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Abstract 

Prediction of chemical shift in NMR using machine learning methods is typically done with the maximum amount 
of data available to achieve the best results. In some cases, such large amounts of data are not available, e.g. for het‑
eronuclei. We demonstrate a novel machine learning model that is able to achieve better results than other models 
for relevant datasets with comparatively low amounts of data. We show this by predicting 19F and 13C NMR chemical 
shifts of small molecules in specific solvents.
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Introduction
Prediction of chemical shift in nuclear magnetic reso-
nance (NMR) is a long-standing problem in chemoinfor-
matics. [1] is perhaps the earliest publication in the field. 
We define prediction here as methods using existing data 
as opposed to ab-initio calculations. Over time, various 
methods for such predictions have been developed. In 
particular, machine learning methods have been applied, 

starting with early methods, like small neural networks 
[2], up to the latest developments in convolutional and 
graph neural networks. We refer the reader to the recent 
review [3] for an overview.

For supervised learning methods, like the mentioned 
neural networks, annotated datasets are needed, and 
the number of data points used is a significant factor 
in the quality of the predictions. A review of the litera-
ture shows that the datasets used are generally big, con-
sisting of tens of thousands of molecules. Table  1 gives 
an overview of the number of structures used in recent 
publications. It should be noted, that sometimes prelimi-
nary selection was employed, e.g. the 17,000 structures 
of [4] are a selection (using Morgan fingerprints and the 
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MaxMin algorithm from RDKit) from 170,000 molecules 
by structural diversity.

Unfortunately, many studies do not take the influence 
of the amount of training data on the quality of the pre-
diction into account. An exception is [11], which shows 
that some machine learning methods only show suitable 
predictive power with more than 5000 training examples. 
However, in many practical applications, the amount of 
experimental data available is quite limited. Examples are 
NMR chemical shifts of heteronuclei, specific classes of 
compounds, NMR spectra measured with particular sol-
vents, or other certain experimental conditions. For such 
cases of small amounts of data (defined as less than 5000 
structures here), the existing models either do not pro-
vide a good solution or are yet untested on such small 
datasets.

In this paper, we present a graph neural network that is 
able to achieve good predictions with small amounts of 
data and is competitive with state-of-the-art models for 
larger amounts of data. We restrict our research to small 
organic molecules in solution. The prediction of solid-
state NMR chemical shifts, biological macromolecules, 
or inorganic compounds requires different, and more 
specific models. Therefore, we exclude those cases from 
the current research.

Materials and methods
Predictive models can be applied to many different 
NMR parameters, such as coupling constants, relaxa-
tion time, or peak shape. Here, we want to focus on the 
prediction of NMR chemical shifts. Modern (solution) 
NMR experiments are an excellent source of data, as 
they provide isotropic chemical shift information with 
little noise [12]. In NMR spectroscopy, the chemical 
shift, which is equivalent to the resonance frequency of 
an atom, is determined by the (chemical) environment 
of a nucleus. The representation of this environment 
is a hard task. A single atom might be represented by 
a vector, in which its properties are stored. However, 
that representation won’t work for an entire molecule. 
Because of this, we disregard tensor-like representation 
and constitute the molecule as a graph instead. There, 
the atoms can be described by nodes, and the con-
necting bonds can be described by edges. Geometric 
learning with graph neural networks [13, 14] provides 
a suitable tool to run ML algorithms on such specific 
structures. In the graph, information is passed along 

the edges, making information from connected atoms 
the most important information. This is equivalent to 
real molecules, where neighbouring atoms, which are 
connected with a low number of bonds, have the most 
impact on NMR chemical shift values.

For this work, we developed a model that learns the 
atomic properties in molecules, based on [15], which 
we call the “2023 model” in this paper. The model uses 
message-passing graph networks [16, 17], which pass 
information via edges in the graph, in this way build-
ing up information locally in the nodes. Following [15], 
we use a type of message-passing graph network block 
with an additional edge aggregation function, shown in 
Fig.  1. Since we employ the network to predict node-
level features of small molecules, we disregard the sec-
ond stage of the graph network described in [15]. We 
use a set of features which is given in Tables 2 and 3 to 
describe atoms and bonds.

