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Abstract 

With the increasingly more important role of machine learning (ML) models in chemical research, the need for putting 
a level of confidence to the model predictions naturally arises. Several methods for obtaining uncertainty estimates 
have been proposed in recent years but consensus on the evaluation of these have yet to be established and different 
studies on uncertainties generally uses different metrics to evaluate them. We compare three of the most popular val-
idation metrics (Spearman’s rank correlation coefficient, the negative log likelihood (NLL) and the miscalibration area) 
to the error-based calibration introduced by Levi et al. (Sensors 2022, 22, 5540). Importantly, metrics such as the nega-
tive log likelihood (NLL) and Spearman’s rank correlation coefficient bear little information in themselves. We therefore 
introduce reference values obtained through errors simulated directly from the uncertainty distribution. The different 
metrics target different properties and we show how to interpret them, but we generally find the best overall valida-
tion to be done based on the error-based calibration plot introduced by Levi et al. Finally, we illustrate the sensitivity 
of ranking-based methods (e.g. Spearman’s rank correlation coefficient) towards test set design by using the same toy 
model ferent test sets and obtaining vastly different metrics (0.05 vs. 0.65).

Introduction
Machine learning applied to the chemical sciences has 
proved itself an important new tool for chemists and in 
particular computational chemists. The reported test 
error in chemical regression tasks is often similar or 
lower than for more computational demanding tasks 
such as DFT, making it attractive for especially high-
throughput screening studies. For data driven methods 

such as machine learning there is a strong dependency 
on the training data distribution. With the vast and 
diverse nature of chemical space, a model with the same 
low error across chemical space is currently not realistic. 
Therefore, attention within the chemical machine learn-
ing community has lately turned towards quantifying the 
uncertainty on property predictions made by machine 
learning methods [1–7].

An important aspect of uncertainty quantification 
(UQ) methods is how to evaluate the performance of the 
uncertainty predictions made by a method. Here, it is rel-
evant to consider some of the typical applications of the 
uncertainty estimates. Machine learning models are often 
created to be employed in high-throughput screening 
studies where the goal is to end up with a few candidate 
molecules with high probability of being good at what-
ever they where optimized towards. For this application, 
focus will be on the low uncertainties being adequately 
described with a significantly lower expected error, 
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increasing the probability that predictions for the final 
candidates are correct. Another important application is 
sequential learning strategies such as Bayesian optimiza-
tion and active learning, where the uncertainty estimates 
in conjunction with the predicted property are used to 
guide the choice of the next pool of training molecules. 
Since the uncertainty estimate associated with a molecule 
is directly linked to its probability of being picked, here 
the priority would be a decent performance across the 
range of uncertainties, especially the large ones.

Several studies assessing the performance of different 
UQ methods exist, see e.g. [3, 4, 7, 8]. Such comparison 
studies are challenged by the fact that the true uncertain-
ties are generally not available. Rather the UQ methods 
are evaluated based on a single error-observation for 
each predicted uncertainty. Since no obvious evalua-
tion metric exists, different studies use different evalua-
tion metrics. Three of the popular evaluation metrics are 
Spearman’s rank correlation coefficient, the miscalibra-
tion area and the negative log likelihood (NLL). Some 
studies employing UQ estimates use all three evaluation 
metrics [3, 9] while some use one of them [8, 10, 11]. 
However, as pointed out by Hirschfeld et al. [3] in their 
benchmark study comparing a multitude of UQ methods 
on several datasets these three evaluation metrics do not 
necessarily agree on which UQ estimates are better.

Another option for evaluating the UQ estimates is 
based on the error-based calibration recently proposed 
by Levi et  al. [12]. While application of this metric has 
seen some adoption within UQ for molecular machine 
learning [4, 6], there has been no head-to-head compari-
son of the error-based calibration metric versus the three 
above-mentioned popular choices applied to chemical 
datasets. That is what we do here. Through examples 
using two different chemical datasets and three differ-
ent UQ methods (ensemble with random forest (RF), the 
latent space distance [1] and evidential regression [13]) 
we demonstrate the superiority of evaluating uncertainty 
estimates based on error-based calibration and point to 
the drawbacks of the three popular UQ evaluation met-
rics; Spearman’s rank correlation coefficient, the miscali-
bration area and the NLL.

Methods
Models
Model details are collected in the supporting informa-
tion, but here we present a short overview. We use a 
series of ML models to predict Crippen logP [14] from a 
recent study [15] combined with different UQ methods 
for obtaining uncertainty estimates. Here, we test two 
kinds of models: random forest (RF) trained on ECFP4 
fingerprints and graph convolutional neural networks 
(GCNNs). As RF models are ensemble models, there is 

an intrinsic uncertainty estimate given by the standard 
deviation ( σ ) of the tree predictions. Janet et al. suggested 
using latent space (LS) distances to quantify uncertainty 
when working with deep learning models [1], which we 
use as uncertainty estimates for the logP GCNN models.

In addition to the logP models, we train a series of 
models on a vertical ionization potential (IP) data set 
for transition metal complexes (TMCs) calculated using 
B3LYP published by Duan et al. [16]. For this data set we 
train two kinds of models: an evidential regression model 
recently developed [7, 13] and a simple feed forward NN 
where we again use the LS uncertainties for comparison.

Evaluation metrics
We start by briefly introducing the most popular evalu-
ation metrics, followed by a more in-depth discussion of 
each. The main assumption behind UQ is that the error 
( ε ) of the ML prediction ( yp ) is random and, therefore, 
follows a Gaussian distribution N  with standard devia-
tion σ.

Notice that this does not imply a strong correlation 
between ε and σ since individual random errors can 
fluctuate significantly. For example the Spearman rank 
correlation ( ρrank ) for 10 points, each randomly sam-
pled from a normal distribution with increasing stand-
ard deviations, shown in Fig.  1a is only 0.56. More fine 
grained sampling (Fig. 1b) leads to a ρrank of 0.55. As we 
will see in the results section, a more reasonable σ-range 
for uncertainty estimates on chemical data has the high-
est uncertainties roughly three times higher than the low-
est uncertainties. Looking at the σ-range of 0.5−1.5 (grey 
shaded area, Fig. 1b) leads to ρrank = 0.31.

Because of the poor correlation between individual 
errors and the standard deviation, researchers have 
explored other metrics for benchmarking the relation-
ship between uncertainty and errors. For example, if we 
instead plot the ratio of the random errors and the stand-
ard deviations ( |Z| = |ǫ|/σ ; Fig. 2) we see that their dis-
tribution (which is independent of σ ) follows a normal 
distribution with a standard deviation of 1. The extent to 
which the Z-distribution differs from the normal distri-
bution can be quantified by comparing their areas, and 
the difference is known as the miscalibration area ( Amis ; 
Additional file 1: Fig. S1). However, a systematic over and 
under estimation of the uncertainties at certain σ-ranges 
can lead to cancellation of errors and small values for 
Amis (Fig. 3).

The negative log likelihood (NLL) is a function of 
both σ and |Z| (Eqn. 4) and has also been used for UQ, 

(1)yp − y = ε ∼ N (0, σ 2)
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where lower values are considered better. However, 
a lower NLL does not necessarily mean better agree-
ment between uncertainties and errors as illustrated in 
Figs. 2 and 3a.

The only firm correlation between random error and 
uncertainty is that σ correlates with both the average 
absolute error and the root mean square error (RMSE).

Fig. 1 a Points: a single absolute error (AE) sampled from a normal distribution with standard deviation σ . x’s average absolute error (MAE) 
averaged over 100 points sampled from a normal distribution with standard deviation σ . The black dashed line is defined by |ε| = 

√
2/πσ 

coresponding to the MAE of a Gaussian error distribution with standard deviation σ . The Spearman rank correlation coefficient is 0.56 and 1.0 
for the dots and x’s, respectively. b Same as in (a) but in intervals of 0.01σ . The blue and orange lines are defined by |ε| = 2σ and |ε| = 3σ , 
respectively. The Spearman rank correlation coefficient is 0.55 and 0.99 for the dots and x’s, respectively

Fig. 2 Plot of |ε|/σ vs σ for the points shown in Fig 1b The blue and orange lines are defined by |Z| = |ε|/σ = 2 and |Z| = |ε|/σ = 3 , respectively. 
Though both the turquoise and green points are sampled from a normal distribution the NLL are different (2.33 and 3.39, respectively). Since 
the points are sampled from a normal distribution, the distribution of |Z| values also follow a normal distribution with a standard deviation of 1
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While n in principle refers to all errors, it also holds for 
a suitably large subset, as shown in Fig. 4, and is known 
as error-based calibration. As we will show in this paper, 
this is the superior metric for UQ validation. Below 

(2)�|ε|� =
1
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n
∑
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|y
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i − y| =
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follows a more detailed description of how each metric is 
calculated and its interpretation.

