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Abstract 

The prediction of molecular properties is a crucial aspect in drug discovery that can save a lot of money and time 
during the drug design process. The use of machine learning methods to predict molecular properties has become 
increasingly popular in recent years. Despite advancements in the field, several challenges remain that need to be 
addressed, like finding an optimal pre-training procedure to improve performance on small datasets, which are 
common in drug discovery. In our paper, we tackle these problems by introducing Relative Molecule Self-Attention 
Transformer for molecular representation learning. It is a novel architecture that uses relative self-attention and 3D 
molecular representation to capture the interactions between atoms and bonds that enrich the backbone model 
with domain-specific inductive biases. Furthermore, our two-step pretraining procedure allows us to tune only a few 
hyperparameter values to achieve good performance comparable with state-of-the-art models on a wide selection 
of downstream tasks.

Scientific contribution 

A novel graph transformer architecture for molecular property prediction is introduced. The task-agnostic method-
ology for pre-training this model is presented, improving target task performance with minimal hyperparameter 
tuning. A rigorous exploration of the design space for the self-attention layer is conducted to identify the optimal 
architecture.

Keywords Molecular property prediction, Molecular self-attention, Neural networks pre-training

Introduction
Predicting molecular properties is central to applications 
such as drug discovery or material design. Without accu-
rate prediction of properties such as toxicity, a  promis-
ing drug candidate is likely to fail clinical trials. Many 

molecular properties cannot be feasibly computed (simu-
lated) from first principles as their complexity scales with 
at least the 4th power of the number of atoms. It makes 
computation infeasible for even moderately large sys-
tems. Moreover, complex molecular properties, such as 
predicting the yield of chemical reactions, are still beyond 
the reach of what is typically referred to as computational 
chemistry methods [1]. Instead, these properties have to 
be extrapolated from an often small experimental data-
set [2, 3]. The prevailing approach is to train a machine 
learning model such a random forest [4] or a graph neu-
ral network [5] from scratch to predict the desired prop-
erty for a new molecule [6].

Machine learning is moving away from training mod-
els purely from scratch. In natural language processing 
(NLP), advances in large-scale pretraining [7, 8] and the 
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development of the Transformer [9] architecture have 
culminated in large gains in data efficiency across mul-
tiple tasks because pretrained models usually need less 
data to produce similar results as models trained from 
scratch [10]. Instead of training models purely from 
scratch, the models in NLP are commonly first pre-
trained on large unsupervised corpora. The chemistry 
domain might be on the brink of an analogous revolu-
tion, which could be especially transformative due to 
the high cost of obtaining large experimental datasets. 
In particular, recent work has proposed Molecule Atten-
tion Transformer (MAT), a Transformer-based architec-
ture adapted to processing molecular data [11, 12] and 
pretrained using self-supervised learning for graphs [13]. 
Several works have shown further gains by improving 
network architecture or the pretraining tasks [14–16].

However, pretraining has not yet led to such transform-
ative data-efficiency gains in molecular property predic-
tion. For instance, non-pretrained models with extensive 
handcrafted featurization tend to achieve very competi-
tive results [17]. We reason that architecture might be a 
key bottleneck. In particular, most Transformers for mol-
ecules do not encode the three-dimensional structure of 
the molecule [14, 16], which is a key factor determining 
many molecular properties. On the other hand, perfor-
mance has been significantly boosted in other domains 
by enriching the Transformer architecture with proper 
inductive biases [18–27]. Motivated by this perspec-
tive, we methodologically explore the design space of the 
self-attention layer, a key computational primitive of the 
Transformer architecture, for molecular property pre-
diction. In particular, we explore variants of relative self-
attention, which has been shown to be effective in various 
domains such as protein design and NLP [19, 21].

Our main contribution is a new self-attention layer for 
molecular graphs. We tackle the aforementioned issues 
with Relative Molecule Self-Attention Transformer 
(R-MAT), our pre-trained transformer-based model, 
shown in Fig.  1. We propose Relative Molecule Self-
Attention, a novel variant of relative self-attention, which 
allows us to effectively fuse distance and graph neighbor-
hood information (see Fig.  2). We perform pretraining 
using local atom context masking and global graph-based 
prediction, which results in one strong architecture for 
which we only tune a range of learning rate values. Our 
model achieves competitive performance across a wide 
range of tasks. Satisfyingly, R-MAT outperforms more 
specialized models without using extensive handcrafted 
featurization or adapting the architecture specifically to 
perform well on quantum prediction benchmarks. The 
importance of effectively representing distance and other 
relationships in the attention layer is evidenced by large 
performance gains compared to MAT.

Methods
Background
Transformers
The  Transformer architecture was introduced by Vaswani 
et al. [9] and has since become the standard architecture for 
NLP tasks. The model uses a self-attention mechanism to 
process the input sequence, allowing it to capture long-term 
dependencies without the need for recurrent layers. This 
has resulted in improved performance and faster training 

Fig. 1 Relative Molecule Self-Attention Transformer uses a novel 
relative self-attention block tailored to molecule property prediction. 
It fuses three types of features: distance embedding, bond 
embedding, and neighborhood embedding
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times compared to traditional NLP models. Originally it 
was trained for machine translation tasks. However since its 
inception, numerous successors of the Transformer model 
have been developed, such as BERT [7] or GPT [28], which 
showed that a properly pretrained Transformer can obtain 
state-of-the-art on a wide selection of NLP tasks.

Pretraining coupled with the efficient Transformer 
architecture [9] unlocked state-of-the-art performance 
also in molecular property prediction [12, 14–16, 29, 
30]. First applications of deep learning did not offer large 
improvements over more standard methods such as ran-
dom forests [31–33]. Consistent improvements were 
in particular enabled by more efficient architectures 
adapted to this domain [17, 34, 35]. In this spirit, our goal 
is to further advance modeling for any chemical task by 
redesigning self-attention for molecular data.

Encoding efficiently the relation between tokens in 
self-attention has been shown to substantially boost 
the performance of Transformers in vision, language, 
music, and biology [19–25]. The vanilla self-attention 
includes absolute encoding of position, which can hin-
der learning when the absolute position in the sen-
tence is not informative.1 Relative positional encoding 
featurizes the relative distance between each pair of 
tokens, which led to substantial gains in the language 
and music domains [22, 36].

On the other hand, a Transformer can be perceived as a 
fully-connected (all vertices are connected to all vertices) 
Graph Neural Network with trainable edge weights given 

by a self-attention [37]. From a practical perspective, the 
empirical success of the Transformer stems from its abil-
ity to learn highly complex and useful patterns.

Molecular self‑attention
In this section, we give a short background on the prior 
works on adapting self-attention for molecular data and 
point out their potential shortcomings.

Text Transformers. Multiple works have applied the 
Transformer directly to molecules encoded as text using 
the SMILES representation [14, 15, 29, 30, 38]. SMILES is 
a linear encoding of a molecule into a string of characters 
according to a deterministic ordering algorithm [39, 40]. 
For example, the SMILES encoding of carbon dioxide is 
C(=O)=O.