The flow of information is described in Fig.  2. The 
chosen features (see also Table  2 for edge features ε , 
and Table  3 for node features ν ) are encoded by the 
functions �E and �V  . These functions are represented 
by multi-layer perceptrons (MLPs), and encode edges 
( e0

i
= �

E(εi) ) and nodes ( v0
i
= �

V (νi) ) respectively. 
Afterward, M message-passing rounds are executed 
on the graph, using the graph network block displayed 
in Fig. 1. This results in new node features vM

i
 that get 

passed to another MLP that predicts the final chemical 
shifts.

This specific feature selection was chosen because of 
preliminary experiments, which measured the impact 

Table 1 Examples of papers about chemical shift prediction and the number of structures used

Literature reference  [5]  [6] 13
C [7] 1

H [7]  [8]  [9]  [10]  [4]

Number of structures used 32,538 57,456 21,481 10,248 75,382 400,000 8000 17,000

Fig. 1 Information flow in the message‑passing graph network 
of the 2023 model. In addition to node and edge aggregation 
functions, there is also an additional edge aggregation function 
feeding into the global update function (from [15])



Page 3 of 11Rull et al. Journal of Cheminformatics          (2023) 15:114  

of each feature on the final prediction. After that, the 
best-performing features were combined, until the pre-
diction quality was no longer improving.

To optimize the prediction accuracy, we carefully 
selected the best hyperparameters for the 2023 model. 
The most important hyperparameters were the num-
ber of message-passing steps, the learning rate and the 
weight decay. The hyperparameters were optimized on 
the training set of 19F  data using 4-fold cross-validation. 

The best performing model used 6 message-passing 
steps, a learning rate of 10−3 , and a weight decay of 
0.01.

All programming is done in Python using RDKit 
[18] version 2022.9.5 as the main library. Furthermore, 
mendeleev [19] version 0.12.1 is used to calculate some 
atomic properties. A Jupyter notebook, containing the 
code and explanations, is contained in the Additional 
file 2 of this paper. Additional file 1 contains the same 
code for standalone execution.

For comparison, we use two other prediction meth-
ods. One are hierarchically ordered spherical environ-
ment (HOSE) codes [20], a long-established method 
that describes atoms and their environments as strings. 
With those, the chemical shifts of other, similar atoms 
are looked up and used for prediction. From the point 
of view of machine learning, this could be called a near-
est neighbour search. The HOSE code implementation 
used is a port of the HOSE code implementation of the 
Chemistry Development Kit (CDK) [21] and available 
at [22]. This produces standard HOSE codes, not the 
stereo-enhanced HOSE codes of [23].

We use the model from [5] as a modern machine 
learning model, which we call the “2019 model” in 
this paper. This uses a convolutional graphical neural 
network to combine feature vectors for an atom with 
those of its neighbours to do the prediction. Evalua-
tion of the methods was generally done using a 75:25 

Fig. 2 Schematic flow of information in the message‑passing graph network. The workflow can be split into the following steps: encoding, 
message‑passing, and prediction of shifts with an MLP

Table 2 Atom features used in the 2023 model

Feature Description [unit] (type)

Atomic number One hot encoded [all atoms in dataset] (array[bool])

Atomic radius Slater data from Mendeleev library [pm] (int)

Neutrons Number of neutrons [–] (int)

Electronegativity Pauling scale [–] (float)

Electron affinity Value from Mendeleev library [eV] (float)

Table 3 Bond features used in the 2023 model

Feature Description [unit] (type)

Bond length Distance between atom centers [Å] (float)

Bond type One hot encoded[single, double, triple, 
aromatic] (array [bool])
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training-to-test split. We have decided against a sepa-
rate validation set, due to the small size of the datasets.

