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Abstract 

The solubility of proteins stands as a pivotal factor in the realm of pharmaceutical research and production. Address-
ing the imperative to enhance production efficiency and curtail experimental costs, the demand arises for computa-
tional models adept at accurately predicting solubility based on provided datasets. Prior investigations have leveraged 
deep learning models and feature engineering techniques to distill features from raw protein sequences for solubility 
prediction. However, these methodologies have not thoroughly delved into the interdependencies among features 
or their respective magnitudes of significance. This study introduces HybridGCN, a pioneering Hybrid Graph Convolu-
tional Network that elevates solubility prediction accuracy through the combination of diverse features, encompass-
ing sophisticated deep-learning features and classical biophysical features. An exploration into the intricate interplay 
between deep-learning features and biophysical features revealed that specific biophysical attributes, notably 
evolutionary features, complement features extracted by advanced deep-learning models. Augmenting the model’s 
capability for feature representation, we employed ESM, a substantial protein language model, to derive a zero-shot 
learning feature capturing comprehensive and pertinent information concerning protein functions and structures. 
Furthermore, we proposed a novel feature fusion module termed Adaptive Feature Re-weighting (AFR) to integrate 
multiple features, thereby enabling the fine-tuning of feature importance. Ablation experiments and comparative 
analyses attest to the efficacy of the HybridGCN approach, culminating in state-of-the-art performances on the public 
eSOL and S. cerevisiae datasets.
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Introduction
Protein solubility is a critical biophysical characteris-
tic that is essential for evaluating the effectiveness of 
proteins in biological and chemical engineering. It is a 
major factor in pharmaceutical research and produc-
tion yield. Poor solubility of proteins can impede protein 

production, leading to the development of various strat-
egies to improve it, such as using low temperatures 
[1], weak promoters [2], and optimizing growth media 
[3]. The primary structure of proteins, particularly the 
amino acid sequence, is a major determinant of protein 
solubility. Studies [4, 5] have shown a strong correlation 
between protein solubility and sequence-based features, 
such as the presence of hydrophobic stretches, the com-
position of different residue types, and the length of the 
protein sequence. As a result, prediction techniques that 
use sequence-based information to estimate solubility [6, 
7] have gained considerable attention in the protein engi-
neering research community. These techniques offer the 
potential to replace expensive experimental procedures 
by pre-selecting the most promising protein sequences.
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Numerous machine learning-based prediction meth-
ods have been developed to estimate protein solubil-
ity using sequence-based information. These methods 
employ models such as Support Vector Machines (SVM) 
[8], Naive Bayes [6], and Neural Networks [9], as well 
as hand-crafted features that encompass structural and 
biological characteristics. By optimizing the design of 
various bioprocesses, machine learning models have 
significantly improved solubility prediction accuracy. 
However, most existing machine learning models [10, 
11] are trained for binary classification tasks, categoriz-
ing datasets into soluble and insoluble categories, rather 
than providing continuous solubility values, which are 
more desirable. In the field of protein engineering, con-
tinuous solubility values are more significant than binary 
classifications, as they offer more informative guidance 
for downstream tasks. For instance, in large protein data-
sets, the selection of optimal protein sequences can be 
performed based on continuous solubility values, while 
binary values fall short in accomplishing this task. More-
over, traditional machine learning models have recently 
fallen behind deep learning models in terms of perfor-
mance due to the limited generalization capacity of hand-
crafted features. Deep learning models have achieved the 
state-of-the-art (SOTA) performance on various protein 
engineering tasks, including structure prediction [12, 13], 
protein design [14, 15], protein binder design [16], stabil-
ity prediction [17, 18], and solubility prediction [9, 19]. 
Therefore, it is important to understand how to combine 
different biophysical and deep-learning features into one 
single model yet in a more flexible fashion.

In this investigation, we explore the nuanced interplay 
between deep features and classical manually curated 
features, with a particular focus on the complementary 
role played by specific classical features, notably evolu-
tionary features. Grounded in this insightful observa-
tion, we introduce HybridGCN, an innovative hybrid 
graph convolutional network meticulously designed to 
harness the synergies between manually crafted fea-
tures and advanced deep features. This integration 
yields notable advancements in the accuracy of predict-
ing protein solubility. Embedded within the HybridGCN 
framework is the novel Adaptive Feature Re-weighting 
(AFR) module, which orchestrates the seamless fusion of 
domain-specific knowledge encapsulated in handcrafted 
features with the discriminative insights extracted from 
high-capacity deep learning models. The AFR mod-
ule serves as an intelligent mechanism for recalibrating 
feature importance, ensuring a refined and contextu-
ally informed representation of the input features in the 
prediction process. Furthermore, to bolster the feature 
representation capacity of HybridGCN, we introduce 
the ESM-1v feature, derived from zero-shot learning. 

This feature proves instrumental in capturing expansive 
and relevant information pertaining to protein functions 
and structures, thereby enriching the predictive capabili-
ties of the model in the domain of protein solubility. The 
proposed HybridGCN framework, incorporating a blend 
of handcrafted, deep, and zero-shot learning features, 
stands as a significant contribution to the field, showcas-
ing a comprehensive approach towards advancing pre-
dictive models for protein solubility.

The key contributions of our work can be summarized 
as follows:

• We present a novel graph convolutional network, 
HybridGCN, which effectively merges advanced deep 
features and classic solubility-related features, result-
ing in a significant improvement in protein solubility 
prediction performance.