Adding a  single atom can completely change the 
ordering of atoms in the SMILES encoding. Hence, the 
relative positions of individual characters are not easily 
related to their proximity in the graph or space. This is 
in contrast to natural language processing, where the dis-
tance between two words in the sentence can be highly 
informative [19, 22, 25]. We suspect this makes the use of 
self-attention in SMILES models less effective. Another 
readily visible shortcoming is that the graph structure 
and distances between molecule atoms are either com-
pletely encoded or thrown out.

Graph Transformers. Several works have proposed 
Transformers that operate directly on a  graph [12, 16, 
41]. The GROVER and the U2GNN models take as 
input a molecule encoded as a  graph [16, 41]. In both 
of them, the self-attention layer does not have a direct 
access to the information about the graph. Instead, 
the information about the relations between atoms 

Fig. 2 The Relative Molecule Self-Attention layer is based on the following features: a neighborhood embedding one-hot encodes graph distances 
(neighborhood order) from the source node marked with an arrow; b bond embedding one-hot encodes the bond order (numbers next to the 
graph edges) and other bond features for neighboring nodes; c distance embedding uses radial basis functions to encode pairwise distances 
in the 3D space. These features are fused according to Eq. (5)

1 This arises for example when input is an arbitrary chunk of the text [22] 
(e.g. in the next sentence prediction task used in BERT pretraining).



Page 4 of 14Maziarka et al. Journal of Cheminformatics            (2024) 16:3 

(existence of a  bond or distance in the graph) is indi-
rectly encoded by a  graph convolutional layer that is 
run in GROVER within each layer, and in U2GNN only 
at the beginning. Similarly to Text Transformers, Graph 
Transformers also do not take into account the dis-
tances between atoms.

Structured Transformer introduced by Ingraham et al. 
[21] uses relative self-attention that operates on amino 
acids in the task of protein design, while we focus on clas-
sifiers in the context of molecular property prediction. Its 
self-attention, similarly to our work, provides the model 
with information about the three-dimensional structure 
of the molecule. As R-MAT encodes the relative dis-
tances between pairs of atoms, Structured Transformer 
also uses relative distances between modeled amino acids 
and their position in the sequence. However, it encodes 
them in a  slightly different way. We incorporate their 
ideas and extend them to enable the processing of molec-
ular data.

Molecule Attention Transformer. Our work is closely 
related to Molecule Attention Transformer (MAT), 
a  transformer-based model with self-attention tailored 
to processing molecular data [12]. In contrast to most of 
the aforementioned models, MAT incorporates distance 
information in its self-attention module. MAT stacks N 
Molecule Self-Attention blocks followed by a mean pool-
ing and a prediction layer.

For a  D-dimensional sequence embedding X ∈ R
N×D , 

the standard self-attention operation is defined as

where Q = XWQ , K = XWK  , and V = XWV  . Molecule 
Self-Attention extends Eq. (1) to include additional infor-
mation about bonds and distances between atoms in the 
molecule as

where �a , �d , �g are the weights given to individual parts 
of the attention module, g is a  function given by either 
a softmax, or an element-wise g(d) = exp(−d) , A is the 
adjacency matrix (with A(i,j) = 1 if there exists a  bond 
between atoms i and j and 0 otherwise) and D is the dis-
tance matrix, where D(i,j) represents the distance between 
the atoms i and j in the 3D space. Ultimately, Molecule 
Attention Transformer incorporates the interatomic dis-
tances and atom adjacency by calculating the weighted 
average of the classical self-attention, a function of atoms’ 
distance, and a function of atoms’ neighborhood in its 
Molecule Self-Attention layer.

(1)A(X) = Softmax

(

QKT

√

dk

)

V,

(2)

A(X) =

(

�aSoftmax

(

QKT

√

dk

)

+ �d g(D)+ �gA

)

V,

Self-attention can relate input elements in a highly flex-
ible manner. In contrast, there is little flexibility in how 
Molecule Self-Attention can use the information about 
the distance between two atoms. The strength of the 
attention between two atoms depends monotonically 
on their relative distance. However, molecular proper-
ties can depend in a  highly nonlinear way on the dis-
tance between atoms. This has motivated works such as 
Klicpera et  al. [35] to explicitly model the interactions 
between atoms, using higher-order terms.

Relative positional encoding
In natural language processing, a vanilla self-attention 
layer does not take into account the positional information 
of the input tokens (i.e. if we permute the layer input, the 
output will stay the same). In order to add the positional 
information into the input data, the  vanilla transformer 
encodes the absolute position of the input tokens and adds 
its embeddings into the input token embeddings before 
passing this data into the self-attention layers. On the 
other hand, self-attention with relative positional encoding 
[19] adds the embedding of the relative distance between 
each pair of tokens directly into the self-attention layer, 
which leads to substantial gains in the learned task. In our 
work, we use relative self-attention to encode the infor-
mation about the relative neighborhood, distances, and 
physicochemical features between all pairs of atoms in the 
input molecule (See Fig. 2).

Successors
Since the initial version of this paper was made public, 
several researchers have adopted their own versions of 
molecular self-attention to solve molecular property pre-
diction tasks [42, 43], for some datasets even surpassing 
the results of our model. Choukroun et al. [42] proposed 
a model with a different self-attention mechanism, more 
similar to Maziarka et  al. [12], that, trained with their 
custom data augmentation, outperforms R-MAT in the 
QM9 task. Wu et al. [43] proposed Molformer – an archi-
tecture that exploits both molecular 3D geometry and its 
motifs. Their model surpasses R-MAT in the QM7, BBBP, 
and BACE tasks.

Atom relation embedding
Our core idea to improve Molecule Self-Attention is to 
add flexibility in how it processes graph and distance 
information. Specifically, we adapt positional relative 
encoding to processing molecules [19, 20, 22, 25], which 
we note was already hinted at by Shaw et  al. [19] as 
a high-level future direction. The key idea in these works 
is to enrich the self-attention block to efficiently repre-
sent information about the relative positions of items in 
the input sequence.
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What reflects the relative position of two atoms in 
a molecule? Similarly to MAT, we delineate three inter-
related factors: (1) their relative distance, (2) their 
distance in the molecular graph, and (3) their physi-
ochemical relationship (e.g. whether they are within the 
same aromatic ring). We will also enrich our self-atten-
tion with this information. However, instead of mode-
ling it as a weighted average, like in Molecule Attention 
Transformer, we allow the network to learn how to use 
this information by itself.

In the next step, we depart from Molecule Self-
Attention [12] and introduce new factors to the rela-
tion embedding. Given two atoms, represented by 
vectors xi, xj ∈ R

D , we encode their relation using an 
atom relation embedding bij ∈ R

D′ . This embedding will 
then be used in the relative self-attention module after 
a projection layer.