All data was taken from nmrshiftdb2, an open NMR 
database [24]. It contains lists of chemical shift values 
as well as raw data of various 1D and 2D NMR experi-
ments for a number of different nuclei. We focus on par-
ticular subsets here, as explained in the subsections of 
Sect.  "Results". It should be noted that the datasets we 
used consist of random selections of structures. It might 
be possible to optimize the training process with small 
datasets by ensuring structural diversity or even dis-
tribution in chemical space. We did not follow this and 
assumed the random distribution of data. In particular, 
we include all experimental data from nmrshitdb2 (if they 
fit the subsets used in Sect. "Results"). This is opposed to 
other work, e.g. [5] where the choice is restricted to mol-
ecules with only common elements. This also explains 
slightly different results using the 2019 model with data 
from nmrshiftdb2, apart from changes to the database 
over time.

For comparing the performance of the models in vari-
ous conditions we report three values: The mean absolute 
error (MAE), the root mean squared error (RMSE), the 
mean absolute scaled error (MASE), and the standard 
deviation σ of the error. The standard deviation is calcu-
lated over all of the predictions of the model and is used 
to measure the amount of variation of the error from the 
mean. We use MASE as a scale-invariant measure, which 
allows comparing different nuclei and solvents.

Results
Overall behaviour
First, we wanted to compare the new 2023 model to 
HOSE codes and the 2019 model. In order to do so, we 

analyzed the predictive performance of the different 
models when trained on an increasing number of mol-
ecules. The results are shown in Fig. 3 and Table 4. It can 
be clearly seen that the new model outperforms the 2019 
model when trained on up to 2500 data points (struc-
tures), whereas the 2019 model performs better from 
5000 data points onward. The sharp improvement of the 
2019 model in that range was already seen in [11], and 
an explanation of that spontaneous improvement is yet 
outstanding.

The HOSE codes offer good predictive power that was 
previously observed in other published work, however, 
in some cases, a prediction based on HOSE codes is not 
possible, as noted in Table 4. This can happen if no exam-
ples with high enough similarity (i.e. at least one sphere) 
exist in the training set. The table also shows that the 
standard deviation of the 2019 model’s results is signifi-
cantly lower than with HOSE codes, indicating that the 
model is more stable than the HOSE code prediction.

In order to test the influence of those molecules for 
which HOSE codes find no matches, we have also made 
predictions leaving out those molecules using HOSE 
codes and the 2023 model. We restricted this to those 
dataset sizes where both methods were very close. 
Table  5 shows that there is no uniform behaviour here: 
HOSE code predictions improve for 100, 250, 1000, 2500, 
and 5000 molecules, but get worse for 500 molecules. The 
2023 model gives less good results for 100, 250, 1000, and 
5000 structures, but improves for 500 and 2500 struc-
tures. The range where the two methods are performing 
similarly is unchanged.

Table 4 Prediction results for 13C shifts using increasing numbers of spectra

100 250 500 1000 2500 5000 10000 25000 44370

2019 model MAE (ppm) 70.31 64.84 61.64 57.77 31.81 3.65 2.40 2.11 1.82

RMSE (ppm) 83.30 79.86 76.36 70.71 36.27 5.41 3.35 4.09 3.13

MASE 1.49 1.39 1.32 1.23 0.67 0.07 0.05 0.04 0.04

σ (ppm) 52.29 52.51 52.69 48.15 28.05 6.64 5.08 5.13 4.57

2023 model MAE (ppm) 24.8 21.45 22.77 17.11 15.0 11.18 9.63 8.21 7.65

RMSE (ppm) 46.65 40.82 44.66 45.27 40.27 32.82 29.01 25.63 24.53

MASE 0.52 0.46 0.48 0.36 0.31 0.23 0.20 0.17 0.16

σ (ppm) 45.29 40.44 44.41 45.13 40.11 32.77 28.95 25.58 24.48

HOSE  code MAE (ppm) 20.81 18.99 17.68 18.85 16.14 15.2 14.02 12.14 10.98

RMSE (ppm) 35.29 33.44 30.94 30.32 30.03 29.19 27.95 25.84 24.60

σ (ppm) 34.72 33.26 30.74 30.29 30.01 29.18 27.95 25.83 24.5

MASE 0.43 0.40 0.37 0.40 0.34 0.31 0.30 0.26 0.24

Missing predictions 17.6 19.6 26.3 33.9 41.4 51.0 57.9 76.2 85.2
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Heteronuclei
13
C and 1H are the most popular nuclei for NMR spec-