• We explore the interrelations between deep features 
and classic features, revealing their complementary 
nature. Furthermore, we introduce the ESM-1v fea-
ture, a zero-shot learning feature, to enhance the 
input features of HybridGCN. The inclusion of the 
ESM-1v feature enables the capture of comprehen-
sive information relevant to protein functions and 
structures, thereby benefiting the protein solubility 
prediction task.

• We propose an AFR module that dynamically adjusts 
the importance of different features, prioritizing the 
most informative ones for the solubility prediction 
task.

• We conduct extensive ablation experiments and 
comparison experiments to validate the effective-
ness of the ESM-1v feature and the AFR module. The 
results demonstrate that the proposed HybridGCN 
achieves SOTA performance on the publicly available 
eSOL dataset.

The rest of the paper is organized as follows. Sec-
tion  Related work summarizes the related works. Sec-
tion  The proposed hybridGCN describes the proposed 
HybridGCN. Section  Experimental setup describes the 
experimental set-up and Sect.  Results and discussion 
reports the experimental results and discussions.

Related work
In recent years, the application of machine learning 
(ML), particularly deep learning, in protein solubility 
prediction has gained significant attention. Many ML-
based solubility prediction methods have been devel-
oped and published, broadly categorized into traditional 
machine learning-based methods and deep learning-
based methods.
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Models based on traditional ML methods
Traditional machine learning models have been exten-
sively utilized for classification and regression tasks, 
including protein solubility prediction. Several sequence-
based machine learning methods have been developed in 
this context, such as PaRSnIP [5], PROSO II [11], CCSOL 
[20], SOLpro [21], PROSO [6], RPSP [10], and the scor-
ing card method (SCM) [22]. These methods share a 
common approach of extracting handcrafted features 
from protein sequences based on domain knowledge in 
bioinformatics. These features are then used as input for 
downstream classifiers or regressors to accomplish pro-
tein solubility prediction tasks.

Among the ML-based methods, support vector 
machine (SVM) [23] is a commonly employed model 
for distinguishing between soluble and insoluble pro-
teins. Idicula et al. [8] proposed an SVM classifier for this 
purpose and demonstrated its potential in identifying 
soluble protein variants during the screening of protein 
libraries. Agostini et al. [20] developed a webserver called 
ccSOL, which utilizes an SVM classifier along with sev-
eral biological features (e.g., coil/disorder, hydrophobic-
ity, β-sheet, and α-helix propensities) to predict solubility 
for endogenous and heterologous expression in Escheri-
chia coli. Validation on three independent sets showed 
that ccSOL achieved an accuracy of 74% on 31,760 pro-
tein sequences for discriminating soluble and insoluble 
proteins. To enhance the accuracy of protein solubility 
prediction, Magan et al. [21] proposed a two-stage SVM 
approach in which the first stage selects 20 out of 23 fea-
tures and trains 20 independent SVMs, while the second 
stage trains a single SVM using the ensemble of selected 
features. This ensemble strategy significantly improved 
accuracy. Similarly, the PROSO method introduced in [6] 
also employs a two-stage classifier for solubility predic-
tion. The first stage, a primary SVM classifier, focuses on 
feature selection, and its outputs serve as inputs for the 
second Naive Bayes classifier. PROSO outperforms pre-
viously reported solubility predictors and identifies the 
subset of features that have the strongest impact on pro-
tein solubility.

In addition to SVM, various other ML models have 
been employed for protein solubility prediction. For 
instance, RPSP [10] performs classification using a stand-
ard Gaussian distribution to distinguish soluble proteins 
from insoluble ones, while SCM [22] employs a scor-
ing card approach, utilizing only dipeptide composition 
to estimate the solubility scores of protein sequences. 
PROSO II [11] constructs a two-stage classifier consist-
ing of a Parzen window model and two logistic regression 
classifiers. The outputs of the primary Parzen window 
model and logistic regression classifier serve as inputs for 
the logistic regression classifier in the second stage. The 

PaRSnIP [5] adopts a nonlinear predictive model called 
gradient boosting machine (GBM) for protein solubil-
ity prediction. Compared to the black-box model SVM, 
GBM offers the advantage of identifying the properties of 
protein sequences that contribute most to distinguishing 
between soluble and insoluble protein sequences.

Deep learning models
Deep learning has demonstrated remarkable success in 
various domains, including natural language process-
ing [24], image classification [25], and protein engineer-
ing [26, 27]. Unlike most previous two-stage machine 
learning methods, deep learning-based approaches have 
the advantage of automatically extracting discrimina-
tive features from raw data without the need for explicit 
feature selection. For instance, Khurana et  al. [9] intro-
duced DeepSol, a convolutional neural network (CNN), 
to extract discriminative features directly from raw pro-
tein sequences for protein solubility prediction. DeepSol 
aims to classify protein sequences as either soluble or 
insoluble, and it incorporates additional biological and 
structural features to enhance the deep features, result-
ing in improved classification accuracy. These findings 
highlight the complementarity of biological and struc-
tural features with deep features. Similarly, EPSOL [28] 
utilizes a shallow CNN to process raw sequences along 
with other biological and structural features, effectively 
leveraging multiple features to achieve satisfactory pre-
diction performance.

Given that the performance of deep learning mod-
els is highly dependent on the amount of training data, 
ProGAN [29] introduces a Generative Adversarial Net-
work (GAN) to generate additional data for augmenting 
the training set, further enhancing the prediction per-
formance of protein solubility. TAPE [30] and SeqVec 
[7] employ a pre-training strategy on large-scale protein 
datasets, followed by transfer learning to the downstream 
solubility prediction task. NetSolP [31] utilizes advanced 
transformer architecture for protein solubility prediction. 
RPPSP [32] exploits a novel protein sequence encoder to 
generate statistical representations of protein sequences 
that improve prediction accuracy. However, they do not 
incorporate spatial information from protein sequences.

