and data-driven learning 
of enzyme-catalysed reactions to speed up data curation 
and explain a model’s behaviour to scientists.

Explaining classification using DeepLIFT
Using the differential reaction fingerprint to embed the 
reaction as a binary vector for input into the MLP allows 
for a mapping between binary input feature vi and molec-
ular fragment fi . This enables the use of an arbitrary 
approach for explainable machine learning capable of 
determining or estimating the contribution of an input 

(See figure on next page.)
Fig. 2 TMAPs of DRFP-encoded biochemical reactions extracted from the Rhea database coloured by the associated EC number. a All 
reactions coloured by enzyme class. b Transferase-catalysed reactions coloured by subclass. c Glycosyltransferase-catalysed reactions coloured 
by sub-subclass
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feature vi to a resulting classification, to also quantify 
the influence of each molecular fragment fi . Based on 
its ease of use and remarkable performance, we selected 
the DeepSHAP implementation of DeepLIFT to estimate 
the contributions of input features to the classification 
[48, 49]. Given the fragment contributions wfi , the atom 

contributions waj are calculated by summing wfi of a given 
reaction ( vi = 1 ) that include atom aj.

This atom-wise weighing enables later visualisation of 
overlapping or contained fragments. The result of this 
operation can be seen in Fig.  4, where fragments with 
positive weights that contribute towards a certain classifi-
cation are coloured green, while fragments with negative 
weights that contributed against a certain classification 
are shown in magenta. However, not only fragments pre-
sent in the reaction can have an effect on the classifica-
tion. The absence of a certain fragment can influence the 
classification as much as the presence of another. There-
fore, the information on the contributions of absent frag-
ments is retained to provide a more complete picture of 
the model’s decision at a later point (Fig. 5).

A potential caveat in mapping the contribution values 
to a fragment is collisions. Collisions can happen at two 
stages of the method: (i) When hashing the SMILES rep-
resentation of the substructures from a reaction to a set 

(1)waj =

Nf
∑

i

wfi , if aj ∈ fi and vi = 1

Table 1 Accuracies and F-scores of the different models trained 
on Rhea and ECREACT 

The energy use is calculated based on the energy use of the device (Dell XPS 
15, i7-12700 H CPU, NVIDIA GeForce RTX 3050 Ti Laptop GPU) and includes the 
power usage of models trained for 4x cross-validation and four experiments 
with fingerprint variations. The hyperparameter values were taken from the 
previous work on organic reactions [44]. The total resulting energy consumption 
for model experimentation, training, and validation for this project was 3.25 
kWh. Energy mix (2022): 65% hydro, 23% solar, and 12% other renewables

Model Accuracy F-Score Training Time Energy Use

ECXRhea 0.98± eq0.00 0.97± 0.01 100 s 43 Wh

ECXYRhea 0.96± 0.01 0.88± 0.02 160 s 70 Wh

ECXYZRhea 0.95± 0.00 0.87± 0.02 190 s 82 Wh

ECXECREACT 0.98± 0.00 0.96± 0.00 2090 s 904 Wh

ECXYECREACT 0.95± 0.00 0.82± 0.01 2170 s 936 Wh

ECXYZECREACT 0.93± 0.00 0.77± 0.01 2810 s 1,216 Wh
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Fig. 3 Confusion matrices for reaction-based enzyme classification. a, d Enzyme class-level confusion matrices for models trained on the Rhea 
and ECREACT data sets, respectively. b, e Subclass-level confusion matrices for models trained on the Rhea and ECREACT data sets, respectively. c, f 
Sub-subclass-level confusion matrices for models trained on the Rhea and ECREACT data sets, respectively
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of 32-bit integers and (ii) when folding the 32-bit integers 
into a fixed-size binary vector using a modulo opera-
tion. The number of collisions of a 32-bit hashing func-
tion can be estimated based on the maximum hash value 
and the number of unique fragments using a generalisa-
tion of the birthday problem [50]. For a maximum hash 
value of 232 − 1 and 9509 and 16,983 unique fragments 