troscopy, mainly due to the natural abundance of magnet-
ically susceptible isotopes and their presence in organic 
compounds. Other nuclei are also used for certain appli-
cations, but the amount of data available is much smaller. 
Therefore, they are a good test case for our model, where 
we use 19F  spectra as an example. In nmrshiftdb2, there 
are currently 957 structures with measured 19F  spectra. 
We disregard the spectra that are calculated via ab-inito 
calculations in nmrshiftdb2 and use only one spectrum 
per compound in the rare case that several spectra are 
recorded.

We use the same machine learning models and HOSE 
codes as for 13C in Sect. "Overall behaviour". It might be 
possible to improve the prediction by optimizing a model 
specifically for a nucleus, but this is not within the scope 
of this work. Generally, 19F  should behave similar to 13C 
and 1H , which might not be the case e.g. for metals.

Table  6 and Fig.  4 show the results of the predictions 
based on the 957 19F  spectra in nmrshiftdb2, using 100, 
250, 500, and 957 (all) spectra for training the models. 
The HOSE code and 2019 model results are similar to 
those in [11] (differences are due to an older version of 
nmrshiftdb2 used in the paper), with the HOSE codes 
being significantly better than the 2019 model for those 
small amounts of data. We expect the model to improve 
with more data, similar to 13C , however, the amount of 
data is limited for this nucleus. Our new model, shown in 
blue in Fig. 4, outperforms the 2019 model when trained 
on 100 spectra and improves significantly, almost reach-
ing the quality of the HOSE code model when trained on 
957 spectra (note Fig. 4 uses a logarithmic scale). Figure 5 
shows the distribution of the 2019 model and HOSE 
codes, showing the significant improvement with more 
data.

Predictions based on HOSE codes are fairly accurate 
but have the inherent disadvantage that they might not 
give a prediction at all, as discussed previously. Machine 
learning models will always predict chemical shifts even 

Table 5 Prediction results for 13C shifts using increasing numbers of spectra

The dataset does not contain molecules where HOSE model fails to predict shifts

100 250 500 1000 2500 5000

2023 model MAE (ppm) 47.58 31.50 21.33 17.76 14.13 11.99

RMSE (ppm) 69.88 53.56 44.62 40.43 34.57 31.76

MASE 1.01 0.64 0.43 0.36 0.28 0.24

σ (ppm) 65.50 51.93 44.26 39.60 34.68 31.50

HOSE code MAE (ppm) 18.84 18.64 18.02 17.14 15.99 14.98

RMSE (ppm) 31.49 32.43 32.02 31.01 29.92 28.94

σ (ppm) 30.57 32.17 31.17 30.96 29.91 28.94

MASE 0.40 0.38 0.37 0.35 0.32 0.30
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Fig. 3 MAE of a 13C NMR shift prediction, using increasing numbers 
of samples