Graph Convolutional Networks (GCNs) have achieved 
notable success in protein structure representation and 
properties prediction. However, GCNs typically require 
3D structural information as input, which is often chal-
lenging to obtain solely from protein sequences. Fortu-
nately, advanced protein structure prediction methods 
can generate accurate protein contact maps as substitutes 
for 3D structures. GraphSol [19] is the first work to con-
struct a protein topology attribute graph using predicted 
protein contact maps. It employs a graph convolutional 
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network to predict protein solubility, leveraging the 
power of GCNs in this context.

Feature engineering
Feature engineering [33], a crucial step in traditional 
machine learning systems, involves designing and select-
ing robust features based on domain knowledge [34, 35]. 
The discriminative power and robustness of these fea-
tures significantly influence the performance of machine 
learning models [36]. In the realm of protein solubility 
prediction, early studies such as [10] explored solubility-
related features. They analyzed six sequence-based fea-
tures, including average charge, turn-forming residue 
fraction, cysteine fraction, proline fraction, hydrophilic-
ity, and total number of residues, and revealed strong 
correlations between average charge, turn-forming resi-
due fraction, and protein solubility. Subsequent works 
further established strong associations between pri-
mary sequence characteristics and protein solubility. 
For instance, Idicula et  al. [8] selected physicochemical 
properties, residue compositions, and dipeptide compo-
sitions as features to train a SVM classifier for predicting 
over-expression status in E. coli. This model achieved an 
accuracy of approximately 72%, indicating the reason-
able performance of the selected features in predicting 
protein solubility. Similarly, Agostini et al. [20] identified 
features such as α-helix propensities, β-sheet content, 
hydrophobicity, and coil/disorder as highly relevant to 
protein solubility.

In machine learning, the ensemble algorithm is an 
effective way to obtain better predictive performance 
[37]. Magan et  al. [21] carefully selected multiple kinds 
of features and trained multiple independent SVM clas-
sifiers using these features, finally, they achieved signifi-
cantly improved prediction accuracy by the ensemble of 
multiple SVM classifiers. PROSO [6] employed a two-
stage classifier for solubility prediction. The first-stage 
classifier performed feature ranking by measuring the 
symmetrical uncertainty of attributes with respect to 
the given class. Notably, the frequencies of dipeptides 
with the first residue charged and the second non-polar 
residue emerged as the most important determinants of 
protein solubility according to the feature ranking results. 
Furthermore, PROSO II [11] analyzed the significance 
of features and their correlation with protein solubility, 
selecting only features that exhibited a significant cor-
relation for predicting protein solubility. In the case of 
PaRSnIP [5], it exploited 8,477 features for each amino 
acid sequence, encompassing frequency-based features 
(e.g., tripeptide frequencies and turn-forming residues) 
and structural features (e.g., secondary structure and rel-
ative solvent accessibility information). PaRSnIP utilized 
the GBM as the predictive model, which provided feature 

importance measures for distinguishing between soluble 
and insoluble protein sequences. Consequently, PaRSnIP 
did not perform feature selection to exclude features but 
relied on the GBM to identify and prune non-essential 
features.

The proposed hybridGCN
Protein solubility prediction is a regression task, which 
can be formulated as a mapping function f between 
the input sequence p ∈ R and the solubility value s , i.e, 
f P → S ∈ [0, 1] . In this work, we propose a two-stage 
deep framework for protein solubility prediction, in 
which the first stage is the extraction of multiple fea-
tures, including biological features and high-level deep 
learning features. Then, we propose a GCN that can be 
seen as a deep predictor. Specifically, We propose a novel 
graph convolutional network, named HybridGCN, for 
the protein solubility prediction task focusing on the 
regression of every value. The graph is the most funda-
mental part of GCN, which consists of two components: 
nodes (vertices) and edges. A graph G can be defined 
as G(V, E), where V is the set of nodes, and E is the set 
of edges between the nodes. We model the protein 
sequence data using the graph structure, and propose a 
graph convolutional network to construct the mapping 
between protein sequences and the corresponding solu-
bility values, the mapping denoted as f can be formulated 
as f G(V , E) → S , where S denotes the solubility values.

The overview of hybridGCN
HybridGCN consists of several modules, including the 
AFR module, the GCN module, and the self-attention 
module. The AFR module dynamically adjusts the 
importance of different node features for better per-
formance. The GCN module is mainly to fuse differ-
ent node features and edge features. The self-attention 
module enables HybridGCN to focus on learning the 
most relevant feature channels in the fused features. 
The self-attention module has two fully connected 
(FC) layers to extract hidden features. Tanh and soft-
max activation functions are added after two FC lay-
ers to rectify fused features with nonlinearity. The 
softmax converts the hidden layer into a normalized 
probability distribution, ensuring that the attention 
scores sum up to 1 and indicating the relative impor-
tance of each hidden node in the hidden layer. Finally, 
we employ the sigmoid loss function to transform 
the last hidden layer into a predicted solubility value 
between 0 and 1 for the regression task. The inputs 
of HybridGCN consist of nodes and edges, specifi-
cally, we extract six sets of protein features as the node 
features V, including five traditional protein features 
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relevant to different protein properties and one pow-
erful deep feature extracted from the zero-shot deep 
learning network ESM-1v [38].