In the next step, we describe three components that 
are concatenated to form the embedding bij.

Neighborhood embeddings. First, we encode the 
neighborhood order between two atoms as a 6-dimen-
sional one hot encoding, with information about how 
many other vertices are between nodes i and j in the 
original molecular graph (see Fig. 2). The list of neigh-
borhood features is presented in Table 1.

Bond embeddings. Finally, we featurize each bond 
to reflect the physical relation between pairs of atoms 
that might arise from, for example, being part of the 
same aromatic structure in the molecule. Molecular 
bonds are embedded in as a  7-dimensional vector fol-
lowing Coley et al. [44], described in Table 2. When the 
two atoms are not connected by a true molecular bond, 
all 7 dimensions are set to zeros. We note that while 
these features can be easily learned in pretraining, we 
hypothesize that this featurization might be highly use-
ful for training R-MAT on smaller datasets.

Distance embeddings. As we discussed earlier, we 
hypothesize that a much more flexible representation of 
the distance information should be facilitated in MAT. 

To achieve this, we use a radial basis distance encoding 
proposed by Klicpera et al. [35]:

where d is the 3D Euclidean distance between two atoms, 
c is the predefined cutoff distance, n ∈ {1, . . . , Nemb} and 
Nemb is the total number of radial basis functions that we 
use. To improve the differentiability, the obtained num-
bers are multiplied by the polynomial envelope function

with p = 6 , resulting in the final distance embedding.
This results in the distance embedding given by a whole 

vector (with Nemb dimensions), instead of just one num-
ber, like in the case of Molecule Attention Transformer.

Relative molecule self‑attention
Equipped with the embedding bij , which is a concatena-
tion of neighborhood, distance, and bond embeddings, 
for each pair of atoms in the molecule, we now use it to 
define a novel self-attention layer that we refer to as Rela-
tive Molecule Self-Attention.

First, mirroring the key-query-value design in the 
vanilla self-attention (c.f. Eq.  (1)), we transform bij into 
a key and value specific vectors bVij , b

K
ij  using two neural 

networks φV  and φK  . Each neural network consists of 
two layers. A  hidden layer, shared between all attention 
heads and the output layer, that create a separate relative 
embedding for different attention heads.

Consider Eq. (1) in index notation:

where the unnormalized attention is 
eij = (xiW

Q)(xjW
K )T . By analogy, in Relative Molecule 

Self-Attention, we compute eij as

en(d) =
√

2

c
·
sin (nπc d)

d
,

u(d) = 1−
(p+ 1)(p+ 2)

2

(
d

c

)p

+ p(p+ 2)

(
d

c

)p+1

−
p(p+ 1)

2

(
d

c

)p+2

,

(3)A(X)i =
n∑

j=1

Softmax

(
eij√
dz

)T

(xjW
V ),

Table 1 Featurization used to embed neighborhood order in 
R-MAT

Indices Description

0 i = j

1 Atoms i and j are connected with a bond

2 In the shortest path between atoms i and j there is one atom

3 In the shortest path between atoms i and j there are two 
atoms

4 In the shortest path between atoms i and j there are three 
or more atoms

5 Any of the atoms i or j is a dummy node

Table 2 Featurization used to embed molecular bonds in R-MAT

Indices Description

0− 3 Bond order as one-
hot vector of 1, 1.5, 
2, 3

4 Is aromatic

5 Is conjugated

6 Is in a ring
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where u, v ∈ R
D′ are trainable vectors. We then define 

Relative Molecule Self-Attention operation:

In other words, we enrich the self-attention layer with 
atom relations embedding. Inspired by the text trans-
former advancements, we add content-dependent posi-
tional bias, global content bias, and global positional bias 
[20, 22] (that are calculated based on bKij  ) to the layer in 
the phase of attention weights calculation. Then, dur-
ing calculation of the attention weighted average, we 
also include the information about the other embedding 
b
V
ij  . This variant of relative self-attention allows us to 

model the interaction of query, key, and relative position 
embeddings simultaneously, which was not possible with 
the original relative self-attention proposed by Shaw et al. 
[19]. The self-attention modules of MAT and R-MAT are 
compared in Fig. 3.

Relative molecule self‑attention transformer
Finally, we use Relative Molecule Self-Attention to con-
struct Relative Molecule Self-Attention Transformer 
(R-MAT). The key changes compared to MAT are: (1) 
the use of Relative Molecule Self-Attention, (2) extended 
atom featurization, and (3) extended pretraining proce-
dure. Figure 1 illustrates the R-MAT architecture.

The input is embedded as a matrix of size Natom × 36 
where each atom of the input is embedded following 
Coley et al. [45] and Pocha et al. [45] (see the details in 
Additional file 1). We process the input using N stacked 
Relative Molecule Self-Attention attention layers. Each 
attention layer is followed by a position-wise feed-for-
ward Network (similar as in the classical transformer 
model [9]), which consists of 2 linear layers with a leaky-
ReLU nonlinearity between them.

After processing the input using attention layers, we 
pool the representation into a constant-sized vector. We 
replace simple mean pooling with an attention-based 
pooling layer. After applying N self-attention layers, we 
use the following self-attention pooling [46] in order to 
get the graph-level embedding of the molecule:

(4)

eij = (xiW
Q)(xjW

K )T

︸ ︷︷ ︸

vanilla self-attention

+ (xiW
Q)bKij

︸ ︷︷ ︸

content-dependent
positional bias

for query

+ (xjW
K )bKij

︸ ︷︷ ︸

content-dependent
positional bias

for key

+ u
T (xjW

K )
︸ ︷︷ ︸

global content
bias

+ v
T
b
K
ij

︸ ︷︷ ︸

global positional
bias

,

(5)A(X)i =
n∑

j=1

Softmax

(
eij√
dz

)T

(xjW
V + b

V
ij ). where H is the hidden state obtained from self-attention 

layers, W1 ∈ R
P×D and W2 ∈ R

S×P are pooling attention 
weights, with P equal to the pooling hidden dimension 
and S equal to the number of pooling attention heads. 
Finally, the graph embedding g is then passed to the two-
layer MLP, with leaky-ReLU activation, in order to make 
the prediction.

Pretraining. We used a two-step pretraining proce-
dure. In the first step, our network is trained with the 
contextual property prediction task proposed by Rong 
et  al. [16], where we mask not only selected atoms but 
also their neighbors. The goal of the task is to predict the 
whole atom context. This task is much more demand-
ing for the network than the classical masking approach 
presented by Maziarka et  al. [12] since the network has 
to encode more specific information about the masked 
atom neighborhood. Furthermore, the size of the con-
text vocabulary is much bigger than the size of the atoms 
vocabulary in the MAT pretraining approach. The second 
task is a graph-level prediction proposed by Fabian et al. 
[15] in which the goal is to predict a  set of real-valued 
descriptors of physicochemical properties. We present 
more detailed information about the pretraining proce-
dure and ablations in Additional file 1.