Table 6 Prediction results for 19
F shifts using increasing 

numbers of spectra

100 250 500 957

2019 model MAE (ppm) 79.43 72.68 69.65 57.82

RMSE (ppm) 82.54 84.04 73.23 61.86

MASE 1.21 1.51 1.64 1.36

σ (ppm) 47.32 93.13 43.18 41.61

2023 model MAE (ppm) 22.25 15.94 13.32 9.77

RMSE (ppm) 45.19 38.46 34.02 27.95

MASE 0.34 0.33 0.31 0.22

σ (ppm) 43.57 37.56 33.44 27.73

HOSE code MAE (ppm) 12.21 10.53 7.87 7.38

RMSE (ppm) 25.97 29.68 20.16 23.33

σ (ppm) 25.70 29.45 20.13 23.32

MASE 0.18 0.21 0.18 0.17

Missing predictions 1.93 2.88 7.38 4.75



Page 6 of 11Rull et al. Journal of Cheminformatics          (2023) 15:114 

for less similar molecules, as they are able to general-
ize. Therefore, the category “Missing Predictions” is only 
used for the HOSE codes. We have also tested predic-
tions leaving out molecules for which HOSE codes find 
no matches. The results for this are shown in Table  7. 
Here, with the maximum amount of data, the 2023 model 
gives a better result than HOSE codes do. This indicates 
that without those very unusual (within the dataset) mol-
ecules, the generalisation of the neural network is able to 
surpass the similarity search provided by HOSE codes.

Solvents
The solvent used is one of the major factors influencing 
the chemical shift values of a particular compound due 
to its influence on the chemical environment of the mol-
ecule, the possibility of forming hydrogen bonds, changes 
in the charge state of the investigated molecule, and 
more. For prediction purposes, it is common practice 
to ignore the solvent (e.g. [5] or [7]). More accurate pre-
dictions would require using solvent information. One 

problem with this is the relatively low number of spectra 
for particular solvents, even for 13C and 1H spectra. For 
example, nmrshiftdb2 currently has 2324 13C NMR spec-
tra in Chloroform-D1, 456 spectra in Dimethylsulphox-
ide-D6, and 351 spectra in Methanol-D4 (those being the 
most common solvents in the database).

We are using those data to train separate models 
for each solvent and compare the results to the values 
achieved by using all 13C spectra. The results are shown 
in Table  8. It should be noted that the models are the 
same as used for the previous prediction with all solvents 
and the 19F  nuclei and are not optimized for a solvent-
specific prediction. We can still make the following 
observations:

• The solvent-specific training produces much better 
results compared to the overall model. For example, 
for Chloroform-D1, the 2019 model and the 2023 
model reach an MAE of 24.06 respectively 4.55 ppm 
with 2324 spectra, whereas with all solvents the MAE 
is 31.81 respectively 14.60 with 2500 spectra.

• The overall tendency is similar to what we have seen 
before: The predictive quality of the 2019 model 
starts off with high errors and significantly improves 
beyond 1000 spectra. The 2023 model outperforms 
the 2019 model on smaller datasets, due to its quick 
improvements when trained on up to 2500 spectra. 

Table 7 Prediction results for 19
F shifts using increasing 

numbers of spectra

The dataset does not contain molecules where HOSE model fails to predict shifts

 100  250  500   955

2023 model MAE (ppm) 16.85 11.75 10.61 7.41

RMSE (ppm) 30.50 26.87 27.16 20.10

MASE 0.45 0.34 0.30 0.24

σ (ppm) 29.54 26.34 26.96 22.65

HOSE code MAE (ppm) 11.90 9.92 9.59 7.96

RMSE (ppm) 25.48 24.93 25.66 25.77

MASE 0.41 0.31 0.28 0.25

σ (ppm) 25.25 24.60 25.43 25.65
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Fig. 4 MAE of a 19F NMR shift prediction, using increasing number 
of samples, on a logarithmic scale

Fig. 5 Comparison of the accuracies and their distribution 
of the HOSE code and GNN prediction
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HOSE codes are generally doing well, but do not 
improve much.

• The 2023 model achieves errors of less than 5 ppm 
with 1000 spectra for Chloroform-D1. That is bet-
ter than the 2023 model with all data. For the 
2019 model to become better than 5 ppm, almost 

5000 spectra are needed. This means that, given 
the available data, our new model outperforms 
the 2019 model. For Dimethylsulphoxide-D6 and 
Methanol-D4, our new model’s results are much 
better than the 2019 model’s results trained on the 
same number of spectra.