Spearman’s rank correlation coefficient ( ρrank ) 
identifies the ability of the uncertainty estimate to rank 
the observed errors from low to high. It is calculated 
by giving the list of uncertainties and the list of abso-
lute errors an integer corresponding to their magnitude 
i.e. the 10th lowest error gets the value 10. The normal 
Pearson’s correlation coefficient is then calculated for 
the two ranked lists consisting of integers. The idea 
in using ranking-based methods such as Spearman’s 
rank correlation coefficient to asses UQ quality is that 
a lower uncertainty will have a higher probability of 

Fig. 3 a Same as Fig. 2 expect that errors sampled from σ < 5 are scaled by 1.25 making the set of errors 25% too high compared 
to the uncertainties, σ . Similarly the errors for σ > 5 are scaled with a factor or 0.8 making these errors 20% too low based on their uncertainties. b 
The |Z| distribution for σ < 5 no longer follows a normal distribution with a standard deviation 1. This half of the |Z|-distribution has a miscalibration 
area of 0.07. c Similarly the |Z|-distribution for σ > 5 no longer follows a normal distribution resulting in a miscalibration area of 0.07 d However, 
the total |Z|-distribution still follows a normal distribution quite well with a close to zero miscalibration area due to cancellation of error 
between the problematic behavior of the uncertainties for σ < 5 and σ > 5

Fig. 4 a Demonstration of error-based calibration. Purple dots: simulated absolute errors (same as Fig. 1b). The errors are divided into bins (here 
five) according to their uncertainties. The RMSE and root mean variance (RMV) of each bin of errors is calculated (blue dots). For well-calibrated 
uncertainties (as here), the RMSE vs. RMV plot should follow a straight line with a slope of 1 and an intercept of 0. b Error-based calibration 
for the error-uncertainty distribution in Fig. 3a which were scaled to create a mismatch between errors and uncertainties. Unlike the miscalibration 
area, the error-based calibration metrics catch this mismatch and we see that both linear fit, slope and intercept gets worse
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low error compared to a higher uncertainty. However, 
perfect correlation ( ρrank = 1 ) should not be expected 
since a high uncertainty can still produce a low error.
ρrank does not take absolute magnitude of the uncer-

tainties into account. For two uncertainties of similar 
magnitude, there is close to 50% probability that the 
lower uncertainty will produce a higher error, so that the 
probability of the uncertainties being ranked “wrong” 
is high. That probability decreases with increasing dif-
ference in the uncertainties. Thus, the distribution of 
the uncertainties has a big impact on the ability to rank 
errors according to uncertainties and hence what magni-
tude of ρrank we should expect. Perhaps that also explains 
the differing interpretations of ρrank existing in the liter-
ature. Tynes et  al. found ρrank ranging between 0.2 and 
0.65 across tasks for their pairwise difference regression 
(PADRE) uncertainty estimates and used this as an indi-
cation that the uncertainty estimator is “a useful proxy 
for error across all tasks examined” [2]. Greenman et al. 
obtained ρrank = 0.52 for the ensemble variances and 
took this as suggesting that “one should not necessarily 
consider the rank order of the prediction uncertainties 
to be a good approximation of the rank ordering of the 
prediction errors” [17]. Hirschfeld et al. found ρrank rang-
ing between −0.17 and 0.34 for the lipophilicity data set 
when applying a range of UQ methods and concluded 
that “no method is able to perform particularly well” [3].

While a negative ρrank indicates a problem with ones 
uncertainties, having obtained a positive ρrank it is not 
clear from the number itself whether one should be 
alarmed or satisfied. To account for some of these draw-
backs, we introduce the simulated Spearman’s rank cor-
relation coefficient ( ρsim

rank ), where errors are randomly 
drawn from the predicted uncertainties (assuming 
Gaussian errors) and the ρsim

rank is calculated based on the 
simulated errors. Doing this a number of times (typically 
1000) we obtain an expected mean for the ρrank as well as 
a standard deviation. The value of ρsim

rank defines the value 
of ρrank one should get for the predicted uncertainty dis-
tribution. Problems can be identified by a big discrepancy 
between the simulated and observed values.

Confidence curves are another popular choice of met-
ric belonging to the ranking-based methods. The con-
fidence curve shows the change in test set error as data 
points are excluded based on the predicted uncertainty 
(highest uncertainty points excluded first). One would 
then expect a decreasing curve. The observed confidence 
curve is often compared with what one would get for an 
“oracle”, which represents the quite unrealistic scenario 
that the ranking of the errors and uncertainties are per-
fectly correlated (corresponding to ρrank = 1 ), mean-
ing that the uncertainty predictor is actually an error 
predictor. Here we will focus on ρrank to represent the 

ranking-based metrics but refer the reader to work by 
Pernot on the use of confidence curves for UQ validation, 
which was published while preparing this manuscript 
[18]. Similarly to how we propose the simulated ρrank as 
a reference to Spearman’s rank correlation coefficient, 
Pernot suggests changing the reference confidence curve 
from an “oracle” to a probabilistic one based on errors 
sampled from the predicted uncertainties assuming nor-
mally distributed errors (just like we do for ρsim

rank).
The miscalibration area ( Amis ) addresses the average 

calibration of the uncertainty estimates; is the observed 
distribution of errors consistent with what would be 
expected from the predicted uncertainty distribution? 
The miscalibration area is found by calculating the cali-
bration curve, which plots the observed fraction of errors 
vs. the expected fraction of errors. This is done assum-
ing the predicted uncertainties to describe a Gaussian 
error distribution. The errors are expressed in terms of 
Z-scores ( Zi =

εi
σi

 ) describing the error, εi , as a fraction 
of its predicted uncertainty, σi . Assuming the uncertain-
ties are correct and the errors are Gaussian, the distribu-
tion of Z-scores should represent a Gaussian distribution 
with variance=1. Therefore at |Z| > 3 we expect to see a 
fraction of 0.003 of the errors, at |Z| > 2 we expect to see 
0.045 of the errors and so on. Scanning through |Z| > x 
until x = 0 and plotting the observed vs. expected frac-
tion of Z-scores results in the calibration curve (see 
Additional file  1: Section S1 for more details). Perfect 
calibration results in a diagonal line and the miscalibra-
tion area is the area between the calibration curve and 
the diagonal line.

Since the miscalibration metric assesses average cali-
bration it bears no local information. Therefore one can 
have zero miscalibration area (perfect average calibra-
tion) even though e.g. low uncertainties are badly cali-
brated if the bad local calibration is cancelled by another 
(opposite) bad calibration at e.g. high uncertainties. 
Another important aspect of the miscalibration area is 
the assumption of normal errors. As highlighted by Per-
not, such assumptions adds a fragility to the metric, since 
a non-zero miscalibration area can be interpreted as both 
a sign that the uncertainties are not calibrated or that the 
assumption of normal errors was wrong [5]. As an alter-
native, Pernot suggests the Var(Z) ?

= 1 test which makes 
no assumption on the error distribution. The test consists 
of calculating a 95% confidence interval of Var(Z) using 
bootstrap methods and checking whether 1 is part of the 
interval. For the confidence intervals, we use the BCa 
method [19] as implemented in SciPy [20].