extracted from Rhea and ECREACT, respectively, this 
results in 0.01 expected hash collisions for Rhea and 0.03 
for ECREACT. However, when folding the sets of 32-bit 
integers into 10,240-dimensional binary vectors using a 
modulo operation, 2439 and 5060 of the entries represent 
more than one fragment for Rhea and ECREACT, respec-
tively. While the models still perform well given these 
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EC x.y.z model predicted probability: 67.1%
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Fig. 4 Explaining a misclassification of a N-sulfoglucosamine sulfohydrolase (EC 3.10.1) as a glycosidase (EC 3.2.1). The model  ECXRhea correctly 
predicts the reaction (1) to be catalysed by a hydrolase (EC 3), primarily focusing on the water  (OH2) and the hydrolysed bond, both with a positive 
contribution towards EC 3. In addition, there is a small negative contribution against EC3 shown on the amine group. Unlike 1, where positive 
and negative contributions are shown in one reaction drawing, positive and negative contributions are split into separate depictions for 2 and 3 
for visualization purposes. For the top prediction (67.1%) of model  ECXYZRhea the focus of the model shifts to a non-reactive site including a hydroxy 
group in the N-sulfo-D-glucosamine as a major positive contribution (2a), while the sulfur-nitrogen bond is the major negative contribution (2b). 
For the correct prediction (top-2, 12.8%), the model remains focused on the hydrolised sulfur-nitrogen bond with a positive contribution (3a) 
as the negative contributions (3b) can be found on the D-glucosamine and the proton
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collisions, as shown by our previous work [44, 50], this 
could potentially negatively impact the interpretability 
of the model using DeepLIFT values, especially if multi-
ple fragments of a given reaction are represented by the 
same entry in the binary vector. For the visualisation of 
fragments that are part of a given reaction, this is a minor 
concern, as two fragments occupying the same entry only 
occur 147 times (2.1 %) in Rhea ( n = 7, 010 ) and 2025 
times (2.5 %) in ECREACT ( n = 81, 205 ). For fragments 
that are not part of a given reaction yet still contribute 
to the decision of the model, however, this is not the 
case. We solve this problem and introduce a generalis-
able approach to the visualisation of explainable machine 
learning for reactions in the following section.

Visualising explanations using reaction depictions
The visualisation of the classification contributions cal-
culated using the DeepSHAP implementation of Deep-
LIFT as shown in Fig. 4 is enabled by implementing an 
upgrade to the previously released SmilesDrawer JavaS-
cript library [51]. The script takes the reaction SMILES 
and the atom contributions as computed in Eq. 1 as an 
input. As a first step, the atom contribution values waj 
are normalised across all molecules in the reaction to 
show the relative contributions. Next, the contributions 
waj are assigned the coordinates of the respective atoms 
vj =

[

xaj yaj
]

 in each molecules 2D drawing space. 
Finally, the colour values for the pixel grid are assigned 
by the summatory function G of all bivariate gaussian 
distributions centred at vj with an arbitrary σ.

Fig. 5 Visualising the contributions to the classification of a reaction to being catalysed by an isomerase (phosphoglycerate mutase, EC 5.4.2) using 
a web interface. Fragments that are not present in a participating molecule yet still contribute heavily towards the predicted class are displayed 
with their respective contribution. In addition, for entries in the binary input vector that represent multiple fragments, all the associated structures 
are represented
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Choosing a diverging colour scale to represent the con-
tribution values at each coordinate in the pixel grid 
produces an intuitive representation of the contribu-
tion values. The resulting visualisation can be seen in 
Fig. 4. However, this only enables the visualisation of the 
contributions of fragments that are present in a given 
reaction. In order to also visualise the contribution of 
fragments that are not present in a reaction, these frag-
ments are listed with their respective value as part of a 
web service or a locally run program. Figure 5 shows an 
example of a phosphoglycerate mutase (EC 5) catalysed 
reaction as explained in the web application on which the 
introduced approach is being made available. The con-
tributions towards being classified as an isomerase come 
as much from the absent fragments, a proton  (H+) and 
water  (OH2), as from the fragments found in the partici-
pating molecules. The example of the interface shown 
in Fig.  5 also introduces how the occurrence of multi-
ple fragments assigned to the same entry of the binary 
input vector can be handled by displaying the colliding 
substructures. In this case, it is trivial to determine the 
influential missing fragments, water and proton, from the 
context of the given reaction and the predicted class (EC 
5).