Table 8 Prediction results for 13C shifts using increasing numbers of spectra. n/a indicates that not enough data were available, 
numbers in brackets indicate number of compounds used, deviating from the top header

100 250 500 1000 2324

Chloroform‑D1 (CDCl3) 2019 model MAE (ppm) 64.69 58.24 58.62 50.91 24.06

RMSE (ppm) 80.32 74.71 74.63 66.18 34.38

MASE 1.32 1.22 1.21 10.4 0.48

σ (ppm) 53.17 53.02 52.01 48.61 29.47

2023 model MAE (ppm) 18.89 7.47 5.23 4.32 4.12

RMSE (ppm) 34.76 15.69 12.42 10.62 10.53

MASE 0.38 0.15 0.10 0.08 0.08

σ (ppm) 31.99 15.02 12.17 10.47 10.48

HOSE  code MAE (ppm) 5.35 4.81 4.32 4.03 3.19

RMSE (ppm) 8.79 8.53 8.03 7.76 6.99

MASE 0.10 0.10 0.08 0.08 0.06

σ (ppm) 8.77 8.51 8.02 7.76 6.99

Missing predictions 11.92 14.23 17.30 19.42 30.25

Dimethylsulphoxide‑D6 
(DMSO‑D6, C2D6SO)

2019 model MAE (ppm) 91.67 93.09 85.84 (456) n/a n/a

RMSE (ppm) 100.41 100.92 93.76 (456) n/a n/a

MASE 2.12 2.13 1.92 (456) n/a n/a

σ (ppm) 46.28 44.75 45.01 (456) n/a n/a

2023  model MAE (ppm) 24.03 5.82 5.75(456) n/a n/a

RMSE (ppm) 37.35 10.50 8.85 (456) n/a n/a

MASE 0.55 0.13 0.12 (456) n/a n/a

σ (ppm) 31.26 9.92 7.61 (456) n/a n/a

HOSE
code

MAE (ppm) 4.96 4.27 3.65 (456) n/a n/a

RMSE (ppm) 7.61 6.88 6.21 (456) n/a n/a

σ (ppm) 7.60 6.87 6.21 (456) n/a n/a

MASE 0.11 0.09 0.08 (456) n/a n/a

Missing predictions 9.95 12.0 10.0 (456) n/a n/a

Methanol‑D4 (CD3OD) 2019 model MAE (ppm) 78.60 71.92 69.41 (351) n/a n/a

RMSE (ppm) 89.66 84.17 82.03 (351) n/a n/a

MASE 1.84 1.66 1.60 (351) n/a n/a

σ (ppm) 49.35 49.95 49.75 (351) n/a n/a

2023 model MAE (ppm) 18.65 7.10 5.53 (351) n/a n/a

RMSE (ppm) 32.69 15.31 9.94 (351) n/a n/a

MASE 0.43 0.16 0.12 (351) n/a n/a

σ (ppm) 29.10 14.53 9.11 (351) n/a n/a

HOSE code MAE (ppm) 4.67 4.24 3.64 (351) n/a n/a

RMSE (ppm) 8.15 8.05 7.37 (351) n/a n/a

σ (ppm) 8.13 8.04 7.37 (351) n/a n/a

MASE 0.10 0.09 0.08 (351) n/a n/a

Missing predictions 8.42 6.75 12.5 (351) n/a n/a



Page 8 of 11Rull et al. Journal of Cheminformatics          (2023) 15:114 

Figure  6 shows the MAEs achieved by the two models 
trained with all data and CDCl3 only. It is clearly visible that 
the 2023 model outperforms the 2019 model. Furthermore, 
the CDCl3 predictions are not only better with each model 
than the predictions with all data, but the improvement with 
the 2023 model is higher than with the 2019 model.