Other details. Similarly to Maziarka et  al. [12], we 
add an artificial dummy node to the input molecule. The 
distance of the dummy node to any other atom in the 
molecule is set to the maximal cutoff distance, and the 
edge connecting the dummy node with any other atom 
has its unique index. Moreover, the dummy node has 
its own index in the input atom embedding. We calcu-
late distance information in a similar manner as Mazi-
arka et  al. [12]. The 3D molecular conformations that 
are used to obtain distance matrices are calculated using 
UFFOptimizeMolecule function from the RDKit pack-
age [47] with the default parameters. Finally, we consider 
a variant of the model extended with 200 RDKit features 
as in Rong et  al. [16]. The features are concatenated to 
the final embedding g and processed using a prediction 
MLP.

P =Softmax(W2 tanh(W1H
T )),

g =Flatten(PH),
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Results and discussion
Small hyperparameter budget
The drug discovery pipelines focus on fast iterations 
of compound screenings and adjusting the models to 
new data incoming from the laboratory. In particu-
lar, some approaches focus on the fast adaptation to 
the dataset by employing automated ML and reducing 
hands-on time [48]. We start by comparing in this set-
ting R-MAT to DMPNN [17], MAT [12] and GROVER 
[16], representative state-of-the-art models on popu-
lar molecular property prediction tasks. We followed 
the evaluation in Maziarka et  al. [12], where the only 

changeable hyperparameter is the learning rate, which 
was checked with 7 different values.

The BBBP and Estrogen-β datasets use scaffold splits, 
while all the other datasets use random splits. Splits 
were proposed by Maziarka et  al. [12]. For every data-
set we calculate scores based on 6 different splits, we 
report the mean test score based on the hyperparameters 
that obtained the best validation score, in parentheses 
we include the standard deviation. In this and the next 
experiments, we denote models extended with additional 
RDKit features (see Section Relative Molecule Self-Atten-
tion Transformer) as GROVERrdkit and R-MATrdkit . More 

dot product distance adjacency VQ

KT

self-attention

dot product neighborhood, bond,

and distance embedding

global content

and positional bias

V+bVQ

KT

self-attention

Q K K

(a) MAT self-attention

(b) R-MAT self-attention

Fig. 3 Comparison between MAT and R-MAT self-attention modules. The self-attention block comprises scaling and applying softmax. In MAT, 
distance and adjacency matrices are outside the self-attention block, while in R-MAT all matrices are mixed within the self-attention. Moreover, all 
atom-pair embeddings are collected in one matrix that is also multiplied by queries and keys
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information about the models and datasets used in this 
benchmark is given in Additional file 1.

Table 3 shows that R-MAT outperforms other methods 
in 3 out of 6 tasks. For comparison, we also cite repre-
sentative results of other methods from Maziarka et  al. 
[12]. Satisfyingly, we observe a  marked improvement 
on the solubility prediction tasks (ESOL and FreeSolv). 
Understanding solubility depends to a  large degree on 
a detailed understanding of spatial relationships between 
atoms. This suggests that the improvement in perfor-
mance might be related to better utilization of the dis-
tance or graph information.

Large hyperparameter budget
In contrast to the previous setting, we test R-MAT against 
a similar set of models but using a large-scale hyperpa-
rameter search (300 different hyperparameter combina-
tions). This setting has been proposed in Rong et al. [16]. 
For comparison, we include results under small (7 differ-
ent learning rates) hyperparameter budget. All datasets 
use a scaffold split. Scores are calculated based on 3 dif-
ferent data splits. While the ESOL and FreeSolv datasets 
are the same as in the previous paragraph, here they use 
a scaffold split, and the labels are not normalized (unlike 
in the previous paragraph). Additional information about 
the models and datasets used in this benchmark are given 
in Additional file 1.

Table 4 summarizes the experiment. The results show 
that for the large hyperparameter budget R-MAT outper-
forms other methods in 2 tasks and along with GROVER 
are the best in one more task. Overall in this setting our 
method achieves comparable results to GROVER, having 
the same median rank and being slightly worse in terms 

of mean rank. On the other hand, for small hyperparam-
eters budget R-MAT achieves the best results, both in 
terms of the mean and the median ranks (see the details 
in Additional file 1).

Large‑scale experiments
Finally, to better understand how R-MAT performs in a 
setting where pretraining is likely to less influence results, 
we include results on  the QM9 dataset [52]. QM9 is a 
quantum mechanics benchmark that encompasses the 
prediction of 12 simulated properties across around 130 
k small molecules with at most 9 heavy (non-hydrogen) 
atoms. The molecules are provided with their atomic 3D 
positions for which the quantum properties were initially 
calculated. For these experiments, we used a learning rate 
equal to 0.015 (we selected this learning rate value as it 
returned the best results for α dataset among 4 differ-
ent learning rates that we tested: {0.005,0.01,0.015,0.02}). 
We present additional information about the dataset and 
models used in this benchmark in Additional file 1.

Figure  4 compares R-MAT performance with various 
models. More detailed results could be found in Addi-
tional file 1. R-MAT achieves highly competitive results, 
with state-of-the-art performance on 4 out of the 12 
tasks. We attribute higher variability of performance to 
the limited small hyperparameter search we performed.

Exploring the design space of self‑attention layer
Achieving strong empirical results hinged on a methodo-
logical exploration of the design space of different vari-
ants of the self-attention layer. We document here this 
exploration and relevant ablations. We present here the 
experiments for different relative attention features and 

Table 3 Results on molecule property prediction benchmark from Maziarka et al. [12]

We only tune the learning rate for models in the first group. First two datasets are regression tasks (RMSE), other datasets are classification tasks (ROC AUC). For 
reference, we include results for non-pretrained baselines (SVM, RF, GCN [49], and DMPNN [17]) from [12]. We also include SVMrdkit and RFrdkit as two baseline 
methods with added RDKit features. The best results for each task are shown in bold. A rank plot for these experiments is included in Additional file 1

ESOL ↓ FreeSolv ↓ BBBP ↑ Estrogen‑β ↑ MetStablow ↑ MetStabhigh ↑

Pretrained models

MAT 0.278(0.020) 0.265(0.042) 0.737(0.009) 0.773(0.012) 0.862(0.025) 0.884(0.030)

GROVER 0.303(00.048) 0.270(0.033) 0.726(0.007) 0.758(0.006) 0.892(0.031) 0.887(0.019)

GROVERrdkit 0.288(0.021) 0.308(0.058) 0.726(0.003) 0.788(0.009) 0.873(0.033) 0.881(0.039)

R-MAT 0.252(0.030) 0.232(0.071) 0.745(0.010) 0.788(0.007) 0.887(0.028) 0.880(0.027)

R-MATrdkit 0.246(0.024) 0.239(0.066) 0.746(0.007) 0.791(0.010) 0.884(0.032) 0.886(0.031)