The node features we selected include the Blosum62 
[39] feature ( Fblosum ), the physicochemical property 
feature AAPHY7 [40] ( Faap ), the position-specific 
scoring matrix PSSM [41] ( Fpssm ), the Hidden Markov 
matrix HMM [42] ( Fhmm ), and the predicted structural 
feature SPIDER3 [43] ( Fspider ). Blosum62 is a 20 × 20 
matrix for substitutions between 20 standard amino 
acid types according to alignments of homologous pro-
tein sequences. AAPHY7 is a set of 7 physicochemical 
properties for amino acid types. Both PSSM and HMM 
are evolutionary features that may contain informa-
tion related to protein properties such as the solubility 
of proteins. SPIDER3 is a structural feature predicted 
from the structural predictor SPIDER3, which may be 
related to the solubility of proteins. ESM-1v is a pow-
erful deep learning feature extracted from the zero-
shot protein language model. We will describe it in 
detail in the next subsection. The summary of the edge 
features can be found in Table 1.

For the edge feature, we select the protein contact 
map predicted by SPOT-Contact [44]. The contact 
map represents 2D structural features and contains 
all the possibilities to form contacts between all resi-
due pairs in one protein. In contrast to the previous 
GCN-based solubility prediction network GraphSOL 
[19], we leverage a feature extracted from the zero-
shot deep learning protein language model ESM-1v 
to enhance the node features. Moreover, we propose a 
novel adaptive feature re-weighting module to explore 
the interactions between different features and extract 
the most informative ones. We will describe these two 
novel components as follows.

Zero‑shot feature learning model ESM‑1v
ESM-1v, a 650  M parameter transformer-based protein 
language model, is pre-trained on large and diverse pro-
tein sequence databases containing 98 million protein 
sequences from across the tree of life. It is trained with 
the masked language modeling objective to predict the 
probability that an amino acid occurs at a position in a 
protein given the surrounding context. After pre-train-
ing, the ESM-1v model transfers without supervision 
from experimental data, to predict the effects of sequence 
mutations on protein function. Extensive experimen-
tal results show ESM-1v develops an understanding of 
sequences that reflect the protein function and structure. 
Hence, the output probabilities of ESM-1v model are 
used to predict the effects of sequence mutations on pro-
tein function [38].

Considering the capability of the ESM-1v model for 
learning general information relevant to protein func-
tion and structure, we exploit it as a zero-shot feature 
learning network. As shown in Fig. 1, we directly extract 
features of the protein solubility datasets using the ESM-
1v model without further training. The ESM-1v features 
are taken as the input of the following protein solubility 
prediction network. Specifically, we extract the ESM-1v 

Fig. 1 The overview of the proposed HybridGCN and the adaptive feature reweighting (AFR) module

Table 1 Six types of features and dimensions

Names Properties Dimensions

ESM-1v Protein Function and Structure 20

BLOSUM62 Block Substitution Matrix 20

AAPHY7 Physicochemical Properties 7

PSSM Position-specific Scoring Matrix 20

HMM Hidden Markov Matrix 30

SPIDER3 Structural Properties Predicted by SPIDER3 14
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model’s output probabilities as informative deep features 
to assist the protein solubility prediction task. Let P ∈ R

L 
denotes an input protein sequence of length L, we extract 
the ESM-1v feature using the ESM-1v mapping:

where Fesm is the output feature of ESM-1v model, and 
ESM1v(.) is the ESM-1v mapping function. The model 
ESM-1v output probabilities of 25 amino acid classes, in 
practice, we extract the output probabilities of 20 com-
monly used amino acid classes purely as the final fea-
tures, i.e., Fesm ∈ R

L×20.

Adaptive Feature Re‑weighting (AFR)
The adaptive feature re-weighting (AFR) module R, tak-
ing multiple features as inputs, learns to encode the most 
informative information of each feature into a hybrid 
re-weighting feature and adjust the contribution of each 
feature according to its contribution to the solubility pre-
diction task. With the re-weighting module, the features 
informative for solubility prediction would be excited and 
thus improve prediction performance. Formally, the AFR 
module consists of three stages: hybrid feature construc-
tion, feature weight inference, and feature re-weighting.

Hybrid feature (H) construction
Formally, Let P denote an input protein sequence, and 
H ∈ R

L×C denotes its corresponding input feature, here, 
L is the length of the protein sequence and C is the chan-
nel number of the feature. We extract 6 types of features 
and stack them into a hybrid input feature H as follows:

Where Fesm , Fblosum , Faap , Fpssm , Fhmm and Fspider denote 
the ESM feature, the Blosum62 feature, the PSSM fea-
ture, the AAPHY7 feature, the HHM feature and the SPI-
DER3 feature, respectively.

The feature re-weighting module AFR takes the hybrid 
feature as input and encodes the hybrid feature into a 
re-weighted feature representation R using the channel-
specific weight W

The Feature Weight ( W ) Inference
The hybrid feature H is obtained by stacking a series of 
channels, which can be re-written as:

Hc indicates the C-th channel of the hybrid feature.