To further verify our results, we have predicted the shifts of 
only CDCl3 spectra, but with all data used for training, using 
the 2019 model. For this, we have divided the CDCl3 spectra 
into four equal parts and trained models with all non-CDCl3 
data and three of those parts. The fourth part was then used 
as a test set, predicting all shifts of it. The average errors of 
those for test sets were: MAE 2.04, RMSE 2.65, and δ 2.60. 
This confirms that the 2019 model is able to achieve good 
results also on the CDCl3 data alone, given enough data and 
that the good results of the 2023 model with CDCl3 data are 
not due to those data.

As before, we have also tested predictions leaving 
out molecules for which HOSE codes find no matches. 
The results for this are shown in Table 9. Similar to the 
non-solvent-specific prediction, there is no clear overall 

picture. For example, for DMSO-D6 the 2023 model now 
beats HOSE codes for 456 structures, whereas for CDCl3 
this is not the case with 500 or 1000 structures.

Table 9 Prediction results for 13C shifts using increasing numbers of spectra

n/a indicates that not enough data were available, numbers in brackets indicate the number of compounds used, deviating from the top header. The dataset does not 
contain molecules where HOSE model fails to predict shifts

100 250 500 1000 2321

Chloroform‑D1 (CDCl3) 2023 model MAE (ppm) 9.56 7.49 5.90 4.95 3.04

RMSE (ppm) 19.79 14.90 9.60 7.59 4.27

MASE 0.20 0.15 0.12 0.10 0.06

σ (ppm) 19.46 10.56 8.08 5.67 4.21

HOSE code MAE (ppm) 4.99 4.54 4.13 3.86 3.09

RMSE (ppm) 7.43 7.01 6.59 6.30 5.43

MASE 0.10 0.09 0.08 0.08 0.06

σ (ppm) 7.42 7.00 6.59 6.30 5.43

Dimethylsulphoxide‑D6 
(DMSO‑D6, C2D6SO)

2023 model MAE (ppm) 8.09 4.80 3.17(454) n/a n/a

RMSE (ppm) 17.32 7.33 5.04 (454) n/a n/a

MASE 0.18 0.10 0.07 (454) n/a n/a

σ (ppm) 16.62 7.03 4.98 (454) n/a n/a

HOSE code MAE (ppm) 4.74 4.08 3.61 (454) n/a n/a

RMSE (ppm) 7.18 6.42 5.99 (454) n/a n/a

σ (ppm) 7.17 6.42 5.99 (454) n/a n/a

MASE 0.11 0.09 0.08 (454) n/a n/a

Methanol‑D4 (CD3OD) 2023 model MAE (ppm) 9.46 5.29 3.08 (349) n/a n/a

RMSE (ppm) 20.76 11.56 4.90 (349) n/a n/a

MASE 0.22 0.12 0.07 (349) n/a n/a

σ (ppm) 19.71 11.47 4.90 (349) n/a n/a

HOSE code MAE (ppm) 4.12 3.66 3.15 (349) n/a n/a

RMSE (ppm) 6.73 6.22 5.57 (349) n/a n/a

σ (ppm) 6.73 6.22 5.57 (349) n/a n/a

MASE 0.10 0.09 0.07 (349) n/a n/a

10
0

25
0

50
0

10
00

23
24
/

25
00

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

Number of spectra
2019 all 2019 CDCl3 2023 all 2023 CDCl3

M
A
E

(p
pm

)

Fig. 6 MAE of a 13C NMR shift prediction, using increasing numbers 
of samples
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In order to verify that the distribution of the com-
pounds is not dependent on solvents, we have plotted the 
compounds in a chemical space chart in Fig. 7. Here, all 
three solvents show a distribution similar to the overall 
database. It should be noted that all methods would be 
equally affected by any potential distortions.

Discussion
In this paper, we have designed a new model based on 
message-passing graph neural networks for predicting 
chemical shifts. The new network is intended, in contrast 
to existing models, to work with small amounts of train-
ing data.