The negative log likelihood (NLL) can be used both 
as a loss function to minimize during training as well as 
a metric to evaluate the model fitness. When calculating 
likelihood one assumes the predicted variances ( σ 2

i  ) to 
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describe a Gaussian distribution of errors and multiplies 
the value of the probability distribution function for the 
observed errors ( εi ). The average NLL for the test set is 
then:

Given the same error distribution ({ǫi }) but two differ-
ent predicted uncertainty distributions, the uncertainties 
more likely to have resulted in the observed errors will 
have a lower NLL. However, in the context of chemical 
ML models, the way of obtaining property predictions 
(and hence errors) and the way of obtaining uncertainties 
typically go hand in hand. Therefore, the error distribu-
tions are typically not the same and we are not strictly 
comparing the uncertainties but also the accuracies of 
the models. Since higher accuracy generally leads to 
lower NLL, we can easily have two models with the more 
accurate model having obtained a lower NLL but still 
having completely random uncertainties. Another issue 
with the NLL is that it really only makes sense when com-
paring models; the number in itself is basically meaning-
less. For a collection of models with similar NLL it is not 
obvious whether all models perform very good, decent or 
horrible. Again, to account for some of these drawbacks, 
we introduce the simulated NLL, where errors are ran-
domly drawn from the predicted uncertainties (assum-
ing Gaussian errors) and the NLLsim is calculated based 
on the simulated errors. As for ρsim

rank , we do this a num-
ber of times (typically 1000) to obtain an expected mean 
for the NLL as well as a standard deviation. Discrepancy 
between simulated and observed NLL hints to a problem 
with the uncertainties.

Error-based calibration was originally suggested as 
an UQ validation metric by Levi et al. [12] and is based 

(4)NLL =
1

2Ntest

Ntest
∑

i

(

ln(2π)+ ln(σ 2
i )+

ǫ2i

σ 2
i

)

on the expected one-to-one relationship between the 
root mean square error (RMSE) for the observed errors 
and the root mean variance (RMV). In order to get local 
information about the relation between errors and uncer-
tainties, the errors and uncertainties are ordered and 
binned according to their predicted uncertainty. For each 
bin, consisting of Nbin samples, the RMSE and RMV is 
calculated:

Plotting RMSE vs. RMV should then produce a linear 
plot with slope 1 and intercept 0. As suggested by Pernot 
we add 95% confidence intervals to the binned RMSE val-
ues calculated by the BCa bootstrap method [5].

Results
We demonstrate the performance and interplay of the 
above described UQ validation metrics on two regres-
sion tasks; the Crippen logP [14] and the vertical IP for 
transition metal complexes (TMCs) recently published 
by Duan et al. [16].

Crippen logP
In a recent publication [15] we trained 9 random forest 
(RF) models on varying training set sizes (from 100 to 
150k data points) and used them to show Crippen logP as 
a useful benchmark for atom attributions within explain-
able AI (XAI) on regression tasks. Since RF models have 
easily obtainable uncertainty estimates in the form of 
the variance of individual tree predictions, we reuse the 
models here to test the performance of the uncertainty 
estimates. The data set used to train the models is a 250k 

(5)

RMSE =

√

1

Nbin
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i

ǫ2i

RMV =
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1

Nbin

∑

i

σ 2
i

Table 1 RMSE and UQ evaluation metrics for the 9 RF models trained on Crippen’s logP from [15]. The simulated values, NLLsim and 
ρsim

rank
 is the average of 1000 simulated sets of test errors based on the predicted uncertainties. The number in parenthesis is the 

standard deviation of the 1000 values

Ntrain RMSE R
2 a b ρrank ρ

sim

rank
Amis NLL NLLsim

100 1.29 0.84 0.62 0.62 0.11 0.19 (0.01) 0.05 1.73 1.46 (0.01)

500 1.09 0.85 0.64 0.45 0.11 0.19 (0.01) 0.03 1.51 1.39 (0.01)

1000 1.01 0.85 0.55 0.45 0.10 0.19 (0.01) 0.00 1.42 1.40 (0.01)

5000 0.93 0.81 0.57 0.42 0.10 0.18 (0.01) 0.01 1.35 1.29 (0.01)

10,000 0.90 0.82 0.58 0.40 0.11 0.19 (0.01) 0.01 1.32 1.24 (0.01)

20,000 0.86 0.86 0.58 0.37 0.11 0.18 (0.01) 0.01 1.26 1.21 (0.01)

50,000 0.81 0.88 0.61 0.31 0.11 0.19 (0.01) 0.00 1.19 1.16 (0.01)

100,000 0.77 0.85 0.67 0.26 0.13 0.20 (0.01) 0.00 1.15 1.12 (0.01)

150,000 0.75 0.91 0.69 0.23 0.14 0.21 (0.01) 0.01 1.11 1.09 (0.01)
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molecules subset of the ZINC data base which has been 
used in several studies [15, 21–24].

Table  1 shows the test set (consisting of 5000 mol-
ecules) RMSE for the nine RF models with increasing 
training set size. The predictive performance clearly 
increases with more training data. Table  1 summarizes 
the UQ validation metrics described above for the RF 
models evaluated on the test set. The error-based cali-
bration is quantified by three measures from the linear 
fit of RMSE vs. RMV; the quality of the linear fit through 
the R2 value, the slope (a) and the intercept (b). Ideally 
these values should be 1, 1, and 0. The corresponding 
error-based calibration plots are shown in Fig.  5. Three 
observations are true for all models: the linear fit is 
decent ( R2 values between 0.81 and 0.91), the slope is too 
low (between 0.55 and 0.69) and the intercept is too high 
(intercept decreases from 0.62 for the Ntrain = 100 model 
to 0.23 for the Ntrain = 150k model). Both R2-value, slope 
and intercept is closest to the ideal value for the model 
trained on 150k samples but only for the intercept we 

see a gradual improvement as the training set size is 
increased. For the two models trained on the least train-
ing data ( Ntrain = 100 and Ntrain = 500 ), the RMSE bins 
generally lie above the expected identically line. This 
means that the observed errors are generally higher than 
what would be expected based on the predicted uncer-
tainties and thus the uncertainties are underestimated. 
For the remaining models we observe a trend of low 
uncertainties being underestimated (RMSE bins above 
identity line) and high uncertainties being overestimated 
(RMSE bins below the identity line).

All nine models show a bad agreement between 
ρrank and ρsim

rank ; the correlation between uncer-
tainty and error is worse than expected for all models 
( ρrank < ρsim

rank ). This is indeed what we would expect 
based on the error-based calibration plots; the lower-
than-one slope for the error-based calibration indicates 
that the difference between predicted low and high 
uncertainties is too large. As ρsim

rank is based on the pre-
dicted uncertainty distribution, it will return a higher 

Fig. 5 Error-based calibration plots for the uncertainties based on the nine RF models trained to predict Crippen logP. Each bin contains 250 
of the test samples
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number when the uncertainty distribution is predicted 
to be wider than what is supported by the errors.

Clearly all models have problems with local miscali-
bration (either under- or overestimated uncertainties). 
However, since the miscalibration area, Amis , evalu-
ates average calibration (assuming Gaussian errors) 
only the general miscalibration of the two models with 
Ntrain = 100 and Ntrain = 500 is caught (Table  1). The 
remaining seven models show close to perfect miscali-
bration areas. From the error-based calibration plots 
(Fig.  5) we see that the zero miscalibration area stems 
from a cancellation of the local miscalibrations: the 
under- and overestimated uncertainties cancel in the 
calculation of Amis.

The NLL (both observed and simulated) decreases with 
increasing amount of training data. The trend in NLLsim 
is solely due to how the predicted uncertainty distribu-
tion changes since it does not depend on the observed 
errors. More accurate models means on average lower 
error and should be accompanied by smaller uncertain-
ties which would result in lower NLL; this is the trend 
we observe in the NLLsim . For many of the models, the 
observed NLL is in decent agreement with NLLsim , i.e. 
we can not say that uncertainties and errors fit better for 
the model trained on 150,000 molecules compared to the 
model trained on 1000 since both have NLL ≈ 2 standard 
deviations from NLLsim . For some (especially the models 
trained on 100 and 500 training samples), there is a big 
discrepancy between NLL and NLLsim which points to a 
problematic behaviour of the predicted uncertainties. In 
particular, the observed NLL is much higher than NLLsim 
indicating that the errors are generally higher than 
expected so the uncertainties are underestimated; we see 
this behavior clearly in the error-based calibration plots 
for Ntrain = 100 and Ntrain = 500 in Fig. 5.