Non-pretrained models

SVM 0.479(0.055) 0.461(0.077) 0.723(0.000) 0.772(0.000) 0.893(0.030) 0.890(0.029)

SVMrdkit 0.279(0.024) 0.285(0.049) 0.741(0.001) 0.781(0.001) 0.895(0.029) 0.884(0.031)

RF 0.534(0.073) 0.524(0.098) 0.721(0.003) 0.791(0.012) 0.892(0.026) 0.888(0.030)

RFrdkit 0.289(0.035) 0.337(0.026) 0.743(0.002) 0.807(0.003) 0.903(0.025) 0.886(0.028)

GCN 0.369(0.032) 0.299(0.068) 0.695(0.013) 0.730(0.006) 0.884(0.033) 0.875(0.036)

DMPNN 0.297(0.046) 0.252(0.044) 0.709(0.001) 0.776(0.006) 0.885(0.026) 0.889(0.018)
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different choices of maximum neighborhood order. We 
also defer most results to the Additional file 1, where we 
present experiments for different self-attention variants, 
distance encoding and bond features. We perform all 
experiments on the ESOL, FreeSolv, and BBBP datasets 
with 3 different scaffold splits. We did not use any pre-
training for these experiments. We follow the same fine-
tuning methodology as in Section Small hyperparameter 
budget.

Importance of different sources of information in 
self-attention. The self-attention module in R-MAT 
incorporates three auxiliary sources of information: (1) 
distance information, (2) graph information (encoded 
using neighborhood order), and (3) bond features. In 
Table  5(a), we show the effect on the performance of 
ablating each of these elements. In this experiment, we 
repeat the calculations for three different data splits 
and five different random seeds to make the results 

less prone to random noise, e.g. due to the random 
weight initialization. We find that all components, 
including the distance matrix, are crucial for achiev-
ing optimal performance of R-MAT. The use of all 
information sources results in the best performance 
across all tested datasets. The performance for the 
smallest FreeSolv dataset is considerably better when 
more information sources are included. The same 
trend is observed in the larger ESOL regression task, 
albeit with less noticeable differences. For the BBBP 
binary classification task, all results seem comparable, 
but interestingly, all variants without inter-atomic dis-
tances achieve better results.

Maximum neighborhood order. We take a  closer 
look at how we encode the molecular graph. Maziarka 
et  al. [12] used a  simple binary adjacency matrix to 
encode the edges. We enriched this representation by 
adding one-hot encoding of the neighborhood order. 
For example, the order of 3 for a  pair of atoms means 
that there are two other vertices on the shortest path 
between this pair of atoms. In R-MAT we used 4 as the 
maximum order of neighborhood distance. That is, we 
encoded as separate features if two atoms are 1, 2, 3 or 
4 hops away in the molecular graph. In Table 5 (b) we 
ablate this choice. The result suggests that R-MAT per-
formance benefits from including separate features for 
all the considered orders.

Closer comparison to molecule attention transformer
Our main motivation for improving self-attention 
in MAT was to make it easier to represent attention 

Table 4 Results on the benchmark from Rong et al. [16]

Models are fine-tuned under a large hyperparameters budget. Additionally, models fine-tuned with only tuning the learning rate are presented in the last group. The 
last two datasets are classification tasks (ROC AUC), the remaining datasets are regression tasks (MAE for QM7 and RMSE for the other datasets). For reference, we 
include results for non-pretrained baselines (GraphConv [50], Weave [51] and DMPNN [17]) from Rong et al. [16]. We also include RFrdkit as a baseline method with 
added RDKit features. A rank plot for these experiments is included in Additional file 1. The best scores for each task over all models are shown in bold, and the best 
scores for the models for which only the learning rate was tuned are underlined

ESOL ↓ FreeSolv ↓ Lipo ↓ QM7 ↓ BACE ↑ BBBP ↑

Full hyperparameter tuning

RFrdkit 0.942(0.196) 2.625(0.509) 0.739(0.038) 124.3(3.5) 0.884(0.030) 0.928(0.025)

GraphConv 1.068(0.050) 2.900(0.135) 0.712(0.049) 118.9(20.2) 0.854(0.011) 0.877(0.036)

Weave 1.158(0.055) 2.398(0.250) 0.813(0.042) 94.7(2.7) 0.791(0.008) 0.837(0.065)

DMPNN 0.980(0.258) 2.177(.914) 0.653(0.046) 105.8(13.2) 0.852(0.053) 0.919(0.030)

GROVERrdkit 0.888(0.116) 1.592(0.072) 0.563(0.030) 72.5(5.9) 0.878(0.016) 0.936(0.008)

R-MATrdkit 0.786(0.133) 2.044(0.662) 0.574(0.028) 68.692(1.123) .871(0.028) 0.936(0.020)

Learning rate only tuning

MAT 0.853(0.159) 1.744(0.425) 0.608(0.017) 102.8(2.94) 0.846(0.025) 0.920(0.039)

GROVER 0.927(0.110) 2.262(0.407) 0.604(0.015) 82.623(3.833) 0.867(0.022) 0.908(0.053)

GROVERrdkit 0.924(0.129) 20.096(0.496) 0.593(0.029) 84.625(4.174) 0.873(0.031) 0.931(0.021)

R-MAT 0.801(0.132) 1.912(0.364) 0.585(0.029) 77.248(2.819) 0.858(0.041) 0.931(0.016)

R-MATrdkit 0.819(0.145) 2.057(0.434) 0.580(0.019) 70.929(3.568) 0.858(0.021) 0.920(0.021)

Fig. 4 Rank plot of scores obtained on the QM9 benchmark, which 
consists of 12 different quantum property prediction tasks
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patterns that depend in a more complex way on the dis-
tance and graph information. We qualitatively explore 
here whether R-MAT achieves this goal, comparing its 
attention patterns to that of MAT.

We compared attention patterns learned by the pre-
trained MAT (weights obtained from Maziarka et  al. 
[12]) and R-MAT. We observed that long-range atom 
relations are better captured by our model. We dem-
onstrate this finding for a  selected molecule from the 
ESOL dataset. Figure  5 shows that different heads of 
Relative Molecule Self-Attention are focusing on dif-
ferent atoms in the input molecule. We can see that 
self-attention strength is concentrated on the input 
atom (head 5), on the closest neighbors (heads 0 and 
11), on the second-order neighbors (head 7), on the 
dummy node (head 1) or on some substructure that 
occurs in the molecule (heads 6 and 10 are concen-
trated on atoms 1 and 2). In contrast, self-attention 
in MAT focuses mainly on the input atoms and their 
closest neighbors, the information from other regions 
of the molecule is not strongly propagated. This likely 
happens due to the construction of the Molecule Self-
Attention in MAT (c.f. Eq. (2)), where the output atom 
representation is calculated from equally weighted 
messages based on the adjacency matrix, distance 
matrix, and self-attention. Due to its construction, it is 
more challenging for MAT than for R-MAT to learn to 
attend to a distant neighbor.

