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Abstract 

Probing the surface of proteins to predict the binding site and binding affinity for a given small molecule is a critical 
but challenging task in drug discovery. Blind docking addresses this issue by performing docking on binding regions 
randomly sampled from the entire protein surface. However, compared with local docking, blind docking is less accu-
rate and reliable because the docking space is too largetly sampled. Cavity detection-guided blind docking methods 
improved the accuracy by using cavity detection (also known as binding site detection) tools to guide the docking 
procedure. However, it is worth noting that the performance of these methods heavily relies on the quality of the cav-
ity detection tool. This constraint, namely the dependence on a single cavity detection tool, significantly impacts 
the overall performance of cavity detection-guided methods. To overcome this limitation, we proposed Consensus 
Blind Dock (CoBDock), a novel blind, parallel docking method that uses machine learning algorithms to integrate 
docking and cavity detection results to improve not only binding site identification but also pose prediction accu-
racy. Our experiments on several datasets, including PDBBind 2020, ADS, MTi, DUD-E, and CASF-2016, showed 
that CoBDock has better binding site and binding mode performance than other state-of-the-art cavity detector tools 
and blind docking methods.

Keywords Docking, Blind molecular docking, Global docking, Cross-docking, Reverse-docking, Inverse-docking, 
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Introduction
Identifying the three-dimensional structures of pro-
tein-ligand complexes is an essential step in structure-
based drug discovery. Technical developments in single 
co-crystal X-ray crystallography, cryo EM (electron 
microscopy) and nuclear magnetic resonance (NMR) 
spectroscopy are the reason for a much greater number 
of available high-resolution structures of proteins and 
protein-ligand complexes [1]; however, computational 
methods provide much faster and cheaper options to 
keep up with the rate at which new hit compounds, lead 
compounds, and therapeutic targets are found in drug 
discovery. Therefore, computational techniques like 
molecular docking are used as virtual screening tools in 
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the structure-based drug discovery pipeline employed by 
the pharmaceutical and biotechnology industries [2].

Molecular docking is a computational method that pre-
dicts the binding pose and affinity of a ligand and a tar-
get protein structure [3]. It has become an indispensable 
tool in early-stage drug discovery and design, e.g., to dis-
cover drug hits in silico and to optimise hits as lead com-
pounds. However, molecular docking methods require 
binding site information, i.e., a region on the target pro-
tein that binds to the ligand with specificity [4]. When the 
binding site information is unavailable, molecular dock-
ing methods must explore the whole protein surface to 
find a feasible binding pose. This strategy is also known 
as “blind docking” [5].

Blind docking methods have two subgroups: (i) Con-
ventional blind docking, which uses molecular docking 
methods (such as, for example, AutoDock [6] and Auto-
Dock Vina [7]) to search the entire surface of a target 
[5, 8–10] and (ii) Cavity detection-guided blind dock-
ing [11–14], which employs cavity detection tools such 
as P2Rank [15] and Fpocket [16] to determine poten-
tial binding pockets. Also, COACH-D [13] and Gal-
axySite [17] perform blind docking to identify binding 
sites instead of a cavity detection tool. After identifying 
the binding site, cavity detection-guided blind docking 
tools such as CB-Dock [12] and EDock [18] execute local 
docking at those predicted binding sites.

Conventional blind docking methods can perform 
poorly due to the large pose search areas [19]. Cavity 
detection-guided methods have improved the accuracy 
of blind docking by detecting the binding sites and then 
performing docking for a possible binding site. While 
cavity-guided blind docking methods can improve accu-
racy compared with conventional blind docking, often 
only a singular cavity detection tool is used and so their 
performance is highly dependent on the quality of that 
tool [20]. Due to the fact that a singular cavity detection 
cannot provide robust performance, it can result in a per-
formance loss across a variety of benchmarks. To address 
these issues, Metapocket 2.0 combines more than one 
cavity detection tool [21]. However, there is still room to 
improve performance in blind docking through a consen-
sus of multiple blind molecular docking and cavity detec-
tion tools.

To improve the performance of the blind docking 
method, we designed a Consensus Blind Dock (CoB-
Dock) method. Unlike cavity detection-guided meth-
ods, which directly identify potential binding sites, 
CoBDock simultaneously extracts and integrates 
information from various docking methods and cav-
ity detection tools in parallel. The intuition is that the 
parallel approach combines molecular docking having 
various scoring functions and cavity detection tools to 

reach a consensus about a potential binding site. The 
consensus technique is essential for large-scale screen-
ing because it enables a collection of programs and 
tools to function as a cohesive group and agree on the 
prediction, notwithstanding the robustness to failures 
and incorrect predictions of any one program. There-
fore, the identification of binding sites is enhanced by 
a consensus on the predictions generated by molecular 
docking methods and cavity detection tools. Improved 
binding site identification ultimately enhances the per-
formance of blind docking in terms of correctly identi-
fying the binding mode of the ligand. Besides improved 
performance, we constructed an automated end-to-end 
pipeline to perform the docking of multiple ligands to 
multiple targets to enhance the practicality. The CoB-
Dock pipeline is freely and publicly available for aca-
demic use: https:// github. com/ David McDon ald19 93/ 
cobdo ck.

Methods
CoBDock automates the entire docking pipeline, from 
input preparation to binding site prediction through par-
allel blind docking and cavity-detection and, finally, exe-
cuting local docking at those predicted binding sites for 
high-quality binding mode predictions. First, it prepares 
targets and ligands before executing blind docking using 
four molecular docking algorithms: AutoDock Vina [7], 
GalaxyDock3 [22], ZDOCK [23], and PLANTS [24]. In 
parallel, it identifies binding sites using two-cavity detec-
tion tools: P2Rank [15] and Fpocket [16]. To aggregate 
the predicted binding sites and modes identified by all 
the cavity detection and molecular docking algorithms, 
we drew a 10 Å-resolution grid over the entire protein 
and assigned each mode/binding site to the closest grid 
box. Finally, the grid locations were assigned and ranked 
by a machine learning (ML) predicted binding site score 
and the top-ranked location was selected. This location 
was mapped back to the closest cavity found by one of 
the cavity detection tools. Finally, to produce a final bind-
ing mode prediction for the ligand, we executed PLANTS 
[24] at the closest binding site.

The entire CoBDock pipeline consists of five steps 
(shown in Fig. 1): (1) docking methods, (2) cavity detec-
tion tools, (3) voxelization: Processing 3D structural data 
into grids, (4) using a trained machine learning model to 
score and rank voxels and (5) local docking to produce 
the final predicted binding mode of a ligand. The identi-
fication of binding sites and pose prediction performance 
were tested on PDBBind 2020, ADS, MTi, CASF-2016 
and DUD-E and compared with common, Fpocket, and 
state-of-art studies, P2Rank and CB-Dock, achieving 
state-of-the-art results.

https://github.com/DavidMcDonald1993/cobdock
https://github.com/DavidMcDonald1993/cobdock
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Docking methods
CoBDock automates each step in Fig.  1, and provides 
faster and more practical docking steps to overcome dif-
ficulties when screening large target datasets.

Target preparation
Users must provide a.pdb file or.pdb file list for a target 
as input. Also, a user can provide PDB IDs in a list or text 
file as input.

CoBDock cleans targets according to molecular dock-
ing protocols in its pipeline by removing undesired ele-
ments, including water, free ions, free atoms, and bound 
ligands by using Pymol [25]. In addition, CoBDock 
employs the Pdb2Pqr [26] software to provide protona-
tion to the target molecules, specifically at a pH of 7.4. 
COBDock uses an AMBER [27] force field and propka 
[28] for titration states during protonation.