The low ρrank observed for all models could lead one 
to conclude that the uncertainties are useless in distin-
guishing high from low error. However, we do see an on 
average lower error for low uncertainties and likewise a 
higher error for high uncertainties. For the 150k model 
there is close to a factor 2 in difference between the 
lowest uncertainty bin and the highest uncertainty bin, 

meaning that the probability of getting a high/low error is 
indeed higher for a high/low uncertainty.

As suggested by Pernot [5], we also use the Var(Z) 
?
= 1 and the µ(Z) ?

= 0 test to check for average calibra-
tion and bias, respectively. The results for the RF mod-
els are summarized in Additional file  1: Table  S6 and 
analyzed in Additional file 1: Section S5. In short, these 
tests also reveal problems with average calibration for the 
Ntrain = 100 and Ntrain = 500 models and these models 
are also seen to be biased (a tendency of overshooting the 
logP value). The remaining models are generally closer 
to being average calibrated but only the Ntrain = 1000 
model as well as the two models with most training data 
( Ntrain = 100 k and Ntrain = 150 k) pass the test for being 
average calibrated. This is contrary to the conclusions 
drawn based on the miscalibration area, Amis (Table  1) 
highlighting how even evaluation metrics targeting the 
same property of the uncertainties can lead to different 
conclusions.

We now turn to latent space uncertainties [1] from 
GCNN models, also trained on Crippen’s logP. We train 
two GCNN models; one with a training set with 10k data 
points (9k for training and 1k for validation) and one 
trained with 150k data points (145k for training and 5k 
for validation). Note that the model trained with 150k 
data points was published as part of the above mentioned 
study [15]. The 10k and 150k data sets are the same as 
was used for the RF models above.

The change in model from RF/ECFP4 to GCNN results 
in a significantly lower test set error: 0.28 for 10k and 
0.16 for 150k. For the uncertainties, we test two ver-
sions of the latent space (LS). The GCNN consists of a 
graph convolutional network (GCN) ending in a pooling 
layer resulting in a vector representation of the molecule 
which is followed by a fully connected neural network 
(NN) ending in a prediction. LS-NN represents uncer-
tainties based on the last layer of the NN and LS-GCN 
represents uncertainties based on the learned molecular 
feature vector. The latent space uncertainties are derived 
from the average distance in latent space of a test data 
point to the k nearest neighbors in the training set. We 
use k = 10 throughout this work.

Table 2 UQ evaluation metrics for the latent space uncertainties of a GCNN model trained on 9k+1k data points of Crippen’s logP. For 
NN uncertainties, the latent space used is the very last layer of the NN. For GCN uncertainties, the latent space is the vector right after 
the pooling layer (LS-GCN)

LS R
2 a b ρrank ρ

sim

rank
Amis NLL NLLsim

NN10k 0.31 1.12 – 0.05 – 0.04 0.07 (0.01) 0.07 0.14 0.17 (0.01)

NN150k 0.91 1.20 – 0.03 0.17 0.24 (0.01) 0.03 – 0.50 – 0.51 (0.01)

GCN10k 0.24 0.65 0.09 – 0.02 0.11 (0.01) 0.07 0.14 0.18 (0.01)

GCN150k 0.85 1.85 – 0.13 0.23 0.13 (0.01) 0.05 – 0.46 – 0.45 (0.01)
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The UQ evaluation metrics for the LS-NN uncer-
tainties and LS-GCN uncertainties including linear fit 
parameters for the error-based calibration are summa-
rized in Table  2. From the error-based calibration plots 
(Fig. 6 for the LS-NN uncertainties and Fig. 7 for th LS-
GCN uncertainties) we notice the very poor quality of 
the linear fit for the 9k+1k model using either LS-NN 
uncertainties ( R2 = 0.31 ) or LS-GCN uncertainties 
( R2 = 0.24 ). Thus, while e.g. LS-NN uncertainties with 
a 10k training set show close to optimal slope (1.12) and 
intercept ( −0.05), from the error-based calibration plots, 
we see that the 10k uncertainty estimates by no means 
follow the expected diagonal line (Figs.  6a and 7a). For 
the uncertainty bins with RMV < 0.34 the RMSE-RMV 
correlation seems quite random; for the LS-NN uncer-
tainties there even seems to be a negative correlation for 
the lower half of the uncertainties. These observations 

are in agreement with the close to zero Spearman’s rank 
correlation coefficients observed for these uncertainty 
estimates (Table  2) suggesting no correlation between 
error and predicted uncertainty. This phenomenon of 
zero ρrank is not uncommon; Hirschfeld et  al. observed 
ρrank values close to zero or negative for a significant 
part of the tested UQ methods [3]. The simulated ρsim

rank 
is also quite low for the 9k+1k model using either LS-NN 
(0.07±0.01) or LS-GCN (0.11±0.01) uncertainties, though 
still significantly higher than the observed coefficient 
pointing to a rather narrow distribution of predicted 
uncertainties but also some problem with the uncertain-
ties, which is obvious from the error-calibration plots. 
Thus, based on Spearman’s rank correlation coefficient 
we would deem these uncertainty estimates completely 
useless. While it is obvious that we should not use these 
uncertainty estimates as a way of pointing to samples 

Fig. 6 Error-based calibration plots for the LS-NN uncertainties based on a GCNN model with a 9k+1k training set consisting of Crippen’s logP 
training data as well as the GCNN model trained on 145k+5k samples. Each bin contains 250 of the test samples. a  NN10k ρrank = −0.04 b  NN150k 
ρrank = 0.17

Fig. 7 Error-based calibration plots for the LS-GCN uncertainties based on a GCNN model with a 9k+1k training set consisting of Crippen’s logP 
training data as well as the GCNN model trained on 145k+5k samples. Each bin contains 250 of the test samples. a  GCN10k ρrank = −0.02 b 
GCN150k ρrank = 0.23
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with increased probability of low error, we see that the 
very highest uncertainties can be used as a predictor for 
a higher probability of high error; a detail lost by looking 
at a single-valued metric such as a correlation coefficient.

The performance of the uncertainty estimates changes 
completely for the model with 145k+5k training samples. 
The LS-NN150k uncertainties show a much better linear 
correlation ( R2 = 0.91 ) and the RMSE bins are distrib-
uted around the expected diagonal (Fig. 6b).

We also see a widening of the predicted uncertainty 
distribution e.g. a bigger difference between the high and 
low uncertainties in terms of model RMSE which fits well 
with the increased ρsim

rank (0.24±0.01). While the observed 
ρrank also increases significantly compared to the Ntrain =

10k model ( ρrank = 0.17 ), there is still a discrepancy 
between observed and simulated ρrank . From the error-
based calibration plot (Fig.  6b) this seems to originate 
from a lack of ordering within the very lowest predicted 
uncertainties.

The quality of the linear fit is also higher for the LS-
GCN150k uncertainty estimates ( R2 = 0.85 ) but now 
with a slope almost twice as steep as the ideal. For the 
low uncertainties we see that the corresponding error 
is generally lower than expected from the uncertainty 
estimates; these uncertainties are overestimated. For the 
high uncertainties, we observe errors higher than what 
is expected from the uncertainty estimates; these errors 
are underestimated. This behavior of the uncertainty esti-
mates is also apparent when comparing ρrank with ρsim

rank . 
Unlike all other uncertainty estimates we have seen so 
far, the LS-GCN150k uncertainties have a higher observed 
ρrank than its simulated ρsim

rank . As discussed for the RF 
uncertainties above, a predicted uncertainty distribu-
tion that is wider than what is supported by the observed 
errors, will result in a simulated Spearman’s rank correla-
tion coefficient that is higher than the observed one. Sim-
ilarly, a predicted uncertainty distribution that is more 
narrow than what fits the observed errors (as is the case 
here) would lead to a simulated Spearman’s rank correla-
tion coefficient that is lower than the observed one.

Based on the Amis values, the average calibration is gen-
erally worse for the latent space uncertainties compared 
to the RF uncertainties (most severe for the model with 
Ntrain = 10k). However, as described in the supporting 
information, if evaluating average calibration with the 
Var(Z) ?

= 1 test, the uncertainties from the Ntrain = 150 k 
model both pass (Additional file 1: Table S7).