As Relative Molecule Self-Attention Transformer is an 
extension of Molecule Attention Transformer [12], we 
perform a more strict comparison of these models. To this 

end, we compare MAT with R-MAT using three different 
pretraining strategies: no pretraining, masking pretrain-
ing (following the original MAT model), and contextual 
+ graph level pretraining (presented in this paper). For 
this comparison, we use the small hyperparameter budget 
benchmarks used in the MAT paper (and in this paper, in 
Section Small hyperparameter budget).

The results  of the comparison between MAT and 
R-MAT are presented in Table  6. R-MAT, on average, 
obtains better results than the standard MAT. Moreo-
ver, the more complicated the pretraining is, the better 
R-MAT is compared to MAT. In the case of no pretrain-
ing, R-MAT outperforms MAT on 3 out of 6 tasks, the 
scores for one task are equal, and R-MAT is outper-
formed by MAT on 2 out of 6 tasks. In the case of the 
masked pretraining, R-MAT achieves better scores, 
outperforming MAT on 4 out of 6 tasks. Finally, in the 
contextual + graph level pretraining setting, R-MAT out-
performs MAT on 5 out of 6 tasks.

Limitations
Although R-MAT has shown promising results, there 
are a few limitations to our approach that should be 
considered. Firstly, our model is E(3)-invariant thanks 
to the use of inter-atomic distances, but it lacks the 
ability to recognize mirror images (enantiomers), 
which might be crucial for some tasks such as bind-
ing affinity prediction. Secondly, our model uses only 
one sampled molecular conformation for the predic-
tion, thereby missing out on the entire range of other 
possible conformations for molecules that are highly 

Table 5 Ablations of relative molecule self-attention; other ablations are included in the Additional file 1

BBBP ↑ ESOL ↓ FreeSolv ↓

(a) Test set performances of R-MAT for different relative attention 
features.

 R-MAT 0.872(0.042) 0.400(0.044) 0.430(0.056)

 Distance 0.877(0.062) 0.407(0.037) 0.484(0.037)

 Neighborhood 0.872(0.055) 0.402(0.027) 0.493(0.046)

 Bond features 0.871(0.057) 0.403(0.026) 0.460(0.025)

 Only distance 0.870(0.038) 0.418(0.036) 0.504(0.072)

 Only neighborhood 0.886(0.038) 0.406(0.032) 0.483(0.042)

 Only bond features 0.894(0.049) 0.407(0.034) 0.494(0.018)

BBBP ↑ ESOL ↓ FreeSolv ↓

(b) Test set performances of R-MAT for different choices of maxi-
mum neighborhood order.

 R-MAT 0.908(0.039) 0.378(0.027) 0.438(0.036)

 Max order = 1 0.847(0.081) 0.372(0.018) 0.461(0.049)

 Max order = 2 0.890(0.068) 0.382(0.040) 0.519(0.036)

 Max order = 3 0.873(0.053) 0.455(0.005) 0.492(0.055)
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flexible. Finally, our model is currently limited to pre-
dicting properties for small to medium-sized mole-
cules and may not be suitable for larger, more complex 
molecules. R-MAT, like many other transformers, is 

computationally intensive and requires memory quad-
ratic with the input molecule size. These limitations 
provide opportunities for future research to address 
these challenges and improve upon our results.

(a) Molecule

(b) R-MAT (c) MAT

Fig. 5 Visualization of the learned self-attention for each of all attention heads in the second layer of pretrained R-MAT (left) and all attention heads 
in pretrained MAT (right), for a molecule from the ESOL dataset. The top Figure visualizes the molecule and its adjacency and distance matrices. The 
self-attention pattern in MAT is dominated by the adjacency and distance matrix, while R-MAT seems capable of learning more complex attention 
patterns

Table 6 Results of the direct comparison between R-MAT and MAT, for different pre-training settings

We underline the best scores for every pretraining setting

ESOL ↓ FreeSolv ↓ BBBP ↑ Estrogen‑β ↑ MetStablow ↑ MetStabhigh ↑

No pretraining MAT 0.278(0.019) 0.283(0.043) 0.727(0.008) 0.751(0.005) 0.857(0.025) 0.872(0.051)

R-MAT 0.273(0.046) 0.272(0.015) 0.727(0.015) 0.786(0.014) 0.844(0.050) 0.833(0.042)

Masking pretraining MAT 0.278(0.020) 0.265(0.042) 0.737(0.009) 0.773(0.012) 0.862(0.025) 0.884(0.030)

R-MAT 0.253(0.085) 0.264(0.028) 0.714(0.090) 0.789(0.015) 0.880(0.022) 0.870(0.042)

R-MAT pretraining MAT 0.298(0.024) 0.246(0.042) 0.729(0.006) 0.782(0.021) 0.879(0.024) 0.882(0.030)

R-MAT 0.252(0.030) 0.232(0.071) 0.745(0.010) 0.788(0.007) 0.887(0.028) 0.880(0.027)
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Conclusions
Transformer has been successfully adapted to vari-
ous domains by incorporating into its architecture a 
minimal set of inductive biases. In a similar spirit, we 
methodologically explored the design space of the self-
attention layer and identified a highly effective Relative 
Molecule Self-Attention.

Relative Molecule Self-Attention Transformer, a 
model based on Relative Molecule Self-Attention, 
achieves state-of-the-art or very competitive results 
across a  wide range of molecular property prediction 
tasks. R-MAT is a highly versatile model, showing com-
petitive results in both quantum property prediction 
tasks, as well as on biological datasets. We also show 
that R-MAT is easy to train and requires tuning only 
the learning rate to achieve competitive results, which 
together with open-sourced weights and code, makes 
our model highly accessible.

Relative Molecule Self-Attention encodes an induc-
tive bias to consider relationships between atoms that 
are commonly relevant to a chemist, but on the other 
hand, leaves flexibility to unlearn them if needed. Relat-
edly, Vision Transformers learn global processing in early 
layers despite being equipped with a locality inductive 
bias [18]. Our empirical results show in a new context 
that picking the right set of inductive biases is key for 
self-supervised learning to work well. We also show that 
Relative Molecule Self-Attention will help improve other 
models for molecular property prediction.

Learning useful representations for molecular property 
prediction is far from being solved. Achieving state-of-
the-art results, while less dependent on them, still relied 
on using certain large sets of handcrafted features both in 
fine-tuning and pretraining. At the same time, these fea-
tures are beyond doubt learnable from data. Developing 
methods that will push representation learning towards 
discovering these and better features automatically from 
data is an exciting challenge for the future.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 023- 00789-7.

Additional file 1. Additional experiments, supplementary tables and 
figures.

Acknowledgements
The authors thank NVIDIA for supporting this research with the computational 
resources required to complete this work.