Ligand preparation
Users must provide CoBDock with a ligand in the follow-
ing formats: SMILES,.pdb,.mol,.mol2,.sdf (or multi files). 
CoBDock prepares them by adding hydrogen(s) to polar 
atoms using Open Babel with a preset physiological pH 

of 7.4 being utilized [29]. Finally, CoBDock uses Open-
Babel [29] to convert them into the input format for each 
docking method.

Blind docking
Blind docking is executed to search the entire protein to 
determine pose prediction. The utilization of multiple 
blind docking programs can yield diverse conformations 
situated at distinct spatial positions. Examining these 
diverse conformations can provide valuable insights 
for enhancing the effectiveness of the machine learn-
ing model in blind docking. Thus, the machine learning 
model generates predictions based on consensus on the 
various molecular docking outputs Fig. 1.

Consensus docking is a viable method to increase the 
performance of blind docking, which combines multi-
ple molecular docking methods to provide higher per-
formance [30, 31]. However, the performance of scoring 
functions depends on the dataset, so their performance 
ranges from 0–92%, depending on the benchmark under 
study [20]. To increase performance, we constructed a 
consensus docking pipeline, CoBDock.

Molecular docking methods have been used to iden-
tify the binding site, such as COACH-D [13], and Gal-
axySite [17]. Scoring functions find binding sites and 

Fig. 1 Schematic representation of CoBDock blind docking workflow. The docking methods, AutoDock Vina, PLANTS, GalaxyDock3 and ZDOCK, 
and binding site detection tools, P2Rank and Fpocket, are all executed by CoBDock in parallel. A three-dimensional 10 Å-resolution grid is drawn 
over the protein, and each predicted binding mode and pocket is assigned to the closest grid box. Boxes containing no binding modes or pockets 
are subsequently removed. Each remaining grid box is assigned an ML-computed “pocket score” that is used to rank them. The pocket closest 
to the top-ranked box is then selected as the true binding site. After binding site selection, molecular docking is executed at the binding site 
to produce the final binding mode for the ligand



Page 4 of 19Ugurlu et al. Journal of Cheminformatics            (2024) 16:5 

ligand poses by searching the entire protein surface for 
favourable binding poses. We selected four representa-
tive molecular docking methods, Vina, PLANTS, Galaxy-
Dock3 and ZDOCK, due to their relative advantages and 
different pose search approaches, see Table 1.

The scoring function utilized in Vina is an empirical 
scoring mechanism that draws significant inspiration 
from X-Score [32]. The efficiency of Vina in performing 
docking can be attributed to the absence of directional 
or theta-dependent terms. This characteristic enables 
Vina to build a triangular matrix at the beginning of the 
program, which comprises atom-pair evaluations within 
a distance cutoff of 8 Angstroms. The utilization of a 
matrix facilitates the examination of atom-pair interac-
tions, hence expediting the docking process [33].

AutoDock Vina employs a united-atom scoring func-
tion, which exclusively considers the heavy atoms in the 
scoring process [7] to calculate the fitness or affinity of 
protein-ligand binding [34]. During the calculation, it 
derives advantages from a hydrophobic term, a non-
directional hydrogen-bond term and a penalty associated 
with conformational entropy [35]. However, Vina has a 
deficiency in the treatment of electrostatic interactions 
and solvation effects, instead employing a potential func-
tion reminiscent of the van der Waals forces [35].

PLANTS is comprised of two score functions: 
PLANTSCHEMPLP and PLANTSPLP. Both are derived 
from previously reported scoring functions and force 
fields, primarily in terms of their functional form. The 

utilization of the piecewise linear potential (PLP) scor-
ing function is employed in both scenarios to represent 
the steric complementarity between the protein and 
the ligand [36]. The PLANTSCHEMPLP score func-
tion incorporates the utilization of GOLD’s Chemscore 
implementation to provide angle-dependent terms for 
hydrogen bonding and metal binding [37]. In order to 
consider interactions, the combination of the torsional 
potential derived from the Tripos force field and a heavy-
atom clash term is utilized [36].

The protein-ligand docking process in GalaxyDock2 
incorporates a hybrid scoring system to enhance accu-
racy. The score can also be utilized in GalaxyDock2, a 
protein-ligand docking software that incorporates the 
conformational space annealing (CSA) algorithm, a global 
optimization strategy [38]. The CSA algorithm employs a 
population-based iterative optimization strategy to build 
a collection of low-energy conformations that have been 
locally reduced. The CSA population strictly adheres to 
specified mutual distances, which facilitates the concen-
tration of conformational sampling on more profound 
minima during each iteration. The process of global 
optimization encompasses the manipulation of ring con-
formation and the reconstruction of the internal ligand 
structure, allowing for the adjustment of many degrees of 
freedom, such as bond angles and lengths. GalaxyDock3 
has the same energy components as the GalaxyDock BP2 
score with additional bonded energy terms to train its 
hybrid scoring function [22]. For example, bonded energy 

Table 1 The summary of molecular docking methods’ unique features and scoring functions, used in the CoBDock

The list of distinctive characteristics and scoring schemes for molecular docking technologies. An ideal scoring function is, in theory, the binding affinity determined 
by a thorough free energy simulation. However, using such a time-consuming method in docking investigations is not realistic. As a result, most scoring functions 
used today are based on force fields, empirical potentials, or knowledge-based potentials

Docking Methods Pose research method Advantages

Autodock Vina An empirical scoring function that was largely inspired by x-score [33] • High performance: 81% accuracy [43]

• Fast

• Ease of use

• Most common

• A high number of different pose locations

ZDOCK Energy-based scoring function (IFACE Statistical Potential, Shape Comple-
mentarity, and Electrostatics)) [40]

• High performance: 85.71% [44]

• Blind (Global) docking

• A high number of poses

PLANTS PLANTS(CHEMPLP) or PLANTS(PLP) derivied from piecewise linear potential 
(PLP) scoring function [36]

• High performance: 87% accuracy for the Astex 
Diverse Set (ADS) [24]

• Relatively fast

• A high number of variables related to ligand pose

GalaxyDock3 Global optimisation of a designed score function trained with an additional 
bonded energy term [22]

• High performance [23]

• Ease of use

• Flexibility

• A high number of poses

• A high number of different pose locations
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terms for ligands represent the bond angle, bond length, 
dihedral angle, and improper torsion angle energies of 
CGenFF [39]. The additional terms used to train the scor-
ing function improved the performance [22].

ZDOCK has been purposefully developed to execute 
blind docking of protein-protein interactions. Hence, it 
exhibits inherent dissimilarities when compared to three 
other small molecule-protein docking programs, namely 
Vina, GalaxyDock3, and PLANTS. Understanding the 
distinctions and associations between ZDOCK and small 
molecule-protein docking programs could potentially 
provide valuable insights for the development of an effec-
tive machine-learning model. Additionally, the ZDock 
docking program demonstrates a notably diminished 
failure rate in comparison to PLANTS, Vina, and ZDock 
when executing blind docking procedures. The absence 
of missing data is essential for ensuring the strong func-
tioning of our model. In addition to exhibiting a reduced 
failure rate, ZDOCK offers a multitude of ligand pos-
tures, numbering in the hundreds. The increased output 
quantity facilitates the detection of a wide range of ligand 
poses capable of occupying multiple binding sites on the 
protein. This capability facilitates comprehensive sam-
pling of the complete protein structure.