(1)Fesm = ESM1v(P)

(2)H = [Fesm, Fblosum, Faap, Fpssm, Fhmm, Fspider]

(3)R = AFR(H ,W )

(4)
H = [Fesm, Fblosum, Faap, Fpssm, Fhmm, Fspider]

= [H1,H2, ...,Hc, ...,HC−1,HC ]

We first extract the global feature of each chan-
nel using the global average pooling transformation 
Fgap(.) : H → G,H ∈ R

L×C ,G ∈ R
1×C.

where Gc is the global feature of the c-th channel, and 
Hi
c is the i-th element in the c-th channel of the hybrid 

feature.
Then, we extract the nonlinear interaction features 

between channels from the global features. The nonlinear 
interaction features are captured by a convolution func-
tion and a ReLU function, among which the convolution 
function extracts the linear interaction features and the 
ReLU function and adds nonlinearity into the interaction 
features. Let V = [v1, v2, ..., vC

′

] denotes the learned set 
of convolution filter kernels, where vc′ ∈ R

1×C refers to 
the parameters of the c-th filter. To match the length of 
the input and output of the convolution function, we use 
C convolution filters, i.e., C ′ = C . The linear interaction 
feature O = [o1, o2, ..., oC ′ ] can be obtained as

Here ∗ denotes the convolution opera-
tor, vc

′

= [vc
′

1
, vc

′

2
, ..., vc

′

C ] ∈ R
1×C and 

G = [G1,G2, ...,GC ] ∈ R
1×C . Next, we adopt the ReLU 

function to introduce nonlinearity into the interaction 
features, enabling the interaction features to capture 
more complex and realistic interaction information. The 
nonlinear interaction features P = [P1,P2, ...,PC ] ∈ R

1×C 
can be formulated as

Finally, we derive the feature channel weight with the 
global information and interaction information. Specifi-
cally, we choose the sigmoid activation function to derive 
the weight of each channel Wc.

Here W = [W1,W2, ...,WC ] is the final feature channel 
weight. The sigmoid function outputs a value between 
0 and 1 for each channel, describing the importance of 
each channel. A value of zero means that the feature 
channel is meaningless to the solubility prediction task, 
while a value of one indicates that the feature channel is 
the most informative one.

(5)
G = Fgap(H) = [Fgap(H1), ..., Fgap(Hc), ..., Fgap(HC)]

(6)Gc = Fgap(Hc) =
1

L

L∑

i=1

Hi
c

(7)oc′ = vc
′

∗ G =

C∑

c=1

vc
′

c ∗ Gc

(8)P = Fnl(O) = max(0,O)

(9)Wc = Fsm(Pc) =
1

1+ e−Pc
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Feature re‑weighting
Once the feature channel weight is achieved, we then 
perform the feature re-weighting as

where R indicates the re-weighted hybrid feature, and ⊗ 
indicates channel-wise multiplication. The channel-spe-
cific coefficient W highlights more informative and rel-
evant feature channels to predict the solubility, hence, the 
re-weighted feature R is able to capture solubility favora-
ble representations and improve the performance of sol-
ubility prediction.

Experimental setup
To demonstrate the effectiveness of the proposed 
method, we conduct comprehensive evaluations on 
open datasets. In this section, we first introduce the 
experimental datasets and evaluation metrics. Then, we 
describe the implementation details.

Datasets
eSOL dataset [45]. For the model training, we utilized 
the eSOL dataset obtained from a previous study [45]. 
Solubility in this dataset was defined as the ratio of the 
supernatant fraction to the total fraction in physiochemi-
cal experiments referred to as PURE [46]. For fair com-
parisons, we used the same dataset setting as GraphSol 
[19]. The final dataset encompassed a total of 2,737 
protein sequences, 75% of the samples were randomly 
selected as training data, while the remaining 25% were 
designated as independent test data. Most of our experi-
ments were conducted using this dataset, as it has more 
samples for detailed investigation.

S. cerevisiae dataset [47]. To comprehensively evalu-
ate the proposed HybridGCN, we selected the S. cerevi-
siae dataset collected by [47] as an external independent 
test. This dataset has fewer samples with 108 proteins 
and their corresponding 3D structures. The solubility was 
also measured by the cell-free expression called PURE 
[46].

Evaluation metrics
Regression evaluation metrics. Our focus in our study 
is to predicate every value of protein solubility. Thus we 
frame protein solubility prediction as a regression task, 
aiming to predict specific solubility values for proteins 
rather than classifying them into soluble or insoluble 
categories. Following the approach of GraphSOL, we 
employ the root mean squared error (RMSE) as a loss 
value, which serves as one of our evaluation metrics for 
the final trained deep model. Additionally, we utilize the 

(10)R = H ⊗W

coefficient of determination (R2) to assess the perfor-
mance of our models and optimize the hyperparameters.

Classification evaluation metrics. The majority of 
previous studies have formulated protein solubility pre-
diction as a classification task, involving the classifica-
tion of proteins into soluble or insoluble categories. In 
line with this approach, we also segregated all proteins 
using a threshold of 0.5. Specifically, if the predicted or 
true solubility value of a protein fell below the thresh-
old of 0.5, it was classified as insoluble; otherwise, it was 
considered soluble. As the task is classification-oriented, 
we employed several classification metrics to evaluate 
the performance of the prediction model. These metrics 
include the Area under the ROC Curve (AUC), accuracy, 
precision, recall, and F1 score, defined as follows:

Cross‑validation and independent test
To ensure robustness and generalizability, we perform 
5-fold cross-validation on the training dataset. Specifi-
cally, the proteins in the training dataset are divided into 
five separate folds. In each round, four folds are utilized 
for training a model, which is subsequently evaluated 
on the remaining one-fold. This process is repeated five 
times, and the performances of the five predictions are 
averaged to obtain the validation performance. To miti-
gate fluctuations resulting from random splitting, we 
used five different random seeds and averaged the final 
performances. The validation phase is crucial for hyper-
parameter optimization. After fine-tuning the optimal 
hyperparameters, a model was trained using the entire 
training dataset and independently tested on two sepa-
rate test datasets.