The lower RMSE for the model with 150k training 
samples is also apparent in the NLL which decreases 
(both observed and simulated) compared to the 
Ntrain = 10 k model. Since for each of the two models 
( Ntrain = 10 k and Ntrain = 150 k) we have two sets of 
predicted uncertainties; LS-NN i  and LS-GCN i  , this is 

a case where the error distribution is constant and dif-
ferences in NLL between LS-NN i  and LS-GCN i  can be 
ascribed to performance of the uncertainties. For the 
Ntrain = 10 k model there is no difference in the NLL 
between LS-NN and LS-GCN uncertainties but the 
LS-NN150k uncertainties show a better model fit than 
the uncertainties from LS-GCN150k (NLL of −0.50 vs. −
0.46, Table 2). This is in line with the conclusions drawn 
from the error-based calibration plots but opposite of 
a conclusion drawn solely based on which has a higher 
ρrank . The agreement between the observed and simu-
lated NLL is decent and there is no clear trend that the 
observed NLL is either higher or lower than the simu-
lated NLL. Thus, no further conclusions can be made 
from the NLL test.

We now investigate the LS-GCN150k uncertainties a 
bit further. In the latent space uncertainty procedure 
proposed by Janet et  al. [1], the latent space distances 
(d) are converted to uncertainties through a linear 
relationship:

The parameters θ0 and θ1 are found by minimizing the 
NLL for the validation set. However, it seems that in 
this case the fitting procedure forces the uncertainties to 
span a too narrow range, resulting in the systematic local 
mis-calibrations observed in the error-based calibra-
tion plot (Fig. 7b). We test a slightly more flexible fitting 
procedure:

The only difference is the possibility of a negative offset 
to the linear relationship. As this change can in principle 
lead to negative uncertainties, which is clearly unphysi-
cal, we set V (d) = 0.0001 if V (d) < 0.

The error-based calibration plot for the LS-GCN150k 
uncertainties fitted with Eqn.  7 is shown in Fig.  8. 
The local calibration is clearly much better (a simi-
lar re-calibration could have been performed for the 
RF uncertainties) and the NLL is lowered to −0.48 
(NLLsim = −0.46± 0.01 ). While the ρrank does not 
change when doing a linear re-calibration, the simu-
lated one is now in agreement with the observed 
( ρrank = 0.23 vs. ρsim

rank = 0.24 ± 0.01 ) due to the more 
accurate uncertainty distribution. The average calibra-
tion metrics are practically unchanged (both Amis and 
the Z-metrics).

Uncertainties behaving like the LS uncertainties 
obtained from the GCNN model with 10k logP train-
ing samples should be used with caution and the 
error-based calibration plots reveal the details neces-
sary to do just that. To test whether the problematic 

(6)V (d) = θ20 + θ21 · d

(7)V (d) = θ0 + θ21 · d
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uncertainties obtained for the 10k dataset were due 
to a “bad” selection of training samples, we repeat the 
analysis for four models trained on different 10k sets 
of Crippen’s logP values. Results are in the supporting 
information (Additional file  1: Tables S11 and  S7 and 
Figs. S3 and S4) but are generally similar to what is pre-
sented above.

Vertical IP
In this section we will use a data set more representative 
of a typical ML dataset within chemical machine learn-
ing. Duan et  al. recently published a data set of verti-
cal ionization potential (IP) calculations for transition 
metal complexes (TMCs) with a range of different DFT 
functionals [16]. The RAC-155 features developed by 
the Kulik group [25] are used to represent the transi-
tion metal complexes (TMCs) from which a ML model 
for each functional is trained and used to obtain consen-
sus predictions. Here, we exemplify the use of the above 
described evaluation metrics by training some simple 
feed-forward NNs in PyTorch [26] on the B3LYP data set 

(see SI for model details). We train five simple feed-for-
ward NNs as well as five evidential NNs following Amini 
et al. [13] and Soleimany et al. [7]. The evidential NN is 
designed to predict four parameters ( γ , ν,α and β ) for 
each data sample defining an evidential distribution from 
which a mean prediction as well as predictions for both 
aleatoric and epistemic uncertainty can be obtained (see 
Additional file 1: Section S2 for details).

Five different models are trained with different random 
splits (train_test_split from scikit-learn [27] with dif-
ferent random states) of the training data into training 
(80%) and validation (20%) sets. The test set RMSE ranges 
between 0.55−0.65 eV (Additional file 1: Table S12). Here 
we focus on a single set of uncertainties (for the model 
trained with random seed 42), but results for the remain-
ing models can be found in the supporting information.

As has been the case in other studies comparing uncer-
tainty evaluation metrics across different models and 
data sets, the observed magnitude of the evaluation met-
rics change from what we observed for the logP dataset 
(Tables 3 and Additional file 1: S13). While the linear fit 

Fig. 8 Error-based calibration plot for the LS-GCN150k uncertainties fitted with Eqn. 7 instead of Eqn. 6. Each bin contains 250 samples of the test set

Table 3 EA: UQ evaluation metrics for the evidential uncertainties of an evidential NN model trained on the vertical IP dataset. LS flex: 
UQ evaluation metrics for the LS flex uncertainties of one of the five feed forward NN models trained with different random splits of 
the vertical IP training data. Random seed 42 is used in both cases

UQ R
2 a b (eV) ρrank ρ

sim

rank
Amis NLL NLLsim

EV 0.83 0.27 0.35 0.41 0.56(0.05) 0.07 0.90 0.89(0.04)

LS flex 0.74 0.85 0.06 0.22 0.27(0.06) 0.02 0.87 0.90(0.04)
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for the RMSE/RMV correlation is decent ( R2 = 0.83 ), the 
observed slope of 0.27 is much too low and the intercept 
of 0.35 eV too high. Again we turn to the error-based cal-
ibration plots with bootstrapped 95% confidence inter-
vals to get some more insight into the performance of the 
uncertainty estimates (Fig.  9). The lower uncertainties 
are quite well-calibrated, but the higher uncertainties are 
greatly overestimated.

The Spearman’s rank correlation coefficient 
( ρrank = 0.41 ) is higher than what we observed for any of 
the uncertainty estimates for the logP data. Meanwhile, 
ρsim
rank is also much higher ( ρsim

rank = 0.56± 0.05 ) reflecting 
the uncertainty distribution being much wider in terms 
of the model RMSE. The fact that the simulated value 
is higher than the observed one, makes sense based on 
the error-based calibration plots; the difference in RMSE 
between high and low uncertainty points is not at all as 
big as expected from the uncertainty estimates, since 
the high uncertainty points are severely overestimated. 
This is an example of an uncertainty estimate with good 
performance for low uncertainties, while the magnitude 
of the uncertainties becomes questionable in the >1eV 
range.

The miscalibration area ( Amis ) is in the higher range of 
what we have observed so far. The Amis metric is based 
on the assumption that the distribution of Z-errors (that 
is errors in fractions of the corresponding uncertainty) 
is Gaussian distributed (width=1). Figure  9b shows the 
Z-distribution for the errors/uncertainties of this model, 
which clearly does not follow the Gaussian distribution. 
Note however, that according to the Var(Z) ?

= 1 test, 
these uncertainties are accepted as being average cali-
brated ( 〈 Var(Z)� = 1.03 , Additional file 1: Table S8)).

Since the optimum values of both NLL and Spearman’s 
rank correlation coefficient are highly dependent on the 
nature of the test set and model itself (which defines the 
test set uncertainty and error distributions), the informa-
tion that can be gained from these metrics in themselves 
is limited. This highlights the need for suitable refer-
ence values (NLLsim and ρsim

rank ). However, in this case the 
observed NLL is within one standard deviation of the 
simulated value and does imply any problem with the 
uncertainties.

Again, the by far most informative metrics on the 
uncertainties were based on the error-based calibration 
plots.