The scoring function of ZDOCK incorporates three 
components, namely the IFACE Statistical Potential, 
Shape Complementarity, and Electrostatics, in order to 
enhance the docking performance. The term “IFACE sta-
tistical potential” is employed in the field of protein dock-
ing to characterize the interplay between pairs of amino 
acids situated at the interface of a protein complex. The 
calculation of the IFACE potential involves the utilization 
of a statistical potential that has been trained on a com-
prehensive database containing verified protein-protein 
interactions [40]. The concept of shape complementarity 
is employed in protein docking to characterize the extent 
to which the shapes of the protein and ligand exhibit 
mutual compatibility. When the protein and ligand 
exhibit compatible conformations, they can establish a 
more intimate binding, resulting in enhanced stability 

[41]. The concept of electrostatics is employed in the field 
of protein docking to elucidate the interplay between 
charged amino acids present on both the protein and 
the ligand. The stabilization of protein-ligand binding is 
reliant upon the significance of electrostatic interactions 
[42].

Four molecular docking programs were selected, each 
with their default parameters, in order to ensure that any 
performance gain observed may be attributed only to the 
CoBDock application. Future work will investigate the 
impact of molecular docking parameter tuning on the 
entire CoBDock pipeline.

Cavity detection tools
Conventional docking protocols require a binding site to 
perform docking. Two binding site methods are (i) exper-
imental structure-based method that locates small native 
molecules on targets captured by co-crystal structures 
[45] and (ii) using cavity detection tools, such as P2Rank 
and Fpocket, to identify a binding site. Since experimen-
tally determined bound ligands are not available for all 
targets, we omit (i) from the CoBDock pipeline and con-
sider only tool-based predictions of cavities.

P2Rank and Fpocket (Table  2) have been selected 
to develop our consensus blind docking program. The 
selected cavity detection tools, P2Rank and Fpocket, offer 
distinctive features that improve blind docking perfor-
mance. P2Rank is a machine learning (ML) binding site 
detection tool that predicts the ligandability of nearby 
chemical neighbourhoods. P2Rank is a standalone appli-
cation that can be integrated into automated pipelines. In 
addition, it offers high precision, rapid processing, and 
practicality.

We further incorporate Fpocket, the most prevalent 
cavity detection tool, to strengthen our blind docking 
infrastructure. Fpocket is a utility for pocket detection 
that utilizes Voronoi tessellation and alpha spheres. It is a 
simple, quick, and precise standalone tool that is suitable 
for an automated pipeline. These characteristics make 

Table 2 The summary of cavity detection tools used in the CoBDcok

The identification of binding sites has been a challenge in the field of structural research, prompting the development of several binding site methods throughout the 
years. A subset of individuals were provided with a brief introductory overview

Cavity detection tool Type Overview

P2Rank 2.0 Machine learning P2Rank is a standalone template-free 
program for machine learning-based 
prediction of ligand binding sites 
[15].

Fpocket Geometric A pocket detection tool called 
Fpocket was developed using alpha 
spheres and Voronoi tessellation [16].
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them promising candidates for an automated pipeline, so 
we incorporated them into our CoBDock program [16].

Voxelization: processing 3D structural data into grids
CoBDock uses four molecular docking methods and two 
cavity detector tools to acquire ligand poses and cavities 
on a target protein. We used a voxelisation approach to 
convert 3D structural data to grids by fusing two sources 
of information. Each grid box comprises many channels 
that describe distinct forms of molecular docking and 
cavity detection tool results Fig.  2. The grid boxes train 
a classification model to rank voxels; then, the model 
makes a prediction to identify binding sites.

Voxels have been utilized for the purpose of sampling 
the complete protein structure. The results of programs 
become a feature of that voxel, once a voxel contains a 
found binding site and/or ligand poses. Besides the pro-
gram features, the number of poses present in the voxel 
is determined in order to determine the frequency of 
poses, labelled as “sampled_pose_number_PROGRAM_
NAME_at_location”. Also, we calculated the distance 
from the mass centre of the cavity/pose to the centre of 
the voxel, labelled “PROGRAM_NAME_distance”. As a 
result, the machine learning model has the capability to 
acquire knowledge regarding the frequency with which 
a program identifies the place, as well as the frequency 
with which programs identify the location as a binding 
site.

In voxel-based representation, the grid size is crucial 
for data processing to handle missing samples, increasing 
noise, or increasing redundancy. A large box size results 
in data loss, whereas a small box size results in compu-
tationally expensive procedures, noise, and redundancy. 
Large grids contain multiple results per grid, which can 

also result in data loss. In addition, small grid cells dra-
matically increase noise and redundancy, which makes 
the procedure computationally expensive. Therefore, we 
selected 10 Å from the literature to sample the entire 
protein structure [46].

Machine learning model to rank voxels
A machine learning-based classification model assigns 
a binding site score between 0–1 to each voxel. The 
highest-scored voxel is mapped back to the closest cav-
ity found by either Fpocket or P2Rank and this cavity is 
taken to be the predicted binding site of the ligand.

Model training data preparation: We used an EDock 
training set having 400 non-redundant proteins [18]. To 
determine 3D structure similarity across datasets, target 
structure pairs were formed by selecting one instance 
from the training set and one instance from each bench-
mark set. Subsequently, the TM scores were computed 
for the aforementioned couples [47]. In the case that 
the TM-score between a training and validation protein 
structure exceeded 0.5, the training protein structure was 
removed from the training set [47]. Hence, it is concluded 
that there exists no structural relationship between the 
train and benchmarks.

After removing proteins with more than 0.5 TM-
Score, the rest of the 290 proteins in the EDock training 
set were used in molecular docking methods and cavity 
detector tools. Then, the outputs of the program were 
processed into 18,533 grid boxes. A box containing the 
co-crystalized ligand in the original target structure is 
assigned a true label. The other boxes are labelled as neg-
ative. Finally, missing data was replaced with the average 
feature, also known as mean value imputation.

Fig. 2 Representation of voxelisation processing for a protein (PDB ID: 1A3E) structure using PyMol. Ligand poses and binding cavities (site) are 
the outputs of molecular docking methods in magenta, and cavity detection tools in red and grid boxes convert these outputs into vectors. Empty 
grid boxes are filtered before using grid data to train a machine-learning model
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The molecular docking and cavity detection methods 
exhibit missing values with a failure ratio ranging from 
0 to 2% on the training set. Among the considered soft-
ware applications, namely GalaxyDock, PLANTS, Vina, 
and Fpocket, it is seen that the former three exhibit a fail-
ure ratio of 2%, however, Fpocket demonstrates a com-
paratively lower failure ratio of 1%. Fortunately, both 
ZDOCK and P2rank do not exhibit any missing data. The 
failures observed in the blind docking of CoBDock can 
be attributed to the utilization of huge search sizes. The 
huge search size requires high memory usage. Perform-
ing blind docking necessitates significant computational 
resources due to the high level of flexibility and extensive 
search space involved.

CoBDock performs local docking to determine the final 
ligand pose. Fortunately, local docking focuses on specific 
locations to find ligand pose, therefore, each molecular 
docking has achieved a failure rate of zero on the train-
ing set.