Author contributions
LM and SJ derived the concept LM wrote most of the code and performed 
preliminary experiments. DM wrote the code and conducted most of the 
experiments. LM created all tables and experiment-related figures. LM, TD 
and SJ wrote the paper. TD prepared figures with the visualisation of Relative 
Molecule Self-Attention Transformer and Relative Molecule Self-Attention. JT, 

IP, PM. provided feedback and critical input. All authors read and approved the 
final manuscript.

Funding
The work of Ł. Maziarka was supported by the National Science Centre 
(Poland) grant no. 2019/35/N/ST6/02125. The work of T. Danel was supported 
by the National Science Centre (Poland) grant no. 2020/37/N/ST6/02728. 
Stanisław Jastrzębski thanks FNP START stipend and IPUB project at Jagiellon-
ian University for supporting this work.

Availability of data and materials
We open-source R-MAT weights and code as part of the HuggingMolecules 
package [53] at: https:// github. com/ gmum/ huggi ngmol ecules. We also share 
all datasets and data splits that we used in our experiments at: https:// osf. io/ 
rgva4/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 24 May 2023   Accepted: 28 November 2023

References
 1. Rommel JB (2021) From prescriptive to predictive: An interdisciplinary 

perspective on the future of computational chemistry. arXiv preprint 
arXiv: 2103. 02933

 2. Chan HS, Shan H, Dahoun T, Vogel H, Yuan S (2019) Advancing drug 
discovery via artificial intelligence. Trends Pharmacol Sci 40(8):592–604

 3. Bender A, Cortés-Ciriano I (2021) Artificial intelligence in drug discovery: 
what is realistic, what are illusions? part 1: Ways to make an impact, and 
why we are not there yet. Drug Discovery Today 26(2):511–524

 4. Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep 
learning with multiple machine learning methods and metrics using 
diverse drug discovery data sets. Mol Pharm 14(12):4462–4475

 5. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural mes-
sage passing for quantum chemistry. In: International Conference on 
Machine Learning. PMLR, pp 1263–1272

 6. Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T, 
Langer T (2020) A compact review of molecular property prediction with 
graph neural networks. Drug Disc Today: Technol 37:1–12

 7. Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep 
bidirectional transformers for language understanding. In: Proceedings of 
the 2019 Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, 2–7 June, 2019, Volume 1 (Long and 
Short Papers), pp 4171–4186

 8. Howard J, Ruder S (2018) Universal language model fine-tuning for text 
classification. In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th 
Annual Meeting of the Association for Computational Linguistics, ACL 
2018, Melbourne, Australia, 15–20 July, 2018, Volume 1: Long Papers, pp 
328–339

 9. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser 
L, Polosukhin I (2017) Attention is all you need. In: Guyon I, von Luxburg 
U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) 
Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, 4–9 Dec, 2017, 
Long Beach, CA, USA, pp 5998–6008

 10. Wang A, Pruksachatkun Y, Nangia N, Singh A, Michael J, Hill F, Levy O, 
Bowman SR (2019) Superglue: A stickier benchmark for general-purpose 
language understanding systems. In: Wallach HM, Larochelle H, Beygel-
zimer A, d’Alché-Buc F, Fox EB, Garnett R (eds.) Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information 
Processing Systems 2019, NeurIPS 2019, 8-14 Dec, 2019, Vancouver, BC, 
Canada, pp 3261–3275

https://doi.org/10.1186/s13321-023-00789-7
https://doi.org/10.1186/s13321-023-00789-7
https://github.com/gmum/huggingmolecules
https://osf.io/rgva4/
https://osf.io/rgva4/
http://arxiv.org/abs/2103.02933


Page 13 of 14Maziarka et al. Journal of Cheminformatics            (2024) 16:3  

 11. Maziarka Ł, Danel T, Mucha S, Rataj K, Tabor J, Jastrzębski S (2020) Mol-
ecule attention transformer. arXiv preprint arXiv: 2002. 08264

 12. Maziarka Ł, Danel T, Mucha S, Rataj K, Tabor J, Jastrzebski S (2019) 
Molecule-augmented attention transformer. NeurIPS 2020 Workshop 
on Graph Representation Learning

 13. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande VS, Leskovec J (2020) 
Strategies for pre-training graph neural networks. In: 8th International 
Conference on Learning Representations, ICLR 2020, Addis Ababa, 
Ethiopia, 26–30 Apr, 2020

 14. Chithrananda S, Grand G, Ramsundar B (2020) Chemberta: large-scale 
self-supervised pretraining for molecular property prediction. arXiv 
preprint arXiv: 2010. 09885

 15. Fabian B, Edlich T, Gaspar H, Segler M, Meyers J, Fiscato M, Ahmed M 
(2020) Molecular representation learning with language models and 
domain-relevant auxiliary tasks. arXiv preprint arXiv: 2011. 13230

 16. Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020) Self-super-
vised graph transformer on large-scale molecular data. In: Larochelle 
H, Ranzato M, Hadsell R, Balcan M, Lin H (eds.) Advances in Neural 
Information Processing Systems 33: Annual Conference on Neural 
Information Processing Systems 2020, NeurIPS 2020, 6–12 Dec 2020, 
Virtual

 17. Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, 
Hopper T, Kelley B, Mathea M et al (2019) Analyzing learned molecu-
lar representations for property prediction. J Chem Inform Model 
59(8):3370–3388

 18. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unter-
thiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, 
Houlsby N (2021) An image is worth 16x16 words: Transformers for 
image recognition at scale. In: 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021

 19. Shaw P, Uszkoreit J, Vaswani A (2018) Self-attention with relative posi-
tion representations. In: Walker MA, Ji H, Stent A (eds) Proceedings of 
the 2018 Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies, NAACL-
HLT, New Orleans, Louisiana, USA, 1–6 June 2018, Volume 2 (Short 
Papers), pp 464–468

 20. Dai Z, Yang Z, Yang Y, Carbonell JG, Le QV, Salakhutdinov R (2019) 
Transformer-XL: Attentive language models beyond a fixed-length 
context. In: Korhonen A, Traum DR, Màrquez L (eds.) Proceedings of the 
57th Conference of the Association for Computational Linguistics, ACL 
2019, Florence, Italy, July 28- 2 Aug, 2019, Volume 1: Long Papers, pp 
2978–2988

 21. Ingraham J, Garg VK, Barzilay R, Jaakkola TS (2019) Generative models 
for graph-based protein design. In: Wallach HM, Larochelle H, Beyg-
elzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in Neural 
Information Processing Systems 32: Annual Conference on Neural 
Information Processing Systems 2019, NeurIPS 2019, 8–14 Dec 2019, 
Vancouver, BC, Canada, pp 15794–15805

 22. Huang Z, Liang D, Xu P, Xiang B (2020) Improve transformer models 
with better relative position embeddings. In: Cohn T, He Y, Liu Y (eds) 
Findings of the Association for Computational Linguistics: EMNLP 2020, 
Online Event, 16-20 Nov 2020, vol EMNLP 2020, pp 3327–3335