To facilitate access to the presented visualisations, the 
presented models are deployed as a web application and a 
Jupyter notebook, as well as graphical and command line 
interfaces installable via Python’s pip package manager.

Conclusions
The approach presented in this work introduces a way 
forward in enzyme–reaction classification beyond expert 
curation. The introduced models and software will ini-
tially support the growth and balancing of databases 
containing annotated enzyme-catalysed reactions such 
as Rhea through human-in-the-loop machine learn-
ing. The utility of this approach is illustrated in Fig.  4, 
where the explanation of a misclassification of the model 
lends insight into the underlying causes of the inaccu-
racy such as a lack of training data of certain classes, in 
this case, Sulfohydrolase-catalysed reactions. Based on 
such information, an expert curator can modify either 
the architecture of the model or the composition of the 
training data set. The fast and efficient training of the 
classifiers (below 10 min using approximately 25 Wh on 
a consumer laptop) then allows for continuous retraining 

(2)G(x, y) =

Na
∑

j

waj e
−

(x−xaj )
2
−(y−yaj )

2

2σ2

with an adjusted architecture or on newly annotated or 
balanced data. Eventually, as the classes with sufficient 
examples show, the presented solution will be able to 
take over reaction-based enzyme and enzyme function 
classification from humans. In their current iteration, 
the trained models can already be used to predict a can-
didate catalysing enzyme for an arbitrary chemical reac-
tion, while the software allows for easy human evaluation 
of the predictions. In addition, the generalisable method 
to visualise explainable machine learning for chemical 
and biochemical reactions can be adapted by current and 
future machine learning tools involving arbitrary explain-
ability techniques and machine learning architectures. 
Documentation, code, and notebooks showcasing the 
described functionality as well as instruction to install 
the tools locally from PyPI can be found at https:// github. 
com/ daenu probst/ theia.

Methods
EC Classification
Once identified and associated with a biochemical reac-
tion through experimentation, enzymes are classified 
according to their function and the reactions they cata-
lyse using the hierarchical EC Number (Enzyme Com-
mission Number) scheme based on the reaction they 
catalyse. This hierarchical classifier, in the form x.y.z.sn, 
where x is the class, y is the subclass, z is the sub-sub-
class, and sn is an incremental serial number assigned to 
an enzyme. The class (x) encompasses seven categories: 
(1) Oxidoreductases, (2) Transferases, (3) Hydrolases, 
(4) Lyases, (5) Isomerases, (6) Ligases, and (7) Trans-
locases. While classes 1 through 6 catalyse a chemical 
modification of the substrate, translocases are limited to 
catalyse the movement of molecules or ions across mem-
branes. Translocases are, therefore, not within the scope 
of this study. The subclass (y) of an enzyme specifies the 
group or bond on which the enzyme acts. For example, 
hydrolases of subclasses 3.4 and 3.7 act on peptide and 
carbon-carbon bonds, respectively. The sub-subclass (z) 
of an enzyme further specifies the reaction. Peptidases 
(3.4) with the sub-subclass 3.4.13 are dipeptidases with 
dipeptides as a substrate, while peptidases with the sub-
subclass 3.4.22 are cysteine endopeptidases that hydro-
lyse peptide bonds after non-terminal cysteines. Finally, 
the serial number (sn) does not convey learnable infor-
mation on the reaction type but distinguishes different 
enzymes that catalyse the same type of reaction on spe-
cific substrates.

https://github.com/daenuprobst/theia
https://github.com/daenuprobst/theia
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Data processing
The ECREACT (Version 1.0) data set does not require 
any preprocessing as it is available as a .csv file contain-
ing reaction SMILES and the associated EC number. 
For Rhea (Release 123), the file containing the reactions 
annotated with ChEBI identifiers is downloaded and then 
processed with a ChEBI export to match the molecular 
identifiers with the respective SMILES to generate reac-
tion SMILES. The SMILES in both data sets contain ste-
reochemistry information. The processed data, as well as 
a shell script to download the required data and a Python 
script to process the raw Rhea data are included in the 
GitHub repository.