Feature selection: The training set was partitioned into 
two subsets, namely the training subset (80%) and the 
validation subset (20%), subsequent to the use of TM-
score filtration. Feature selection was performed over the 
entire feature set of the training set. The optimum fea-
tures reduce the complexity and overfitting of the model. 
Also, feature selection enhances the performance of the 
model. Therefore, we utilized the Boruta feature selection 
software to select the optimal features [48] (Fig. 3).

The Boruta algorithm [48] is a feature selection strat-
egy utilized to identify the most significant attributes 
within a given dataset, with the aim of enhancing the 
performance of machine learning models. This tech-
nique achieves its objective by optimizing the amount 
of features included in the models. Boruta compares 
the relevance of each characteristic to “shadow” features 

– random permutations of the original features. Char-
acteristics with consistently greater relevance than their 
shadow characteristics are retained, whereas elements 
with equivalent or lower importance are eliminated [48].

Boruta’s significance measure uses a tree-based classi-
fier from Scikit-Learn (1.1.2) [49] to capture complicated 
feature-target variable correlations. Shadow character-
istics assist Boruta in differentiating signals from noise, 
improving its feature selection process. This reduces 
overfitting, improves model generalization, and improves 
interpretability [48].

We analysed feature selection results on the validation 
set by using The ANOVA f-test Feature Importance, and 
Radviz Visualization. The ANOVA f-test Feature Impor-
tance, also known as Analysis of Variation, is a statistical 
technique employed to assess the value of selected fea-
tures in elucidating the variation or disparities observed 
in the target variable within a given training set. Radviz, 
also known as Radial Visualization, is a data visualization 
approach that is employed to visually represent multi-
variate data within a two-dimensional spatial context. 
This approach is efficacious in comprehending the inter-
relationships and patterns among numerous variables 
concurrently. The Radviz plot employs a circular repre-
sentation where each data point is depicted as a point 
positioned within the circle. The circular location of a 
data point is established by the equilibrium of pressures 
exerted by the variables, which act as attractive forces, 
drawing the points towards their individual places.

Training machine learning model: Autogluon version 
0.8.0 has been used to train the voxel-scoring model in 
CoBDock [50]. AutoGluon is a library for automated 
machine learning (AutoML) that facilitates the training 
and deployment of machine learning models, even in the 
absence of previous experience in the field of machine 
learning. AutoGluon operates by automating the follow-
ing tasks: (i) data preprocessing, and construction model 
architecture using bagging, multi-layer stacking ensem-
bling techniques.

The process of data preprocessing is a crucial compo-
nent in the preparation of data for modelling purposes. 
AutoGluon, a software program, facilitates the automa-
tion of data cleaning and transformation procedures, 
thereby guaranteeing the data is appropriately formatted 
for further analysis and modelling tasks. Also, Autogluon 
uses mean value imputation, a technique that involves the 
replacement of missing values with the arithmetic mean 
of the existing data. AutoGluon possesses the capabil-
ity to autonomously identify and address missing values 
within a given dataset by employing mean value imputa-
tion. The proposed approach is a straightforward yet effi-
cient imputation technique applicable to both numerical 
and categorical variables [50].

Fig. 3 Schematic representation of the feature selection workflow 
and training model. The EDock training set is used in the Boruta 
package to select the most promising features. Then, selected 
features have been utilized to train a model using AutoGluon. 
AutoGluon automates splitting data, validation and stacking to train 
model
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When the parameter auto_stacking is set to True, Auto-
Gluon will employ bagging and multi-layer stack ensem-
bling techniques in an automated manner to enhance the 
accuracy of predictions. This process involves the train-
ing of many models on distinct subsets of the data, fol-
lowed by the aggregation of their predictions to generate 
a final forecast [50].

Bagging is a statistical technique employed to mitigate 
variation by training several models on distinct boot-
strapped samples derived from the dataset. Bootstrap-
ping is a statistical sampling strategy that involves the 
resampling of data with replacement. This implies that 
certain data points may be incorporated into many mod-
els, but other data points may not be incorporated into 
any models [50].

Stacking is a methodology employed in machine 
learning that involves the amalgamation of predictions 
generated by different models in order to derive a final 
prediction. The process involves training a meta-model 
using the predictions generated by the basis models. The 
meta-model acquires the ability to integrate the predic-
tions generated by the basic models in order to enhance 
the accuracy of the final forecast [50].

Binding site prediction
The output of the model is a predicted binding site score, 
ranging from 0 to 1 for all voxels. The final binding site 
prediction is given as the closest predicted cavity to the 
top-scoring voxel.

Ligand binding pose prediction
CoBDock performs blind (global) docking using molec-
ular docking to process 3D structures into voxels by 
searching entire proteins. However, the large search area 
in blind docking reduces the performance of ligand pose 
prediction [12]. Therefore, we preferred to use the local 
docking approach to improve the final pose prediction 
performance.

The voxel-scoring machine learning model in CoB-
Dock orders grid boxes to identify the binding site. The 
grid boxes are utilized to identify the nearest pocket 
detected by either Fpocket or P2Rank. The centroid of 
the predicted ligand binding site serves as the focal point 
for the search region employed in conducting local dock-
ing. CoBDock conducts local docking specifically tar-
geting the highest-ranking binding site to perform local 
docking. When a user desires to conduct more docking 
operations at various places, CoBDock has the capability 
to accommodate additional sites as per the user’s request.

The CoBDock software employs PLANTS as its default 
local docking program, as indicated by the supporting 
evidence presented in Additional file  1: Fig. S12, which 
reinforces the justification for this choice. Additionally, 

users have the option to convert the aforementioned 
docking process into Vina or GalaxyDock3, enabling 
them to perform local docking. In the event of PLANTS’ 
failure, CoBDock will resort to using Vina and subse-
quently GalaxyDock3 for the purpose of conducting local 
docking.

The CoBDock algorithm exclusively employs a 15A 
range inside specified coordinates of the first pocket for 
the purpose of conducting local docking, with default 
parameters. The presence of default parameters hinders 
the improvement of pose prediction performance due to 
the optimized docking conditions. Hence, the identifi-
cation of the binding site by CoBDock is the sole factor 
contributing to performance enhancement.

Benchmarking binding site and binding pose prediction
The three benchmarks utilized in this study were 
obtained from databases and a study: DUD-E, CASF-
2016 and CB-Dock. As an additional benchmark, we 
sampled the latest version of PDBBind to sample updated 
PDB entries. We evaluated comparative pipeline perfor-
mances using the five varied datasets below:

DUD‑E
The Directory of Useful Decoys, Enhanced (DUD-E) is 
designed to assess the efficacy of docking programs and 
cavity detection tools. DUD-E incorporates proteins 
with diverse binding site characteristics, such as variable 
diameters, geometries, and electrostatic properties [51]. 
This variation assesses the ability of methods to accu-
rately detect and predict binding sites across a broad 
range of circumstances. We used the DUD-E validation 
set, containing 102 X-ray structures of the targets from 
the DUD-E benchmark. Additionally, the DUD-E set has 
26 kinases, 15 proteases, 11 nuclear receptors, 5 GPCRs, 
2 ion channels, 2 cytochrome P450s, 36 other enzymes, 
and 5 miscellaneous proteins [18].

DUD-E, the docking tests exclusively utilize the active 
drug for each target, disregarding the decoy compounds. 
This is because decoy compounds lack a co-crystallized 
ligand, which is necessary for comparing against the 
expected conformation [18].