 23. Romero DW, Cordonnier J (2021) Group equivariant stand-alone 
self-attention for vision. In: 9th International Conference on Learning 
Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021

 24. Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2022) 
Transformers in vision: a survey. ACM computing Surveys (CSUR) 
54(10s):1–41

 25. Ke G, He D, Liu T-Y (2021) Rethinking positional encoding in language 
pre-training. In: International Conference on Learning Representations

 26. Chen L, Lu K, Rajeswaran A, Lee K, Grover A, Laskin M, Abbeel P, Srinivas 
A, Mordatch I (2021) Decision transformer: reinforcement learning via 
sequence modeling. Adv Neural Inform Process Syst 34:15084–15097

 27. Born J, Manica M (2023) Regression transformer enables concurrent 
sequence regression and generation for molecular language model-
ling. Nature Machine Intell 5(4):432–444

 28. Radford A, Narasimhan K, Salimans T, Sutskever I, et al (2018) Improving 
language understanding by generative pre-training

 29. Wang S, Guo Y, Wang Y, Sun H, Huang J (2019) SMILES-BERT: Large 
scale unsupervised pre-training for molecular property prediction. In: 

Proceedings of the 10th ACM International Conference on Bioinformat-
ics, Computational Biology and Health Informatics. BCB ’19

 30. Honda S, Shi S, Ueda HR (2019) Smiles transformer: Pre-trained molecu-
lar fingerprint for low data drug discovery. arXiv preprint arXiv: 1911. 
04738

 31. Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, 
Leswing K, Pande V (2018) Moleculenet: a benchmark for molecular 
machine learning. Chem Sci 9(2):513–530

 32. Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B, Wang Z, Shen C, Cao D, Wu 
J, Hou T (2021) Could graph neural networks learn better molecular 
representation for drug discovery? a comparison study of descriptor-
based and graph-based models. J Cheminfirm 13(1):1–23

 33. Robinson M, Glen R, Lee A (2020) Validating the validation: reanalyz-
ing a large-scale comparison of deep learning and machine learning 
models for bioactivity prediction. J Computer-Aided Mol Design 
34:717–730

 34. Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans 
H, Clevert D-A, Hochreiter S (2018) Large-scale comparison of machine 
learning methods for drug target prediction on chembl. Chem Sci 
9(24):5441–5451

 35. Klicpera J, Groß J, Günnemann S (2020) Directional message passing 
for molecular graphs. In: 8th International Conference on Learning 
Representations

 36. Shang C, Liu Q, Chen K-S, Sun J, Lu J, Yi J, Bi J (2018) Edge attention-
based multi-relational graph convolutional networks. arXiv preprint 
arXiv:  1802. 04944

 37. Veličković P (2023) Everything is connected: Graph neural networks. 
arXiv preprint arXiv: 2301. 08210

 38. Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter CA, Bekas C, Lee AA 
(2019) Molecular transformer: A model for uncertainty-calibrated 
chemical reaction prediction. ACS central science

 39. Weininger D (1988) Smiles, a chemical language and information 
system. 1. introduction to methodology and encoding rules. J Chem 
Inf Comput Sci 28(1):31–36

 40. Jastrzębski S, Leśniak D, Czarnecki WM (2016) Learning to smile (s). 
arXiv preprint arXiv: 1602. 06289

 41. Nguyen DQ, Nguyen TD, Phung D (2019) Unsupervised universal self-
attention network for graph classification. CoRR abs/1909.11855

 42. Choukroun Y, Wolf L (2022) Geometric transformer for end-to-end 
molecule properties prediction. In: Raedt LD (ed) Proceedings of the 
Thirty-First International Joint Conference on Artificial Intelligence, 
IJCAI 2022, Vienna, Austria, 23–29 July 2022, pp 2895–2901

 43. Wu F, Radev D, Li SZ (2023) Molformer: Motif-based transformer on 3d 
heterogeneous molecular graphs. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol 37, pp 5312–5320

 44. Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF (2017) Convolu-
tional embedding of attributed molecular graphs for physical property 
prediction. J Chem Inform Model 57(8):1757–1772

 45. Pocha A, Danel T, Podlewska S, Tabor J, Maziarka Ł (2021) Compari-
son of atom representations in graph neural networks for molecular 
property prediction. In: 2021 International Joint Conference on Neural 
Networks (IJCNN). IEEE, pp 1–8

 46. Lin Z, Feng M, dos Santos CN, Yu M, Xiang B, Zhou B, Bengio Y (2016) A 
structured self-attentive sentence embedding. In: International Confer-
ence on Learning Representations

 47. Landrum G (2016) Rdkit: Open-source cheminformatics software
 48. Li Y, Hsieh C-Y, Lu R, Gong X, Wang X, Li P, Liu S, Tian Y, Jiang D, Yan 

J et al (2022) An adaptive graph learning method for automated 
molecular interactions and properties predictions. Nature Machine 
Intell 4(7):645–651

 49. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, 
Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on 
graphs for learning molecular fingerprints. In: Cortes C, Lawrence ND, 
Lee DD, Sugiyama M, Garnett R (eds) Advances in Neural Information 
Processing Systems 28: Annual Conference on Neural Information 
Processing Systems 2015, 7–12 Dec 2015, Montreal, Quebec, Canada, 
pp 2224–2232

 50. Kipf TN, Welling M (2017) Semi-supervised classification with graph 
convolutional networks. In: International Conference on Learning 
Representations

http://arxiv.org/abs/2002.08264
http://arxiv.org/abs/2010.09885
http://arxiv.org/abs/2011.13230
http://arxiv.org/abs/1911.04738
http://arxiv.org/abs/1911.04738
http://arxiv.org/abs/1802.04944
http://arxiv.org/abs/2301.08210
http://arxiv.org/abs/1602.06289


Page 14 of 14Maziarka et al. Journal of Cheminformatics            (2024) 16:3 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 51. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular 
graph convolutions: moving beyond fingerprints. J Computer-aided 
Mol Design 30(8):595–608

 52. Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA (2014) Quantum 
chemistry structures and properties of 134 kilo molecules. Sci Data 
1(1):1–7

 53. Gaiński P, Maziarka Ł, Danel T, Jastrzebski S (2022) Huggingmolecules: 
An open-source library for transformer-based molecular property 
prediction (student abstract). In: Proceedings of the AAAI Conference 
on Artificial Intelligence, vol 36, pp 12949–12950

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Relative molecule self-attention transformer
	Abstract 
	Scientific contribution 
	Introduction
	Methods
	Background
	Transformers
	Molecular self-attention
	Relative positional encoding
	Successors

	Atom relation embedding
	Relative molecule self-attention
	Relative molecule self-attention transformer

	Results and discussion
	Small hyperparameter budget
	Large hyperparameter budget
	Large-scale experiments
	Exploring the design space of self-attention layer
	Closer comparison to molecule attention transformer
	Limitations

	Conclusions
	Anchor 22
	Acknowledgements
	References