Error‑based re‑calibration
An option to get better calibrated errors for the eviden-
tial epistemic uncertainties is to tune the hyperparam-
eter, � . � is a parameter in the evidential loss function 
determining to what degree it should be prioritized that 
evidence is lowered for high-error points during train-
ing (see Additional file 1: Section S2 or Amini et al. [13] 
for details on the evidential loss function). As an exam-
ple, results for � = 0.1 is presented in section S3, but for 
a more detailed analysis of the effect of � for evidential 
models see [28]. Another option is to re-calibrate the 
uncertainties post training. A popular approach for such 
re-calibration is a linear re-calibration where the linear 
parameters are determined by minimizing the NLL on 
the uncertainties+errors (under assumption of Gauss-
ian errors) of the validation set. This approach was used 
for the latent space uncertainties and has been applied 
in several UQ studies [1, 3, 6, 12]. We propose another 

Fig. 9 a Error-based calibration plot for the epistemic evidential uncertainties one of the vertical IP models. b Distribution of errors 
according to their Z-value for the model split with random seed = 42 compared with a Gaussian distribution of width 1. Error-bars are 
Poisson.We see that the non-zero miscalibration area is mostly caused by an increased number of low errors compared to what is expected 
from the uncertainty-distribution. This is also clear from the error-based calibration plot, where we observe that it is the errors for the high 
uncertainties that are significantly lower than what is expected from the corresponding uncertainties, i.e. these uncertainties are overestimated
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simple option, that does not assume Gaussian errors, 
which is to simply use the fitted slope and intercept from 
a RMSE/RMV plot of the validation set to re-calibrate the 
uncertainties according to:

As this is also a linear re-calibration, we will only get 
good calibrated uncertainties, if there is a strong linear 
correlation between RMSE and RMV. Figure  10 shows 
an example of the error-calibration plot before and after 
re-calibration according to the validation set following 
Eqn. 8 for one of the models with � = 0.1 (random seed = 
19 for the training data split). After the re-calibration, the 
RMSE vs RMV plot is in agreement with perfect error-
based calibration (all 95% confidence intervals of the 
RMSE bins overlap the identity line).

For comparison, we also train some simple feed for-
ward NNs with the same training-validation splits as 
for the evidential models, and analyse the LS uncertain-
ties (details on model architecture in Additional file  1). 
The RMSE is similar to that of the evidential models 

(8)σcal = slopeval · σ + interceptval

(Additional file  1: Table  S14). The uncertainty distribu-
tion fitted with Eqn.  6 have similar problematic behav-
iour as we observed for the LS-GCN150k uncertainties for 
the logP regression models (e.g. ρrank > ρsim

rank and slopes 
generally too high, see Additional file  1: Section  S4). 
Here, we focus on the uncertainties fitted with the more 
flexible linear relationship (Eqn.  7) with UQ evaluation 
metrics are summarized in Table 3.

In this case, the linear fit is decent but not great ( R2

=0.74). Note that some of the models with different train/
validation splits show much better linear correlation with 
R2-values of 0.96 and 0.97 (Additional file 1: Fig. S6). The 
slope and intercept are both pretty good (close to 1 and 
0, respectively and from the error-based calibration plots 
(Figs. 11a and Additional file 1: Fig. S6) we do generally 
see good local calibration. In particular, unlike most of 
the uncertainty estimates analyzed above, we do not see 
systematic over or underestimated uncertainties. This is 
also reflected in the Spearman’s rank correlation coeffi-
cient ( ρrank = 0.22 ) which is in good agreement with the 
simulated value ( ρsim

rank = 0.27± 0.06).

Fig. 10 Before and after re-calibration of the model with training data split into training and validation set with random seed = 19 and � = 0.1

Fig. 11 a Error-based calibration plot for the LS uncertainties (fitted with Eqn. 7) of one of the five vertical IP models. b Distribution of errors 
according to their Z-value for the model split with random seed = 42 compared with a Gaussian distribution of width 1. Error-bars are Poisson
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The miscalibration area is significantly lower than for 
the evidential uncertainties (0.02 vs 0.07). The Var(Z) ?

= 1 
test is also in agreement with average calibration. Com-
paring the Z-distribution from the random seed = 42 
models (Figs. 9b and 11b), we see that in this case the LS 
Z-errors are in much better agreement with a Gaussian 
distribution. This explains the better agreement between 
Var(Z) and Amis since Amis is based on the assumption 
that errors are Gaussian. Again, the NLL is within one 
standard deviation of the simulated value, consistent with 
good overall uncertainties.

One can easily imagine a situation like this, where two 
models perform similarly based on the test set RMSE, but 
very differently w.r.t the uncertainty-error distribution. 
Which model to choose then depends on a consideration 
of the intended application. If the goal is to get a sample 
of predictions with as low error as possible, one might 
choose a model with uncertainties performing similarly 
to those in Fig.  9a even if it shows bad calibration for 
higher uncertainties. If one is looking for a more “general 
purpose” uncertainty estimator one might go with some-
thing like those showed in Fig. 11a.

Design of the test set
From the above examples, it should be apparent that 
the distribution of test set uncertainties is a key factor 
determining what we can expect from the UQ validation 
metrics. Especially ranking-based UQ validation metrics 
are sensitive to the uncertainty distribution, e.g. for the 
models presented here we observed ρsim

rank values ranging 
between 0.04 (practically no correlation expected) and 
0.57. A high ρrank is only possible if the test set uncer-
tainties are well separated (wide distribution). In other 
words, there should be a big difference in the model 
performance across different parts of the test set. Thus, 

if one wants to be able to test the ability of the UQ esti-
mates to distinguish between very high and very low 
uncertainty predictions, it is important to think about 
the design on the test set. Many ML models in chemical 
research are still trained and tested based on a random 
split of some data set. Assuming a relatively homogene-
ous data set we should not expect an especially big dif-
ference in model performance across the test set. How to 
design training and test set in order to test e.g. the ability 
of the model to generalize is subject to increasing atten-
tion in the chemical ML literature and we expect similar 
considerations on test set design for UQ validation to be 
important going forward.

Here, we illustrate the effect of how the test set is 
designed on a ranking-based method such as ρrank 
through a simple toy example introduced in the origi-
nal deep evidential regression paper by Amini et  al. 
[13]. Amini et  al. tested the performance of their epis-
temic evidential uncertainties by training a model on 
y = x3 + ǫ , with ǫ drawn from a Gaussian error distri-
bution with standard deviation 3 representing the alea-
toric uncertainty. They train the evidential model in the 
range Xtrain ∈ [−4; 4] but test in the range Xtest ∈ [−6; 6] 
resulting in a very convincing plot (Fig. 3 in [13]) show-
ing how the uncertainty (and error) increases out-
side the training interval, where the model is forced to 
extrapolate.

Similarly, we train a model with Xtrain ∈ [−4; 4] but 
use the same model on two different test sets; one with 
samples drawn within the training set range [-4;4] and 
one with samples drawn in the range [-6;6] as in the 
original study where 1/3 of the test samples are outside 
of the training set interval. Figure  12 illustrates the dif-
ferent situations and are accompanied by the corre-
sponding Spearman’s rank correlation coefficients (0.05 

Fig. 12 Results for model trained on 50,000 samples ( Xtrain ∈ [−4, 4] ). The shaded area represents the epistemic uncertainty. a test set of 1000 
samples uniformly sampled from Xtest ∈ [−4; 4] , ρsim

rank
 = 0.27±0.03, b test set of 1000 samples uniformly sampled from Xtest ∈ [−6; 6] ρsim

rank
 = 

0.65±0.02
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vs 0.65). Note that while ρsim
rank = 0.65± 0.02 is in good 

agreement for the test set containing out-of-distribu-
tion (OOD) samples, that is not the case for the test set 
within the training distribution ( ρsim

rank = 0.27± 0.03 ) 
which indicates that the uncertainties within the train-
ing distribution but close to the border are overesti-
mated. This clearly illustrates the effect of how the test 
set is designed on ranking-based metrics; if we want to 
test the UQ method’s ability to distinguish between high 
and low uncertainty prediction we have to design the test 
set accordingly. Another point should also be noted here; 
a method for testing the ability of a model to generalize 
is to compare model error for an in-distribution test set 
with an OOD test set. Success is in this scenario as lit-
tle difference in test error/model accuracy as possible. 
However, for uncertainty predictions we should expect 
a change in the ranking-based metrics as we add OOD 
data points to the test set.

Conclusions and outlook
The ability to assign confidence to predictions is becom-
ing an increasingly important aspect of molecular ML. 
Therefore, the ability to evaluate whether the uncertainty 
estimates of an uncertainty quantification (UQ) method 
are reasonable is required. We present a comparison of 
the error-based calibration method recently proposed by 
Levi et al. [12] and three popular methods for the evalu-
ation of uncertainty estimates; Spearman’s rank correla-
tion coefficient, the miscalibration area and the negative 
log likelihood (NLL). We apply the evaluation metrics to 
uncertainty estimates for two different chemical datasets 
and three different UQ methods and find the error-based 
calibration to be the superior choice for UQ evaluation. 
For the NLL and Spearman’s rank correlation coefficient 
specifically, we found that the introduction of simulated 
reference values was necessary for these metrics to bear 
any meaning.