CASF‑2016
The CASF-2016 dataset is composed of 285 protein-
ligand complexes that possess high-quality crystal struc-
tures and dependable binding constants. The dataset 
consists of a collection of protein-ligand complexes char-
acterized by high-quality crystal structures and depend-
able binding data. The approach used to determine the 
primary test set for CASF-2016 used the 4057 protein-
ligand complexes contained in the PDBbind refined set 
(v.2016) [52].
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The CASF benchmark offers measures for evaluating 
scoring functions across various activities. The newest 
CASF benchmark is CASF-2016. On this benchmark, 
over 30 classical scoring functions for pose prediction 
were evaluated. It has been used to evaluate scoring 
power, ranking power, and docking power against other 
significant scoring functions as a well-known benchmark 
[53]. Hence, we incorporated such a benchmark into 
our comparative analysis after removing protein having 
higher than 0.5 TM-score according to our training set. 
Finally, we had 266 proteins in the benchmark (Addi-
tional file 1: Fig. S11).

Astex diverse set (ADS)
A well-known benchmark dataset for measuring the 
effectiveness of cavity identification tools and docking 
systems in the field of structure-based drug discovery 
is the Astex Diverse Set (ADS) [54]. It comprises a vari-
ety of drug-like ligands and relevant therapeutic targets. 
In assessing docking algorithms or cavity identification 
methods, the ADS is crucial for a number of reasons, 
including (i) diversity of ligands, (ii) diversity of binding 
modes, (iii) a standardized benchmark, (iv) realistic drug 
design cases, (v) a well-established benchmark [14].

MTiOpenScreen set (MTi)
The test data used in this study were obtained from 
the benchmark set of MTiOpenScreen [55]. MTi also 
includes a variety of 27 different crystal structures of 
important pharmacological targets, such as nuclear 
receptors, G Protein-Coupled Receptors (GPCRs), and 
enzymes. Therefore, it is a good test of the accuracy and 
robustness of docking programs across different target 
classes [14]. In accordance with the CB-Dock proce-
dure, we used a set of 27 complexes gathered by them in 
our study as a baseline for evaluation. Utilizing MTi as a 
benchmark has the potential to mitigate the inherent bias 
in comparative analysis.

PDBBind (General set)
PDBbind is extensively utilized within the community of 
computational drug design, making it a benchmarking 
standard [56]. The PDBbind database contains a diverse 
collection of protein-ligand complexes, spanning a broad 
spectrum of target proteins, ligand sizes, and binding 
modes. In addition to the aforementioned characteris-
tics of the general set, the PDBBind general set has been 
employed to depict the efficacy of research involving low-
quality data [57, 58]. The absence of a high-quality PDB 
file for a target protein might be considered a practical 
challenge. In such cases, the utilization of a low-quality 
benchmark can serve as a valuable tool for evaluating the 
reliability and effectiveness of computational pipelines. 

Furthermore, the utilization of subpar benchmarks may 
be employed to subject models to rigorous stress test-
ing. If a model has strong performance on a benchmark 
of poor quality, it implies that the model exhibits more 
robustness and less susceptibility to noise [59]. Therefore, 
we selected the most updated PDBBind v2020-general 
set to represent low-quality data.

The entire automated blind docking programs, such 
as CB-Dock, provide their protocol as a web server to 
execute one by one pair. Therefore, using the entire PDB-
bind as a benchmark is time-consuming, so we randomly 
sampled 522 protein-target complexes from the PDBBind 
v2020-general set. Then, the TM-score was calculated 
pairwise in 522 to remove structural overlap with the 
other three benchmarks. To eliminate proteins with simi-
lar structures in the PDBBind general set, we computed 
the pairwise TM score and removed proteins with TM 
values over 0.5. The TM scores for proteins in the PDB-
Bind general set have been computed for all benchmarks 
as a second step. Once a protein’s TM score exceeds 0.5, 
it is deemed unfit for further consideration and is sub-
sequently rejected. The next step is the remaining pro-
tein molecules were subjected to a comparative analysis 
against the training set and all proteins with a TM-score 
greater than 0.5 with any structure in the training set 
were removed. In conclusion, a total of 53 proteins with 
a TM-Score below 0.5 were identified, showcasing signifi-
cant diversity. [60].

While DUD-E primarily emphasises the inclusion 
of active, inactive, and decoy compounds to assess the 
screening capability of a docking program in distinguish-
ing active compounds from inactive ones, the PDBbind 
dataset primarily focuses on predicting the binding pose 
of protein-ligand complexes with known binding geom-
etry. Alt Additionally, the PDBbind dataset also evalu-
ates the ranking ability of different compounds and the 
prediction of absolute affinity values. The presence of a 
diversified and well-designed benchmark is crucial for 
evaluating the performance of molecular docking sys-
tems. Therefore, we are validating our blind docking 
software based on binding site identification and posture 
prediction utilizing DUD-E and CASF-2016 as our core 
datasets.

Astex Diverse Set (ADS), and MTiOpenScreen Set 
(MTi) have been used in CBDock validation analysis, so 
we used them to reduce bias in our study by following 
CBDock [14].

The study incorporated the latest version of PDBBind 
(General Set) to examine the robustness of the pipe-
line and accurately represent data of inferior quality. 
As a result, CoBDock has undergone testing on notable 
benchmarks, namely DUDE and CASF-2016, which are 
recognized for their size and prominence. Additionally, 
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three supplementary benchmarks have been utilized to 
provide further insight into the capabilities of CoBDock.

Comparison with state‑of‑the‑art methods
CoBDock contains two cavity detection tools, Fpocket 
and P2Rank, used to determine the binding site. Besides 
the unique features of Fpocket and P2Rank discussed 
above, they have significant cavity identification per-
formance, especially P2Rank. P2Rank surpasses a num-
ber of currently available tools, such as two commonly 
used standalone programs (Fpocket and SiteHound), a 
thorough consensus-based tool (MetaPocket 2.0) (Addi-
tional file 1: Table S3), and a recent deep learning-based 
method (DeepSite). Therefore, CoBDock has been com-
pared with Fpocket and P2Rank on binding side iden-
tification performance. In addition, subsequent to the 
discovery of binding sites by the utilization of Fpocket 
and P2rank, the obtained coordinates were employed 
to conduct local docking via our designated molecular 
docking program. A comparative analysis has been con-
ducted to assess the efficacy of ligand pose prediction in 
the P2rank and Fpocket pipelines, in comparison to the 
CoBDock methodology.

CB-Dock is a recent protein-ligand docking tool that 
uses a blind docking approach to predict the binding 
poses of ligands to proteins after identification of the 
binding site. CB-Dock uses its designed cavity detec-
tion approach, called CurPocket. CurPocket is a com-
putational approach utilized for the prediction of 
protein-ligand binding sites [61]. This method employs 
the calculation of curvature factors to identify and locate 
cavities present on the surface of the protein. In order to 
represent the blind docking pipeline, we used CB-Dock 
and CB-Dock2, the updated version, for comparison.

CB-Dock2 contains structural- and template-based 
pipelines. The process of template-based docking com-
mences by utilizing a pre-existing structure as a reference 
point, establishing an initial foundation for the subse-
quent docking computations. The implementation of 
this approach has the potential to decrease the number 
of feasible conformations that necessitate exploration, 
hence enhancing the efficiency of docking computations. 
Hence, template-based docking is the easiest approach 
for docking [62, 63]. However, other pipelines perform 
blind docking (“free docking”) without pre-existing 
structures for a target or a ligand [63]. Hence, the present 
study exclusively evaluates CB-Dock2’s structural-based 
predictions for comparative analysis. Consequently, each 
pipeline employed in this research abstains from utilizing 
any pre-existing data, thereby mitigating potential biases.