Implementation details
Our detection framework is implemented using the 
Keras open-source machine learning framework. All 
experiments are conducted on a server equipped with 
an Intel Xeon CPU @ 2.40GHz and a single Nvidia Tesla 
P100 GPU with 16 GB of memory.

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 = 2×
Precison× Recall

Precision+ Recall
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Results and discussion
In this section, we present and discuss the experimen-
tal results and findings. HybridGCN, built upon the 
GCN framework, incorporates two novel components, 
namely the AFR module and the ESM-1v feature, into 
a standard GCN. We begin by conducting ablation 
experiments to assess the contributions of the AFR 
module and the ESM-1v feature to the overall perfor-
mance of HybridGCN. Subsequently, we analyze the 
individual influences of each feature, including ESM-1v, 
Blosum62, AAPHY7, PSSM, HMM, and SPIDER3, on 
HybridGCN. Finally, we compare our method against 
several SOTA protein solubility prediction methods on 
the eSOL dataset and the S. cerevisiae dataset.

Ablation study of the AFR module and ESM‑1v feature 
on eSOL
The concept of an ablation study arises when specific 
components of a model are removed to gain a bet-
ter understanding of their contribution to the overall 
model performance. In our ablation study, we individu-
ally remove the AFR module and the ESM-1v feature 
from HybridGCN, resulting in two distinct models: the 
ESM+GCN model and the AFR+GCN model. We com-
pare the performance of these models with the overall 
HybridGCN (ESM+AFR+GCN) model and the standard 
GCN model. The performances on the 5-fold cross-vali-
dation set of eSOL are reported in Table 2.

The inclusion of the ESM-1v feature in GCN leads to 
significantly improved R2 (0.493) and Recall (0.713) com-
pared to GCN alone. The notable performance gains pri-
marily stem from the utilization of the ESM-1v feature, 
which acts as a powerful zero-shot learning feature that 
has assimilated information pertaining to protein struc-
ture and function. This further reinforces the notion that 
protein solubility is closely linked to protein structure 
and function. The AFR module also enhances the perfor-
mance of GCN across all evaluation metrics. These find-
ings indicate that not all individual features are equally 
important, and a superior composite feature is learned 
through the AFR module, which effectively highlights the 
most informative features related to protein solubility.

Figure  2 illustrates the consistent outperformance 
of HybridGCN over GCN at different training epochs 
and across various evaluation metrics. The overall 
HybridGCN exhibits the best performance among the 
four settings in terms of both regression metrics and clas-
sification metrics. The observed performance improve-
ments can be attributed to the contributions of both 
the ESM-1v feature and the AFR module. These results 
underscore the importance of a well-designed feature 
engineering strategy in the protein solubility prediction 
task.

Analysis of the influences of individual features on eSOL
As feature engineering plays a crucial role in protein 
solubility prediction, it is important to identify the fea-
tures that have the most significant impact on the task. 
We designed two groups of experiments: (1) using indi-
vidual features as inputs to GCN, where only one feature 
is utilized for the solubility prediction without apply-
ing the AFR module; (2) removing individual features 
from the overall HybridGCN, i.e., conducting ablation 
experiments.

The performances (measured by R2 ) of HybridGCN 
with individual features or ablated features are presented 
in Table 3. From the results of the individual features, we 
observed that the ESM-1v feature had the highest impor-
tance for the solubility prediction task, as HybridGCN 
with the ESM-1v feature achieved the highest R2 values 
on both the validation set (0.372 ± 0.012) and test set 
(0.365). The HMM feature and PSSM feature demon-
strated similar R2 values on the validation set (0.337 ± 
0.015 for HMM and 0.333 ± 0.012 for PSSM) and test set 
(0.331 for HMM and 0.332 for PSSM). It is noteworthy 
that PSSM and HMM capture evolutionary information, 
which is relevant to protein solubility. On the other hand, 
AAPHY7 exhibited the lowest R2 values on the validation 
set (0.231 ± 0.019) and test set (0.227) due to its smaller 
dimensionality compared to other features.

Regarding the ablation experiments, removing the ESM 
feature results in the largest performance drop, reducing R2 
values from 0.495 ± 0.012 to 0.476 ± 0.013 on the validation 
set and from 0.497 to 0.488 on the test set. These findings 
further confirm the high importance of the ESM feature 

Table 2 Ablation studies of the AFR module and ESM-1v feature on the 5-fold cross-validation set of eSOL

The best values are marked in bold

Methods RMSE R
2 Accuracy Precision Recall F1 AUC 

GCN 0.231 0.483 0.779 0.775 0.693 0.732 0.866

ESM+GCN 0.229 0.493 0.782 0.779 0.713 0.740 0.870

AFR+GCN 0.230 0.488 0.781 0.778 0.715 0.742 0.871

ESM+AFR+GCN 
(HybridGCN)

0.227 0.497 0.783 0.780 0.722 0.749 0.876
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for protein solubility prediction. Conversely, removing the 
SPIDER3 feature led to the smallest drop, with R2 values 
decreasing from 0.495 ± 0.012 to 0.490 ± 0.012 on the vali-
dation set and from 0.497 to 0.493 on the test set. This can 
be attributed to the fact that SPIDER3 is not the sole feature 
capturing structural information, as the ESM-1v feature also 
encodes structural information of the protein sequences. 
Moreover, the structural information contained in the ESM-
1v feature is more closely related to protein solubility than 
the information preserved in SPIDER3.