In agreement with previous studies, we found quite 
varying performance across validation metric, target 
property and method [3]. However, while several sets 
of uncertainty estimates did not perform optimally, all 
uncertainty estimates studied here possessed valuable 
information. The important part is then to be aware of 
the limitations and strengths and for this we found the 
error-based calibration plots to be an extremely powerful 
tool for getting detailed information of the uncertainty 
estimates. In fact most conclusions obtained from the 
remaining metrics could be drawn directly from analyz-
ing the error-based calibration plot.

Though Gaussian errors are typically assumed 
(importantly both NLL and miscalibration area relies 
on this), we found multiple examples of non-Gaussian 

error distributions, which can lead to different conclu-
sions for average calibration depending on what metric 
is looked at (e.g. the miscalibration area ( Amis ) or the 
variance of the Z-score, that is error as a fraction of its 
uncertainty (Var(Z))).

In cases of bad calibration (either average or local) 
one can do a re-calibration based on a validation set. 
Typically this is done by minimizing the NLL for the 
validation set. The NLL assumes normally distributed 
errors, so as an alternative we propose a re-calibration 
based on the linear error-based calibration fit of the 
validation set.

While good uncertainty estimates can hold extremely 
useful information about the degree of trust one should 
put in a ML prediction, they have yet to become a 
standard part of chemical ML studies. We believe one 
of the reasons for that is the lack of consensus on how 
to best benchmark the uncertainty estimates. One part 
of reaching that consensus is using an appropriate met-
ric as described above. Another part is figuring out how 
best to design test sets that actually test the perfor-
mance of the uncertainties on the intended objective.

One of the important use-cases for uncertainty esti-
mates is in sequential learning applications such as 
Bayesian optimization and active learning. While sev-
eral studies on sequential learning applied to chemical 
datasets have emerged [8, 29], it is often concluded that 
a greedy search strategy works best i.e. one that ignores 
the uncertainty estimates. One question to ask is then 
whether these observations are due to the search strategy 
itself or due to problems in the calibration of the uncer-
tainty estimates. Consider using the uncertainty esti-
mates presented in Fig. 9a for active learning. The highest 
uncertainties are greatly overestimated compared to the 
lower/medium uncertainties. These molecules would be 
over-sampled to a degree that is unwarranted when con-
sidering the actual expected error. The first step towards 
answering the question above is to have a proper way of 
evaluating ones uncertainty estimates. We believe the 
work presented herein will provide a starting point for 
chemical ML users for incorporating uncertainties in 
their work in an informed manner.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 023- 00790-0.

Additional file 1. Additional figures and tables.

Author contributions
MHR performed most of the calculations using, in part, data supplied by CD 
and HJK. JHJ wrote the draft of the first part of "Evaluation Metrics" section 
including Figs. 1, 2, 3 and 4. All authors reviewed the manuscript

https://doi.org/10.1186/s13321-023-00790-0
https://doi.org/10.1186/s13321-023-00790-0


Page 16 of 17Rasmussen et al. Journal of Cheminformatics          (2023) 15:121 

Funding
Open access funding provided by Copenhagen University. This work was 
supported by the Novo Nordisk Foundation (MHR and JHJ) and by the U.S. 
Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting, Office of Basic Energy Sciences, via the Scientific Discovery through 
Advanced Computing (SciDAC) program (CD and HJK).

Availability of data and materials
Models and data used in the study can be found here: https:// sid. erda. dk/ 
share link/ dNF1I jDPQB. Code for model training and calculation of evaluation 
metrics is available here: https:// github. com/ jense ngroup/ UQ_ valid ation_ 
metho ds. For convenience, we have prepared a Colab link where it is pos-
sible to upload a.csv file with errors and uncertainties and easily obtain the 
presented metrics: https:// colab. resea rch. google. com/ drive/ 1Jgm9 XJvWH 
QJwWaF_ GyDZp EbU_ Kk1SS Pb

Declarations

Competing interests
The authors declare no competing interests

Received: 7 September 2023   Accepted: 28 November 2023

References
 1. Janet Jon Paul, Duan Chenru, Yang Tzuhsiung, Nandy Aditya, Kulik 

Heather J (2019) A quantitative uncertainty metric controls error in 
neural network-driven chemical discovery. Chem Sci 10(34):7913–7922. 
https:// doi. org/ 10. 1039/ c9sc0 2298h

 2. Tynes Michael, Gao Wenhao, Burrill Daniel J, Batista Enrique R, Perez 
Danny, Yang Ping, Lubbers Nicholas (2021) Pairwise difference regres-
sion: a machine learning meta-algorithm for improved prediction 
and uncertainty quantification in chemical search. J Chem Inf Model 
61(8):3846–3857. https:// doi. org/ 10. 1021/ acs. jcim. 1c006 70

 3. Hirschfeld Lior, Swanson Kyle, Yang Kevin, Barzilay Regina, Coley Con-
nor W (2020) Uncertainty quantification using neural networks for 
molecular property prediction. J Chem Inf Model 60(8):3770–3780. 
https:// doi. org/ 10. 1021/ acs. jcim. 0c005 02

 4. Scalia Gabriele, Grambow Colin A, Pernici Barbara, Li Yi-Pei, Green Wil-
liam H (2020) Evaluating scalable uncertainty estimation methods for 
deep learning-based molecular property prediction. J Chem Inf Model 
60(6):2697–2717. https:// doi. org/ 10. 1021/ acs. jcim. 9b009 75

 5. Pernot Pascal (2022) Prediction uncertainty validation for computa-
tional chemists. arXiv: 2204. 13477. [physics.chem-ph]

 6. Busk Jonas, Jørgensen Peter Bjørn, Bhowmik Arghya, Schmidt Mikkel 
N, Winther Ole, Vegge Tejs (2021) Calibrated uncertainty for molecu-
lar property prediction using ensembles of message passing neural 
networks. Mach Learn Sci Technol 3(1):015012. https:// doi. org/ 10. 1088/ 
2632- 2153/ ac3eb3

 7. Soleimany Ava P, Amini Alexander, Goldman Samuel, Rus Daniela, 
Bhatia Sangeeta N, Coley Connor W (2021) Evidential deep learning 
for guided molecular property prediction and discovery. ACS Cent Sci 
7(8):1356–1367. https:// doi. org/ 10. 1021/ acsce ntsci. 1c005 46

 8. Tom Gary, Hickman Riley J, Zinzuwadia Aniket, Mohajeri Afshan, 
Sanchez-Lengeling Benjamin, Aspuru-Guzik Alán (2023) Calibration 
and generalizability of probabilistic models on low-data chemical 
datasets with DIONYSUS. Dig Discov 2(3):759–774. https:// doi. org/ 10. 
1039/ D2DD0 0146B

 9. Varivoda D, Dong R, Omee SS, Hu J (2023) Materials property predic-
tion with uncertainty quantification: a benchmark study. Appl Phys 
Rev. DOIurlhttps://doi.org/10.1063/5.0133528

 10. Fan Wentao, Zeng Lidan, Wang Tian (2023) Uncertainty quantification 
in molecular property prediction through spherical mixture density 
networks. Eng Appl Artif Intell 123:106180. https:// doi. org/ 10. 1016/j. 
engap pai. 2023. 106180

 11. Dutschmann Thomas-Martin, Kinzel Lennart, Ter Laak Antonius, 
Baumann Knut (2023) Large-scale evaluation of k-fold cross-validation 

ensembles for uncertainty estimation. J Cheminformatics 15(1):49. 
https:// doi. org/ 10. 1186/ s13321- 023- 00709-9

 12. Dan Levi, Liran Gispan, Niv Giladi, Ethan Fetaya (2022) Evaluating and 
calibrating uncertainty prediction in regression tasks. Sensors. https:// 
doi. org/ 10. 3390/ s2215 5540