In summary, CoB-Dock was compared against four 
different pipelines: Fpocket, P2Rank, CB-Dock and CB-
Dock2 (From this point, the structural-based docking 

tool in CB-Dock2 shall be referred to as CB-Dock2.) on 
two different tasks: (i) binding site identification and (ii) 
ligand binding pose prediction.

Performance metrics
Cavity identification accuracy
An 8 Å distance threshold from computational to experi-
mental Ligand binding sites (LBSs) is the standard accu-
racy metric in docking [18]. Besides accuracy for each 
model, We calculated the mean and median distances 
between ligand binding sites (LBSs) predicted by the 
cavity detection tool and LBSs of the native structure to 
demonstrate cavity identification performance for each 
program.

Binding pose prediction accuracy
The root-mean-square deviation of atomic positions, or 
RMSD, is a measure of the average separation between 
the atoms of stacked proteins (typically the backbone 
atoms). The docking pose performance is evaluated by 
RMSD metrics between the predicted ligand docking 
pose and the native structure:

where, are, respectively, the coordinates of heavy atom i 
in the predicted and experimental model of the ligand. 
N  is the total number of heavy atoms. The tool obrms 
is used to calculate the symmetric RMSD between each 
ground truth and predicted ligand pose [29]. If the 
RMSD value is lower than 2 Å, the predicted ligand pose 
can be labelled as a true prediction; otherwise, it should 
be labelled as a false prediction to calculate accuracy [14, 
18].

Results and discussion
The unique feature of CoBDock compared with other 
blind docking pipelines is its data processing 3D struc-
ture into grid boxes using a voxelisation process. The data 
processing method allows a more interpretable machine 
learning model to be rapidly built compared to more 
complex deep learning models. Also, once the compo-
nent numbers of molecular docking and cavity identifica-
tion within the CoBDock pipeline are increased using our 
parallel process approaches, the binding site identifica-
tion and pose prediction performance will be enhanced. 
Even combining six components into the pipeline to 
build the current version of CoBDock has great poten-
tial in blind docking because of the consensus approach. 
Hence, CoBDock has undergone rigorous testing, com-
parative analysis with contemporary models, and thor-
ough examination.

RMSD =

√

√

√

√

N
∑

n=1

[(xi − xi,ref )2 + (xi − xi,ref )2 + (xi − xi,ref )2)]/N
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As illustrated in Fig.  1, the intuition behind the CoB-
Dock method is to integrate various docking and cav-
ity detection methods in a hybrid parallel pipeline to 
increase the accuracy of identification of the binding 
sites and pose prediction in a blind docking setting. Each 
program and tool in the CoBDock individually search 
the entire surface of a protein, and the results can reach 
a consensus on binding location. Therefore, combining 
molecular docking methods and cavity detector tools 
results in robust docking performance.

The main metrics to evaluate the performance of the 
cavity-detected docking methods are identification of the 
binding site and pose prediction [14, 18]. Therefore, these 
assumptions were tested in two sections: (i) identification 
of the binding site and (ii) binding pose prediction.

Identification of binding site
The performance of the identification of the binding site 
directly affects the pose prediction performance in blind 
docking. Finding the correct ligand pose is only possi-
ble with the actual binding site or a good prediction of 
the binding site. Therefore, binding site identification 

performance is vital for any automated docking methods. 
One of the metrics for binding site identification perfor-
mance is the distance between the pocket and the cen-
troid of the native ligand. We used 8 Å to calculate the 
accuracy in Fig. 4 [18]. Additional metrics for evaluating 
the identification of binding sites include the mean and 
median distance from the centroid of the actual binding 
site. A decrease in both the mean and median values sug-
gests that the predicted location is in closer proximity to 
the actual ground truth position. To quantify the overall 
performance of programs, the average metrics across all 
the ligand-target pairs in each dataset have been com-
puted, and represented in Fig. 4 with an “Average” label.

The results of Fpocket, as a well-known cavity detector, 
show that the choice of the benchmark can drastically 
reduce accuracy from 0.78 to 0.38. Despite the consider-
able variability in the accuracy of Fpocket, which dimin-
ishes its reliability, it is noteworthy that Fpocket achieved 
the second-highest accuracy score of 0.635 among the 
programs evaluated in the CASF-2016 assessment. In 
contrast, CoBDock had an accuracy of 0.667 with mini-
mal variability in its accuracy measurements. Fpocket 

Fig. 4 The binding site-prediction accuracy of CoBDock compared with state-of-art methods. The binding site-prediction accuracy of CoBDock 
was compared with four representative pocket identification algorithms (Fpocket, P2Rank, CB-Dock and CB-Dock1). The mean distance is the mean 
distance between the centroid of the ground true binding site and the centroid of the predicted binding site. Likewise, median distance 
is the median distance between true and predicted pocket centroids, better accounting for outliers. Accuracy (within 8 Å) is the proportion 
of predicted binding sites whose centroid was within a threshold of 8 Å of the centroid of the true binding site
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demonstrated a modest level of competitiveness on the 
PDBbind benchmark, with an accuracy of 0.415. In com-
parison, our performance surpassed this with a higher 
accuracy of 0.434. CoBDock demonstrates a lower mean 
and median value (Fig. 4B, C) on PDBbind compared to 
Fpocket. The lower mean and median distance represent 
how close the predicted location is to the ground truth 
binding site. Therefore, it is plausible that the utilization 
of CoBDock might potentially enhance the RMSD perfor-
mance when evaluated against the PDBBind benchmark.

P2Rank, as a machine learning cavity detector, is 
competitive against CoBDock on DUD-E. P2Rank pro-
vided 0.853 accuracy, while The accuracy of CoBDock 
was 0.872. Also, the mean distance of CoBDock on the 
DUD-E benchmark is 4.608, while its median distance is 
3.867 Fig. 4. In comparison, P2Rank has a mean distance 
of 5.178 and a median distance of 4.086 on the same 
benchmark. Regarding the outcomes of CASF-2016, it 
was observed that CoBDock had a 10% enhancement in 
accuracy compared to P2rank, while also demonstrat-
ing lower mean and median values. These results suggest 
that the predicted position of CoBDock is closer to the 
ground truth than the anticipated location of P2Rank. 
Our method outperformed P2Rank on the other bench-
marks, including ADS, MTi and PDBbind by providing 
4–15% more accuracy. Also, CoBDock provided lower 
mean and median on these benchmarks 4B and 4C.

The blind docking pipelines, CB-Dock and CB-Dock2, 
were evaluated and compared to CoBDock on five bench-
mark datasets. The range of increase in accuracy for 
binding site detection versus CB-Dock pipelines ranges 
from 13 to 40%. The CoBDock pipelines exhibited signifi-
cantly lower mean and median values compared to the 
CB-Dock pipelines across five benchmark datasets.

To demonstrate the overall performances of programs, 
we calculated the mean of metrics. The superiority of 
CoBDock in identifying the binding site compared to 
four other programs (Fpocket, P2Rank, and CB-Dock 
pipelines) is evident based on its higher average accu-
racy, as well as its lower average mean and median values 
Fig. 4.

Pose prediction
We constructed a separate pipeline using Fpocket and 
P2Rank to identify binding sites. In order to assess the 
pose prediction performance of the two cavity detection 
programs, Fpocket and P2Rank, we execute PLANTS 
with a 15Ax15Ax15A about the centroid of the top-
ranked pocket for each program. Finally, only the pose 
having the lowest energy on the top binding site is con-
sidered to calculate RMSD.