To investigate the complementary nature of the features 
with the ESM feature, we conducted further experiments 

by combining the ESM-1v feature with other individual 
features. Table 4 and Fig. 3 demonstrate the performance 
of combinations of the ESM-1v feature with other indi-
vidual features. From these results, we observed that the 
HMM feature is the best complementary feature to the 
ESM-1v feature, while the PSSM feature is the second 
best complementary feature. These findings indicate that 
the evolutionary information captured by HMM and 
PSSM is the most beneficial complement to the struc-
tural information provided by the ESM-1v feature for the 
protein solubility prediction task.

Fig. 2 The performance HybridGCN and GCN at different training epochs

Table 3 The performance ( R2 ) of HybirdGCN with individual features or ablated features. We present R2 on both the 5-fold cross-
validation set and the test set of eSOL

The best values are marked in bold

“-None” indicates the complete HybridGCN without feature ablation

Individual feature Validation Test Ablated feature Validation Test

- - - -None (HybridGCN) 0.495± 0.012 0.497
ESM 0.372± 0.012 0.365 -ESM 0.476± 0.013 0.488

HMM 0.337± 0.015 0.331 -HMM 0.478± 0.018 0.490

PSSM 0.333± 0.012 0.332 -PSSM 0.479± 0.015 0.491

BLOSUM 0.329± 0.016 0.317 -BLOSUM 0.485± 0.015 0.490

SPIDER3 0.293± 0.014 0.289 -SPIDER3 0.490± 0.012 0.493

AAPHY7 0.231± 0.019 0.227 -AAPHY7 0.488± 0.014 0.490
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Comparisons with SOTA methods on the eSOL dataset
Our proposed HybridGCN model is compared with 

several SOTA protein solubility prediction methods on 
the eSOL dataset, including GraphSoLEnsemble [19], 
GraphSoLSingle [19], NetSolP [31], DeepSoL [9], SeqVec 
[7], TAPE [30], and ProGAN [29]. Additionally, we com-
pare HybridGCN with several classical machine learning 
models, including Long Short-term Memory (LSTM), 
SVM, K-nearest Neighbor (KNN), Linear Regression 
(LR), Random Forest (RF), and XGboost.

Quantitative results of the different comparison meth-
ods are presented in Table  5. Among the various com-
parative methods evaluated, GraphSoLEnsemble and 
GraphSoLSingle exhibit good performance, as evidenced 
by higher R2 values on the eSOL dataset. This notable 
achievement can be attributed to the utilization of GCN 

Table 4 The R2 of the model merging the ESM feature with 
other individual features

The best values are marked in bold

Individual Feature Validation Test

ESM 0.372± 0.012 0.365

ESM+HMM 0.423± 0.011 0.420
ESM+PSSM 0.415± 0.013 0.411

ESM+BLOSUM 0.398± 0.012 0.394

ESM+AAPHY7 0.388± 0.014 0.382

ESM+SPIDER3 0.392± 0.019 0.386

Fig. 3 The performance of combinations of ESM-1v and other individual features. HMM, containing rich evolutionary information, is the best 
complementary feature to ESM-1v

Table 5 Performance comparisons with SOTA methods

The best values are marked in bold

Methods RMSE R
2 Accuracy Precision Recall F1 AUC 

K-nearest Neighbor 0.284 0.214 0.691 0.737 0.486 0.586 0.776

Linear Regression 0.280 0.240 0.707 0.685 0.642 0.663 0.777

Random Forest 0.255 0.370 0.760 0.750 0.690 0.729 0.825

XGboost 0.252 0.385 0.756 0.748 0.690 0.718 0.829

LSTM 0.236 0.458 0.765 0.748 0.677 0.730 0.855

SVM 0.246 0.411 0.761 0.763 0.684 0.721 0.842

ProteinSol 0.253 0.376 0.714 0.689 0.688 0.693 0.808

DeepSol 0.241 0.434 0.763 0.771 0.738 0.695 0.845

ProGAN 0.237 0.442 0.763 0.770 0.676 0.720 0.853

SeqVec 0.236 0.458 0.767 0.754 0.715 0.734 0.858

TAPE 0.235 0.461 0.764 0.774 0.710 0.730 0.856

NetSolP 0.240 0.449 0.760 0.768 0.716 0.722 0.833

GraphSOLSingle 0.231 0.483 0.779 0.775 0.693 0.732 0.866

GraphSOLEnsemble 0.227 0.501 0.782 0.790 0.702 0.743 0.873

OursSingle 0.227 0.497 0.783 0.780 0.722 0.749 0.876

OursEnsemble 0.226 0.510 0.801 0.816 0.729 0.764 0.886
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as the underlying architecture in network models, show-
casing the remarkable analytical capabilities of GCN in 
handling graph-structured data. Within the spectrum 
of models assessed, the OursEnsemble model emerges 
as the top-performing model, surpassing the SOTA 
protein solubility predictor GraphSoLEnsemble [19]. 
The OursEnsemble model demonstrates superiority by 
achieving a margin of 1.9%, 2.6%, 2.7%, and 2.1% in accu-
racy, precision, recall, and F1 score, respectively. This 
outstanding performance can be attributed to the incor-
poration of two key components within our HybridGCN 
framework: the AFR module and the ESM-1v feature.