 13. Alexander A, Wilko S, Ava S, Daniela R (2020) Deep evidential regres-
sion. In: Advances in Neural Information Processing Systems. Ed. by H. 
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran 
Associates, Inc., pp. 14927–14937. https:// proce edings. neuri ps. cc/ 
paper/ 2020/ file/ aab08 5461d e1826 08ee9 f607f 3f7d1 8f- Paper. pdf

 14. Wildman Scott A, Crippen Gordon M (1999) Prediction of Physico-
chemical Parameters by Atomic Contributions. J Chem Inf Comput Sci 
39(5):868–873. https:// doi. org/ 10. 1021/ ci990 307l

 15. Rasmussen MH, Christensen DS, Jensen JH (2023) Do machines dream 
of atoms? Crippen’s logP as a quantitative molecular benchmark for 
explainable AI heatmaps. SciPost Chem https:// doi. org/ 10. 21468/ scipo 
stchem. 2.1. 002

 16. Chenru Duan, Shuxin Chen, Taylor Michael G, Fang Liu, Kulik Heather J 
(2021) Machine learning to tame divergent density functional approxi-
mations: a new path to consensus materials design principles. Chem 
Sci 12(39):13021–13036. https:// doi. org/ 10. 1039/ d1sc0 3701c

 17. Greenman Kevin P, Green William H, Rafael Gómez-Bombarelli (2022) 
Multi-fidelity prediction of molecular optical peaks with deep learning. 
Chem Sci 13(4):1152–1162. https:// doi. org/ 10. 1039/ d1sc0 5677h

 18. Pernot Pascal. “Confidence curves for UQ validation: probabilistic refer-
ence vs. oracle”. 2022. arXiv:  2206. 15272 [physics.data-an]

 19. DiCiccio Thomas J, Efron Bradley (1996) Bootstrap Confidence Intervals. 
Stat Sci 11(3):189–212

 20. Virtanen Pauli, Gommers Ralf, Oliphant Travis E, Haberland Matt, 
Reddy Tyler, Cournapeau David, Burovski Evgeni, Peterson Pearu, War-
renWeckesser Jonathan Bright, van derWalt Stéfan J, Brett Matthew, 
Joshua Wilson K, Millman Jarrod, Mayorov Nikolay, Nelson Andrew R. 
J, Jones Eric, Kern Robert, Eric Larson CJ, Carey İlhan Polat, Feng Yu, 
Moore Eric W, VanderPlas Jake, Laxalde Denis, Perktold Josef, Cimrman 
Robert, Ian Henriksen EA, Quintero Charles R, Harris Anne M, Archibald 
Antônio H, Ribeiro Fabian Pedregosa, van Mulbregt Paul, SciPy 1.0 
Contributors, (2020) SciPy 1.0: Fundamental algorithms for scientific 
computing in Python. Nature Methods 17:261–272. https:// doi. org/ 10. 
1038/ s41592- 019- 0686-2

 21. Yang Xiufeng, Zhang Jinzhe, Yoshizoe Kazuki, Terayama Kei, Tsuda 
Koji (2017) ChemTS: an efficient python library for de novo molecular 
generation. Sci Technol Adv Mater 18(1):972–976. https:// doi. org/ 10. 
1080/ 14686 996. 2017. 14014 24

 22. Gómez-Bombarelli Rafael, NWei Jennifer, Duvenaud David, Hernández-
Lobato José Miguel, Sánchez-Lengeling Benjamín, Sheberla Dennis, 
Aguilera-Iparraguirre Jorge, Hirzel Timothy D, Adams Ryan P, Aspuru-
Guzik Alán (2018) Automatic chemical design using a data-driven 
continuous representation of molecules. ACS Cent Sci 4(2):268–276. 
https:// doi. org/ 10. 1021/ acsce ntsci. 7b005 72

 23. You Jiaxuan, Liu Bowen, Ying Rex, Pande Vijay, Leskovec Jure “Graph 
convolutional policy network for goal-directed molecular graph 
generation”. In: Proceedings of the 32nd International Conference on 
Neural Information Processing Systems. NIPS’18. Montréal, Canada: 
Curran Associates Inc., Dec. 2018, pp. 6412-6422

 24. Jensen Jan H (2019) A graph-based genetic algorithm and generative 
model/Monte Carlo tree search for the exploration of chemical space. 
Chem Sci 10(12):3567–3572. https:// doi. org/ 10. 1039/ c8sc0 5372c

 25. Janet Jon Paul, Kulik Heather J (2017) Resolving transition metal 
chemical space: feature selection for machine learning and structure-
property relationships. J Phys Chem A 121(46):8939–8954. https:// doi. 
org/ 10. 1021/ acs. jpca. 7b087 50

 26. Paszke A, Gross Sam, Massa Francisco, Lerer Adam, Bradbury James, 
Chanan Gregory, Killeen Trevor, Lin Zeming, Gimelshein Natalia, Antiga 
Luca, Desmaison Alban, Kopf Andreas, Yang Edward, DeVito Zachary, 
Raison Martin, Tejani Alykhan, Chilamkurthy Sasank, Steiner Benoit, 
Fang Lu, Bai Junjie, Chintala Soumith (2019) “PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library”. In: Advances in 
Neural Information Processing Systems 32. Curran Associates, Inc., pp. 
8024–8035. https:// dl. acm. org/ doi/ 10. 5555/ 34542 87. 34550 08

 27. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, 

https://sid.erda.dk/sharelink/dNF1IjDPQB
https://sid.erda.dk/sharelink/dNF1IjDPQB
https://github.com/jensengroup/UQ_validation_methods
https://github.com/jensengroup/UQ_validation_methods
https://colab.research.google.com/drive/1Jgm9XJvWHQJwWaF_GyDZpEbU_Kk1SSPb
https://colab.research.google.com/drive/1Jgm9XJvWHQJwWaF_GyDZpEbU_Kk1SSPb
https://doi.org/10.1039/c9sc02298h
https://doi.org/10.1021/acs.jcim.1c00670
https://doi.org/10.1021/acs.jcim.0c00502
https://doi.org/10.1021/acs.jcim.9b00975
http://arxiv.org/abs/2204.13477
https://doi.org/10.1088/2632-2153/ac3eb3
https://doi.org/10.1088/2632-2153/ac3eb3
https://doi.org/10.1021/acscentsci.1c00546
https://doi.org/10.1039/D2DD00146B
https://doi.org/10.1039/D2DD00146B
https://doi.org/10.1016/j.engappai.2023.106180
https://doi.org/10.1016/j.engappai.2023.106180
https://doi.org/10.1186/s13321-023-00709-9
https://doi.org/10.3390/s22155540
https://doi.org/10.3390/s22155540
https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
https://doi.org/10.1021/ci990307l
https://doi.org/10.21468/scipostchem.2.1.002
https://doi.org/10.21468/scipostchem.2.1.002
https://doi.org/10.1039/d1sc03701c
https://doi.org/10.1039/d1sc05677h
http://arxiv.org/abs/2206.15272
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1039/c8sc05372c
https://doi.org/10.1021/acs.jpca.7b08750
https://doi.org/10.1021/acs.jpca.7b08750
https://dl.acm.org/doi/10.5555/3454287.3455008


Page 17 of 17Rasmussen et al. Journal of Cheminformatics          (2023) 15:121  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: 
machine learning in Python. J Mach Learn Res 12:2825–2830

 28. Vazquez-Salazar Luis Itza, Boittier Eric D, Meuwly M. Uncertainty quanti-
fication for predictions of atomistic neural networks. 2022. arXiv:  2207. 
06916 [physics.chem-ph]

 29. Graff David E, Shakhnovich Eugene I, Coley Connor W (2021) Accelerating 
high-throughput virtual screening through molecular pool-based active 
learning. Chem Sci 12(22):7866–7881. https:// doi. org/ 10. 1039/ d0sc0 
6805e

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2207.06916
http://arxiv.org/abs/2207.06916
https://doi.org/10.1039/d0sc06805e
https://doi.org/10.1039/d0sc06805e

	Uncertain of uncertainties? A comparison of uncertainty quantification metrics for chemical data sets
	Abstract 
	Introduction
	Methods
	Models
	Evaluation metrics

	Results
	Crippen logP
	Vertical IP
	Error-based re-calibration


	Design of the test set
	Conclusions and outlook
	Anchor 13
	References