CoBDock has shown superior performance compared 
to Fpocket, with an increase in accuracy ranging from 

11 to 33% Fig. 5. The lower mean and median, shown in 
Fig. 5B, C, respectively, demonstrate that CoBDock con-
sistently outperforms Fpocket in terms of pose prediction 
performance across all benchmarks.

P2Rank exhibited a competitive level of performance in 
terms of binding site prediction when evaluated against 
CoBDock using the DUD-E benchmark dataset. While 
CoBDock exhibits a slightly greater accuracy and lower 
median performance compared to P2Rank on DUD-E, 
it is noteworthy that CoBDock has a substantially lower 
mean RMSD, as seen in Fig.  5B. The significantly lower 
means indicate that CoBDock generally provides lower 
RMSD for protein in DUD-E. The study’s analysis of 
CASF-2016, which serves as a significant reference point, 
clearly indicated that CoBDock had superior perfor-
mance compared to P2rank, with a 10% improvement in 
the accuracy of RMSD measurements. As for the other 
three benchmarks, it was observed that CoBDock exhib-
ited superior results compared to P2Rank, with a nota-
ble increase in RMSD accuracy ranging from 13 to 22%. 
Additionally, the lower mean and median values seen in 
Fig.  5B, C provide evidence that CoBDock has superior 
performance in predicting ligands compared to P2Rank 
on ADS, MTi, and PDBbind.

As for CB-Dock pipelines, CoBDock exhibits supe-
rior performance compared to CB-Dock pipelines, with 
an increase in accuracy ranging from 8 to 44% across 
all benchmarks. The superior accuracy of CoBDock was 
substantiated by its lower mean and median values com-
pared to the CB-Dock pipelines Fig. 5B, C.

The substantial under-performance of both CB-Dock 
pipelines in contrast to CoBDock can be attributed to 
two primary factors: (i) limited binding site identifica-
tion performance and (ii) local docking parameters. The 
limited binding site performance of the subject under 
investigation is depicted in Figure 4. This limitation has 
a direct impact on the overall efficacy of local docking. 
The results presented in Figure  12 indicate a notable 
improvement in the accuracy of CB-Dock pose predic-
tion by approximately 10% when PLATNS was employed 
as opposed to Vina. In order to enhance the performance 
of CB-Dock, it performs docking at five distinct cavities 
and thereafter reevaluates them based on their binding 
energy. This approach reveals that the cavity detection 
approach employed by CB-Dock exhibits certain limi-
tations in accurately identifying binding sites. However, 
the utilization of solely the first cavity by CoBDock to 
achieve notable performance serves as compelling evi-
dence of the enhanced predictive capabilities in binding 
site determination.

The average metrics in Fig.  5 indicate the overall per-
formance of the root mean square deviation (RMSD). 
The CoBDock pipeline has an average accuracy of 0.567 
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across five benchmarks, whereas the P2Rank pipeline 
demonstrates an average accuracy of 0.441, as the second 
most successful pipeline. Additionally, it should be noted 
that CoBDock had the lowest mean and median values 
when considering the results of the five benchmarks. As 
a result, it is evident from Fig. 5 that the performance of 
CoBDock surpasses that of other pipelines without any 
ambiguity.

The ligand coordinates obtained from the ground 
truth have been utilized for conducting local docking, 
as depicted in Fig.  5, labelled as “Maximum”. The low 
accuracy difference between “Maximum” and CoBDock 
serves as more evidence supporting the efficacy of the 
CoBDock pipeline. Furthermore, the accuracies of “Maxi-
mum” indicate that there is potential for further enhance-
ment in the optimization of local docking parameters or 
the implementation of consensus local docking methods 
(Fig. 5).

Ablation analysis
Gaining a comprehensive understanding of the func-
tioning principles of CoBDock can significantly enhance 
one’s comprehension of the process of identifying bind-
ing sites. Gaining a comprehensive understanding of 

the characteristics shown by the binding site can facili-
tate the development of a more precise pipeline for blind 
docking. Hence, before doing the case study, we examine 
the concepts of ablation and feature analysis.

The Boruta feature selection approach is employed to 
choose several characteristics from the output of each 
program in order to optimize performance. To deter-
mine the need for each component in CoBDock, an abla-
tion analysis is conducted by systematically deleting each 
component individually.

Using molecular docking methods as a cavity detec-
tion tool is an approach to identifying binding sites 
[13, 17, 64]. We designed to demonstrate that using 
our grid box sampling approach with docking methods 
can be competitive against a cavity detection tool spe-
cifically designed to order the cavity detection outputs. 
Although the utilization of just docking features dur-
ing model training (as depicted by ’No cavity detection 
tool’ in Fig. 6) did not exceed the performance attained 
by exclusively using the cavity detection tool program 
model (as indicated by ’No docking programs’ in Fig. 6), 
it did give superior outcomes in comparison to Fpocket 
across all benchmarks, except PDBbind. ’No docking 
programs’ was 4–45% more accuracy than Fpocket on 

Fig. 5 The pose prediction performance of CoBDock compared with state-of-art algorithms. The pose prediction performance of CoBDock 
compared with Fpocket, P2Rank, and CB-Dock (CB-0), structure-based blind docking of CB-Dock2 (CB-1), and template-based blind docking 
of CB-Dock2 (CB-2) on five benchmark datasets. The performance metric is mean and median RMSD. Mean RMSD is the mean RMSD 
between predicted ligand poses and true ligand poses. Likewise, median RMSD is the median RMSD between predicted ligand poses and true 
ligand poses. The accuracy is the proportion of predicted ligand poses whose poses were within a threshold of 2 Å of RMSD
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three benchmarks. Furthermore, it exhibited superior 
performance compared to P2Rank, with an improvement 
ranging from 1 to 7% across all benchmarks.

The performance of CoBDock was seen to decline 
when a component was eliminated from the pipeline in 
all benchmark tests, except PDBbind, providing compel-
ling evidence that CoBDock requires all feature programs 
to enhance overall performance. The observed decrease 
in performance upon removing a single component sug-
gests that CoBDock might potentially enhance its perfor-
mance with the addition of more components. However, 
we leave an investigation into this as future work.

Feature analysis
The Boruta feature selection method has been employed 
to identify the most promising features, hence enhancing 
the interpretability of the model. Gaining an understand-
ing of feature significance is crucial in comprehending 
the predictive capabilities of CoBDock.

Figure  7 demonstrates that the number of Vina and 
PLANTS poses number in voxel features has the the 
maximum F-scores. In addition, the number of ligand 
configurations in a voxel for GalaxyDock3 and ZDOCK 
has a relatively high importance score, placing them 
among the ten most essential features. We also computed 
the distance between the mass centre of ligand poses and 
the voxel centre, which we labelled “X_distance” (where 
“X” is the name of a component program). Two of them, 

vina_distance and zdock_distance, are also among the 
top 10 essential features of Fig.  7. Other docking-based 
features, such as GalaxyDock_drug_score, have been 
selected by Boruta, but they possess a modest level of 
significance.

Boruta’s feature selection retained the majority of cav-
ity detection tool features for both Fpocket and P2Rank. 
In general, P2Rank features are more informative than 
Fpocket, supported by the P2Rank paper [15].