The AFR module, serving as an optimized feature 
fusion mechanism, plays a pivotal role in adjusting the 
importance of features based on their relevance to solu-
bility prediction. This strategic adaptation contributes to 
the model’s heightened discriminative capabilities. Addi-
tionally, the inclusion of the ESM-1v feature, a potent 
deep learning feature derived from protein sequences, 
proves instrumental in capturing intricate information 
pertaining to protein structure and function. Leveraging 
large language models, the ESM-1v feature significantly 
enhances the overall solubility prediction performance. 
In summary, our HybridGCN model, enriched by the 
AFR module and the ESM-1v feature, establishes a new 
benchmark in protein solubility prediction, outperform-
ing existing SOTA predictors and showcasing the efficacy 
of the proposed enhancements in feature fusion and deep 
learning representation.

SeqVec and TAPE are transfer learning frameworks 
for solubility prediction that make use of deep features 
or embeddings taken from pre-trained deep networks 
as inputs for the solubility prediction task. However, 
their performance is not as good as HybridGCN, which 
is due to the lack of traditional features, such as evolu-
tionary features, that could supplement the deep fea-
tures. DeepSoL incorporates additional biological and 
structural features to improve the utility of deep fea-
tures, but its performance is limited by the use of basic 
CNN as the network backbone. Although it includes 
features from multiple sources, it only relies on sim-
ple concatenation operations to combine these features, 
which may not effectively select and enhance the most 
informative features for solubility prediction. In compari-
son, HybridGCN uses GCN as the network backbone, 
allowing direct processing of graph structures and tak-
ing advantage of the structural information of proteins. 
Among the classical machine learning models, LSTM 
performs the best, which is not surprising considering 
its suitability for processing sequential data such as pro-
tein sequences. Nevertheless, our HybridGCN consist-
ently outperforms all other models across all metrics due 

to the introduction of the AFR module and the ESM-1v 
feature.

Comparisons with SOTA methods on the S. cerevisiae 
dataset
We also compared our HybridGCN with other top per-
formance methods on the S. cerevisiae dataset, including 
ProGAN [29], DeepSol [9], ProteinSol [48], ccSol [20], 
and GraphSol [19]. Specifically, we train all methods on 
the eSOl training dataset and test them on the S. cerevi-
siae dataset, examining the generalization ability of dif-
ferent models.

The results of different methods on the S. cerevi-
siae dataset are presented in Table  6, from which we 
find OursEnsemble achieves the best R2 (0.390) among 
the comparison methods, showing the advantage of 
HybridGCN over other methods in modelling feature 
relationships. It is also worth noting that OurSingle ( R2

=0.378) outperforms GraphSolEnsemble ( R2=0.372) on 
the S. cerevisiae dataset, even though the performance 
gain is small, our single model is more efficient than the 
ensemble model during inference.

Conclusions
This paper presents HybridGCN, a novel graph con-
volutional network model that combines deep learn-
ing features with classic solubility-related features to 
improve the accuracy of protein solubility prediction. 
This model takes into account structural and biological 
features of protein sequences, as well as a deep learn-
ing feature extracted from high-capacity large language 
models, to enhance prediction performance. Our analy-
sis can identify the interplay between deep features and 
classic biological features, where certain classic features 
complement the deep features in the solubility prediction 
task. To further improve the prediction task, the ESM-1v 
feature, a zero-shot learning feature, was introduced to 
capture comprehensive and relevant information on pro-
tein functions and structures. Additionally, an adaptive 

Table 6 Performance comparisons with SOTA methods on the S. 
cerevisiae dataset

The best value is marked in bold

Solubility predictors R
2

ProGAN 0.084

DeepSol 0.090

Protein-Sol 0.281

ccSol 0.302

GraphSOLSingle 0.358

GraphSOLEnsemble 0.372

OursSingle 0.378

OursEnsemble 0.390
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feature re-weighting module was proposed to explore 
feature interactions and enhance the most informative 
features for solubility prediction. Ablation experiments 
and comparisons demonstrate the efficacy of the ESM-
1v feature and the AFR module. HybridGCN achieved 
SOTA performance on the publicly available eSOL 
dataset.

The utilization of sophisticated deep learning features 
with classical biological features manifests a notable 
enhancement in the predictive performance of protein 
solubility. Crucially, the discernment of feature importance 
through feature re-weighting emerges as a noteworthy 
aspect, holding promise for broader applications in the 
realm of protein engineering. This strategic identification 
of pivotal features not only refines the solubility predic-
tion task but also presents avenues for addressing diverse 
inquiries within the field. Given the escalating computa-
tional costs associated with an expanding repertoire of 
features in machine learning models, the role of feature 
re-weighting becomes paramount. It assumes a critical 
function in the selection of target features, while concur-
rently removing less salient features, tailored to the aims of 
specific tasks. This discerning feature management proves 
instrumental in mitigating computational overhead, 
thereby optimizing the efficiency of predictive models.

An inherent limitation of our HybridGCN lies in its 
departure from an end-to-end deep learning frame-
work. The necessity to rely on external feature extractors 
for the extraction of node and edge features introduces 
additional time expenses. However, this procedural 
choice provides the advantage of using more advanced 
large protein language models for feature engineering 
[49–51], underscoring a trade-off between computational 
efficiency and leveraging state-of-the-art language mod-
els. In future endeavors, we aspire to delve into alterna-
tive deep learning models for both feature extraction 
and fusion [35]. By exploring and integrating advanced 
methodologies, we aim to further refine the efficiency 
and scope of our predictive models, paving the way for 
enhanced insights into protein solubility and related 
applications.
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