Differential reaction fingerprint (DRFP)
The successful representation of enzyme-catalysed 
reactions by the differential reaction fingerprint (DRFP) 
has already been shown by [52]. In contrast to this pre-
vious approach, the parameters of the DRFP PyPI pack-
age (drfp =  0.3.6) were selected to maximise accuracy 
while minimising the probability of collisions, in order 
to enhance explainability. The folded length (dimen-
sionality) of the DRFP fingerprint was chosen as 10,240 
(default 2,048) and the radius as 2 (default 3). The DRFP 
encoding function was adapted to produce non-centred 
canonicalised SMILES, further reducing the number 
of potential collisions. Whereas the original function 
would produce multiple SMILES rooted at each atom 
for each fragment (e.g. COC, OCC, and CCO for dime-
thyl ether), the adapted version produces only a single 
SMILES per fragment (e.g. COC for dimethyl ether). 
This change can be toggled in the updated DRFP pack-
age using the argument root_central_atom in the 
static function encode. Furthermore, the function was 
adapted to explicitly include hydrogens in the SMILES 
encoding of the fragments (e.g. [H]C([H])([H])OC([H])
([H])[H] instead of COC). This change can also be tog-
gled in the updated DRFP package using the argument 
include_hydrogens in the static function encode. DRFP 
preserves the stereochemistry information in the pro-
cessed SMILES.

Multilayer perceptrons
The multilayer perceptrons used for all models in this 
work were implemented using PyTorch (version 1.13.0). 
The initial hyperparameters were taken from our pre-
vious publication on DRFP [44]. The MLP consists of 
a linear input layer with 10,240 nodes, a hidden layer 

with 1664 nodes, and a linear output layer with a num-
ber of nodes that is equal to the number of classes 
(unique EC numbers). Cross entropy with default 
parameters is chosen as the loss function (criterion), 
and Adam with a learning rate of 0.001 as optimiser. 
PyTorch’s exponential learning rate scheduler with a 
gamma of 0.9 is set as the scheduler. Finally, early stop-
ping is implemented by monitoring the mean valida-
tion loss of the 5 most recent epochs. The training is 
stopped if the improvement of the current loss drops 
below 0.001. Training and validation losses for all mod-
els are shown in Additional file 1: Fig. S1. Note that, as 
the models were trained and run inference indepen-
dently from each other, their respective predictions 
may not follow the EC hierarchy. This can result in 
seemingly contradictory results where the prediction of 
the class (x) from the ECX model may differ from the 
class predicted by the ECXYZ model.

DeepLIFT explanations
DeepSHAP is an implementation of DeepLIFT, an addi-
tive feature attribution method, based on the assump-
tion that DeepLIFT approximates SHAP values. A 
detailed description of the method can be found in the 
section DeepSHAP (DeepLIFT + Shapley values) of [49]. 
Using the described method, DeepSHAP assigns each 
feature (molecular fragment) an importance value for a 
given prediction based on a baseline value. The baseline 
value is calculated from a set of samples—100 reaction 
SMILES in the presented implementation—and repre-
sents an approximation of the average of all predictions. 
The SHAP (SHapley Additive exPlanation) values that 
measure the contributions of a feature based on the base-
line are then the summed Shapley values of a conditional 
expectation function of the original model [49].

TMAP visualisation
The TMAP (Tree map) visualisations shown in Fig.  2 
were generated using the PyPI package tmap-viz. The 
parameters sl_repeats  =  2, mmm_repeats  =  2, and n_
trees  =  50 remained constant for all three subfigures, 
while while node_size was set to 3, 2, and 10 for subfig-
ure a, b, and c, respectively. The script to generate the 
TMAPs is available in the project’s GitHub repository.