Figure  8 demonstrates a correlation between fea-
tures selected by Boruta. Some of Fpocket features, 
such as Fpocket_local_hydrophobic_density_score and 
Fpocket_number_of_alpha_spehere, exhibited a strong 
positive correlation, resulting in the red colouration of 
the matrix’s terminal region. With the exception of the 
Fpocket association with itself, there is a lack of sig-
nificant positive or negative correlations seen across 
the feature sets. The absence of a significant association 
provides evidence that our selection of molecular dock-
ing and cavity detection tools is sufficiently diversified to 
enhance the accuracy of binding site identification.

The findings depicted in Fig. 9 demonstrate that both 
PLANTS and GalaxyDock3 display a discernible ten-
dency to attract data points toward their respective 
positions within the Radviz visualization. The observed 
trend clearly indicates that the molecular docking algo-
rithms exhibit a notable proficiency in accurately cat-
egorizing the binding location. The substantial impact 

Fig. 6 The summary of the ablation analysis conducted on five benchmark datasets. The bar charts labelled A–D depict the model’s performance 
on ADS, DUD-E, CASF-2016, PDBbind, and MTi, respectively. The first bars depicted in each bar chart illustrate the comprehensive performance 
of CoBDock. The remaining bars have been categorized based on the absence of a specific component. Furthermore, we have eliminated all cavity 
detection tools and molecular docking programs, which are depicted as the last bars on each bar chart
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exerted by these programs on the data points sug-
gests that they make a substantial contribution to the 
differentiation and characterization of the binding 
interactions.

P2Rank was chosen as a competitive cavity detection 
tool due to its demonstrated high performance. How-
ever, it did not exhibit the behaviour of pulling data 
points towards itself in the Radviz visualization. How-
ever, the P2Rank_min_pose_id, which is positioned 
close to -1 on the X-axis, indicates a negative associa-
tion between the pose id and the binding site. Specifi-
cally, a lower pose identification has a higher likelihood 
of accurately determining the binding point. Further-
more, it can be observed that the Fpocket_min_pose_id 
exhibits proximity to −0.5, indicating a comparatively 
lower potential in comparison to P2Rank in terms of its 
ability to accurately identify the binding site.

It is noteworthy that the ZDOCK_distance feature 
is situated in close proximity to P2Rank on the dis-
play, despite its distinction as a non-small molecule-
protein docking tool. Furthermore, the negative value 
of ZDOCK_distance (-1) on the X-axis suggests that 
a lower ZDOCK_distance might potentially aid in the 
determination of the binding site. The variable “sam-
pled_pose_number_zdock_at_location” denotes the 
numerical identifier assigned to a certain pose inside 
the grid box. The location of the feature, approximately 
at +1 on the X-axis, further suggests that ZDOCK 
should explore more poses inside the ground truth 
binding site.

Exploring the application of CoBDock: a case study
CoBDock achieved higher accuracy on the five datasets: 
ADS, MTi, DUD-E, CASF-2016 and PDBBind. Figure 10 
also demonstrates an example of how successfully CoB-
Dock not only finds cavities but also poses predictions by 
demonstrating pose prediction for 1T4E and 3MXF.

To determine the precise location and poses, CoBDock 
conducted a comprehensive search of the whole surface 
of 1T4E and 3MXF utilizing molecular docking pro-
grams and cavity detection techniques. Subsequently, the 
obtained 3D structural outcomes are transformed into 
vector representations using voxelization. The CoBDock 
model was utilized to rank the voxels of 1T4E and 3MXF 
in order to identify the most favourable cavity. The cyan 
pockets in Fig. 10 represent the locations of these prom-
ising cavities. Finally, the algorithm conducts a process 
of local docking using PLANTS in order to identify the 
poses depicted in Fig. 10.

CoBDock enables users to simultaneously manipulate 
the quantities of ligands and proteins, hence enhancing 
the practicality of the docking process. The software has 
the capability to perform docking of several ligands into 
various targets.

Conclusion
The study presents Consensus Blind Dock (CoBDock), 
a pipeline designed to increase accuracy in blind 
docking by integrating molecular docking and cav-
ity detection tools in parallel. The novel blind dock-
ing method, CoBDock, achieved 0.50−0.88% accuracy 

Fig. 7 The feature importance for selected features by Boruta. Boruta selected features by optimising feature numbers. The selected features have 
been assessed using the ANOVA F-Test feature importance test. While the Y-axis demonstrates the F-score calculated by ANOVA, on the X-axis, 
the feature names in the format “PROGRAM_NAME”_“FEATURE_NAME” are displayed
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on different benchmark binding site studies. CoBDock 
outperformed P2Rank, Fpocket, CB-Dock and CB-
Dock2 based on performance not only identification 
of binding site but also pose prediction. Also, the bind-
ing pose prediction accuracy (< 2 Å RMSD) of CoB-
Dock is between 0.40−0.67%, the best results on five 
benchmarks.

As an end-to-end automated pipeline, CoBDock saves 
time and provides practical docking when a set of ligands 
are screening against a set of targets. The features of 
CoBDock expand blind docking applications, including 
target fishing, drug repositioning, and polypharmaco-
logical drug design. The performance of CoBDock will be 
investigated on these topics in further investigations.

Fig. 8 The heatmap to represent correlation score between selected features by Boruta. The correlation score is computed for every chosen pair 
of features. Blue (-1) indicates a strong negative connection between characteristics, whereas Red (+1) signifies a significant positive association. The 
colour white, denoted by the value of 0, signifies the absence of any association between the characteristics. The feature names are represented 
in the “PROGRAM_NAME”_“FEATURE_NAME” format
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CoBDock encompasses a total of four distinct molec-
ular docking algorithms and two specialized tools for 
cavity detection. The performance of the system may 
be enhanced more effectively by increasing the num-
ber of components, as ablation Analysis results indicate 
that a pipeline with more components provides higher 
performance.

Abbreviations
CoBDock  Consensus blind dock
ML  Machine learning
LBSs  Ligand binding sites
RMSD  Root-mean-square deviation
NMR  Nuclear magnetic resonance
EM  Electron microscopy
ADS  Astex Diverse Set
MTi  MTiOpenScreen Set
DUD-E  Directory of Useful Decoys Enhanced
PDB  Protein Data Bank
RMSD  The root-mean-square deviation of atomic positions
SVM  Support vector machines
KNN  K-nearest Neighbors Classifier
TPOT  A Tree-Based Pipeline Optimization Tool for Automating Machine 

Learning

Fig. 9 The representation of Radviz visualization for selected features by Boruta. The x and y coordinates of the data points correspond 
to the projected locations of the data points inside a two-dimensional space. It facilitates the identification of data clusters, patterns, and trends. 
Also, when a data point is situated at the origin (0, 0, 0), it signifies that the contributions of the characteristics (variables) represented by the axes 
are comparatively equitable and impartial for that specific data point. The feature names are represented in the “PROGRAM_NAME”_“FEATURE_
NAME” format

Fig. 10 The binding site identification and pose prediction 
performance of CoBDock for two proteins, 1T4E and 3MXF. A and C 
represent the cavity and the ligand pose on proteins, 1T4E and 3MXF. 
The proteins are coloured by magenta, and the structure in cyan 
represents the cavity found as the top prediction. B and D represent 
the natural ligand and prediction of ligand pose, in green and yellow 
respectively
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CB-0  CB-Dock
CB-1  Structure-based blind docking of CB-Dock2
CB-2  Template-based blind docking of CB-Dock2
CB-C  Combining of all poses of CB-Dock2
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