Testing this new model with 19F  data shows that it is 
possible to decrease the error rates significantly below 
the values of a standard deep learning model. Specifi-
cally, when trained on all 19F  data from nmrshiftdb2, our 
model achieves an MAE of 9.95 ppm, whereas the stand-
ard deep learning model only achieves an MAE of 57.82 
ppm. In a similar fashion, it is also possible to improve 
the predictions on 13C chemical shifts with a particular 
solvent. With the new model, we get an MAE of 4.5 ppm 
for all spectra, whereas the standard model only achieves 
24 ppm. This clearly shows our model performs signifi-
cantly better on smaller datasets.

Analysing Tables  4 and 6, we can conclude that suffi-
cient results can be achieved by training the new model 
on roughly 1000 structures. This result is empirical and 

might depend on e.g. the diversity of the structures and 
the definition of a good prediction. For 13C , our model 
beats HOSE codes with 1000 structures, and for 19F  , it 
is close to the HOSE code results with 957 structures. In 
that sense, the 1000 structures limit can be considered a 
rough threshold value where our model becomes useful. 
Of course, there could be models doing better with even 
smaller datasets.

Tests involving only molecules for which HOSE code 
predictions are possible (and which therefore could be 
considered more homogeneous datasets) improve results 
for the 2023 model with 19F  so that it is now better than 
HOSE codes with all structures. On the other hand, there 
is no clear picture for 13C predictions. Overall, there are 
no conclusive results from those experiments.

Our model is only optimized for the prediction of 19F  
chemical shift data and was used as-is for the other test 
cases. This means, that a more specialized model might 
perform better still for e.g. a particular nucleus or solvent. 
One way to improve performance would be to adjust the 
feature selection specifically for a dataset. The approach 
of using one model should work within solution NMR of 
organic compounds, where it could be useful to train a 
model specifically for a certain compound class. On the 
other hand, there are areas where this is unlikely to work, 
e.g. when predicting inorganic compounds or solids. The 
overall approach however could still prove useful as the 
availability of data is a problem often faced in research.

In this work, we have not tested all currently available 
models with different amounts of data. Some of them 
were published after the 2019 model and claim to have 
slightly better results using large datasets. Therefore, it is 
possible that they do better with small datasets, however, 
we expect the differences to the 2019 model to be negligi-
ble, as they have not been specifically built for and tested 
on smaller datasets.

Conclusion
We have introduced a new machine learning model that 
can achieve more accurate NMR shift predictions than 
our previous model with a limited number of samples. 
When trained on 13C NMR spectra, the model sur-
passes our previous model’s performance on datasets 
smaller than 2500 datapoints and outperforms HOSE 
codes when trained with datasets larger than 1000 
datapoints. We also conducted tests on 19F  shifts and 
solvent-specific 13C shifts. The new model consistently 
surpasses our previous model’s performance. Further-
more, with chloroform-specific 13C shifts, the model 
achieves an MAE of less than 5 ppm. HOSE codes are 
still performing well in these cases, showing that there 
is potential for further enhancements by optimizing 
our new model for specific datasets. Our primary focus 

Fig. 7 A plot of the compounds of nmrshiftdb2, distinguished 
by solvent, in chemical space. The calculation uses Extended 
Connectivity (ECFP) fingerprints to calculate descriptors 
and t‑distributed stochastic neighbor embedding (t‑SNE) 
for dimension reduction. The two major components are plotted. 
Using code from [25]
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in this work was to highlight the performance improve-
ment achieved by the generalized model. This approach 
could potentially be extended to other areas like inor-
ganic compounds, although additional adjustments 
would likely be necessary to meet specific require-
ments. Regardless of our model’s performance, we have 
demonstrated the importance of assessing prediction 
methods using datasets of different sizes as a valuable 
quality measure.

Scientifc contribution
We demonstrate the need to consider dataset size as a 
parameter in evaluating machine learning methods. We 
demonstrate this using NMR prediction as an example. 
We provide a new machine learning model improv-
ing prediction results for dataset sizes of 1000 to 2500 
molecules.
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