Reaction visualisation
The reaction visualisations are based on the Smiles-
Drawer JavaScript library that, compared to other avail-
able libraries, allows the depictions of molecules and 
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reactions in web applications without the need for server-
side image rendering [51]. To enable the visualisation of 
numeric attributes on a per-atom level, the library was 
extended with the ability to draw arbitrary pixel values on 
a background layer. While the reactions can be rendered 
as rasterised images (HTML canvas, or image elements) 
or vector images (HTML SVG elements), the background 
layer is always rendered as a rasterised image and scaled 
without interpolation for performance reasons. Finally, a 
wrapper for the display of explainable reactions with the 
SmilesDrawer JavaScript library in Jupyter notebooks is 
available on PyPI in the package faerun-notebook.

Web application
In order to make the models and visualisations easily 
accessible, the presented approach is deployed as a Flask-
based web application. In addition to the EC number 
predictions and the visualisation of the molecular con-
tributions, the application also performs a nearest neigh-
bour search of the DRFP-encoded reaction on the Rhea 
data using an Annoy index [53]. In addition to the hosted 
version, the application is available as Docker and PyPI 
packages for on-premise deployment or local use.

Scientific contribution statement
The speed of recent advances in machine learning on 
(bio)chemical reactions has been unprecedented; how-
ever, most new methods lack explainability and rely on 
large data sets. The methodology presented in this work 
not only enables the prediction of catalysing enzymes 
from reactions but also, for the first time, provides 
explanations that are directly visualised on the reaction 
depiction, allowing for researchers and data curators to 
evaluate the results and potential biases in the underly-
ing data set, respectively.

Appendix
See Table 2.
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Additional file 1: Fig. S1. Training and validation losses for the model-
spresented in this work. Early stopping is implemented bymonitoring the 
mean validation loss of the 5 most recentepochs. The training is stopped if 
the improvement of thecurrent loss drops below 0.001. Fig. S2. Boxplots 
showing the distribution of accuraciesamong classes, subclasses, and 
sub-subclasses. The filledorange circle represents the mean. Fig. S3. Scat-
ter plots showing the dependence of accuracyon sample size for models 
trained on Rhea data. Fig. S4. Scatter plots showing the dependence of 
accuracyon sample size for models trained on ECREACT data.
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Table 2 Ablation study on models trained on Rhea. For each run, a fraction (0.01 to 0.5) of the labels has been shuffled in order to 
simulate real world conditions of non-curated data containing misclassifications

In addition, the statistics for the model trained on the non-shuffled data is shown (–). The metrics reported are the accuracies and, shown in parentheses, the F-Scores. 
Runtimes and energy usage is identical to those reported in the main text

Shuffled fraction/Model ECXRhea ECXYRhea ECXYZRhea

– 0.98± 0.00 ( 0.97± 0.01) 0.96± 0.01 ( 0.88± 0.02) 0.95± 0.00 ( 0.87± 0.02)

0.01 0.98± 0.01 ( 0.96± 0.01) 0.95± 0.00 ( 0.86± 0.00) 0.94± 0.01 ( 0.86± 0.02)

0.05 0.96± 0.01 ( 0.94± 0.01) 0.91± 0.00 ( 0.83± 0.02) 0.91± 0.01 ( 0.81± 0.01)

0.10 0.93± 0.00 ( 0.91± 0.01) 0.88± 0.00 ( 0.77± 0.02) 0.88± 0.01 ( 0.75± 0.01)

0.20 0.88± 0.01 ( 0.86± 0.01) 0.88± 0.01 ( 0.86± 0.01) 0.82± 0.01 ( 0.68± 0.02)

0.50 0.74± 0.02 ( 0.66± 0.01) 0.64± 0.01 ( 0.49± 0.03) 0.60± 0.03 ( 0.44± 0.01)
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