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Abstract 

Identifying bioactive conformations of small molecules is an essential process for virtual screening applications 
relying on three-dimensional structure such as molecular docking. For most small molecules, conformer generators 
retrieve at least one bioactive-like conformation, with an atomic root-mean-square deviation (ARMSD) lower than 1 
Å, among the set of low-energy conformers generated. However, there is currently no general method to prioritise 
these likely target-bound conformations in the ensemble. In this work, we trained atomistic neural networks (AtNNs) 
on 3D information of generated conformers of a curated subset of PDBbind ligands to predict the ARMSD to their 
closest bioactive conformation, and evaluated the early enrichment of bioactive-like conformations when ranking 
conformers by AtNN prediction. AtNN ranking was compared with bioactivity-unaware baselines such as ascending 
Sage force field energy ranking, and a slower bioactivity-based baseline ranking by ascending Torsion Fingerprint 
Deviation to the Maximum Common Substructure to the most similar molecule in the training set (TFD2SimRefMCS). 
On test sets from random ligand splits of PDBbind, ranking conformers using ComENet, the AtNN encoding the most 
3D information, leads to early enrichment of bioactive-like conformations with a median BEDROC of 0.29 ± 0.02, 
outperforming the best bioactivity-unaware Sage energy ranking baseline (median BEDROC of 0.18 ± 0.02), and per-
forming on a par with the bioactivity-based TFD2SimRefMCS baseline (median BEDROC of 0.31 ± 0.02). The improved 
performance of the AtNN and TFD2SimRefMCS baseline is mostly observed on test set ligands that bind proteins 
similar to proteins observed in the training set. On a more challenging subset of flexible molecules, the bioactivity-
unaware baselines showed median BEDROCs up to 0.02, while AtNNs and TFD2SimRefMCS showed median BEDROCs 
between 0.09 and 0.13. When performing rigid ligand re-docking of PDBbind ligands with GOLD using the 1% top-
ranked conformers, ComENet ranked conformers showed a higher successful docking rate than bioactivity-unaware 
baselines, with a rate of 0.48 ± 0.02 compared to CSD probability baseline with a rate of 0.39 ± 0.02. Similarly, on a phar-
macophore searching experiment, selecting the 20% top-ranked conformers ranked by ComENet showed higher hit 
rate compared to baselines. Hence, the approach presented here uses AtNNs successfully to focus conformer ensem-
bles towards bioactive-like conformations, representing an opportunity to reduce computational expense in virtual 
screening applications on known targets that require input conformations.
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Introduction
Predicting the three-dimensional (3D) target-bound con-
formations of molecules is important in geometry-based 
virtual screening techniques, where the potential activity 
of millions of molecules is computationally assessed [1]. 
Virtual screening relies mostly on ligand-based meth-
ods such as pharmacophore searching [2, 3] or shape-
based screening [4, 5], or structure-based methods such 
as docking experiments [6–8] that are performed by 
predicting bioactive (target-bound) conformations [9], 
and require input of one or multiple 3D conformations 
for each tested molecule. However, there is a theoreti-
cally infinite number of conformers for a molecule, while 
only one or a few bioactive conformations are obtained 
from crystallographic or cryogenic electron microscopy 
experiments.

Conformer generation methods produce a limited 
number (e.g., in the order of hundreds) of plausible con-
formations on the Potential Energy Surface (PES) [10–
14]. Conformer generators are often evaluated in their 
ability to retrieve known bioactive conformations using 
a minimal number of generated conformers [15, 16]. 
Using a common threshold of atomic-root mean square 
deviation (ARMSD) lower than 1 Å, recent generators 
such as the CSD conformer generator [10] or OMEGA 
[11] retrieve a bioactive conformation for around 90% 
of ligands from the Platinum [15] dataset with a con-
former ensemble size of 250. Most generated conformers 
of flexible ligands are not bioactive-like (e.g., all ligands 
where 250 or more conformers were generated in the 
Musafia and Senderowitz study [17] showed less than 30 
bioactive-like conformations), and testing all conform-
ers in virtual screening applications requires significant 
computational resources. Therefore, having a fast way to 
distinguish bioactive-like from non-bioactive-like con-
formations among generated conformers allows short-
listing conformations and hence reducing time spent in 
virtual screening.

Previous works investigated if conformer energy 
thresholds can be identified to discriminate bioac-
tive conformations of ligands: guided by the induced fit 
model [18], studies observed that bioactive conforma-
tions often bind with a conformation that is not located 
at the global potential energy surface minima [19, 20], 
due to conformational change occurring upon binding. 
While different studies used diverse energy computation 
methods, leading to conflicting results [21], recent works 
on high-quality ligand conformations showed that more 
than half of them have low strain energy, computed with 
quantum mechanics: Zivanovic et al. showed that 73% of 
bioactive conformations are found at a maximum of  3kBT 
(1.78 kcal/mol for T = 298 K) from a local minimum con-
former [22], and Tong and Zhao found a median strain 

energy of 2.5  kcal/mol [23]. Hence, exploring a diverse 
low energy landscape seems to be adequate when aiming 
to obtain conformations relevant for binding to a protein.

The use of conformation energy and descriptors to 
separate bioactive from non-bioactive conformations 
has been explored in several works. Diller and Merz [24] 
analysed 65 protein-ligand complexes and showed that 
bioactive conformations are found more often among 
conformers with larger solvent accessible surface area 
(SASA), higher radius of gyration (RGyr) and lower num-
ber of internal interactions, suggesting that ligands are 
more likely to bind in extended conformations. Auer 
and Bajorath [25] showed that high strain energy was a 
good discriminator to retrieve mostly bioactive confor-
mations in the conformer ensemble for 228 ligands of 18 
protein targets. Musafia and Senderowitz [17] developed 
models using combinations of 2D and 3D descriptors of 
71 ligands, showing that selecting conformations using 
binned values of SASA and the principal moment of iner-
tia magnitudes were able to enrich bioactive-like confor-
mations and impoverish (i.e., decrease the number of, as 
defined by the authors in cited publication) non-bioactive 
conformations in these selected ensembles. Surprisingly, 
none of the energy terms computed were selected by the 
best models for bioactive-like conformation enrichment. 
The authors also published a review [26] detailing work 
conducted in this endeavour until 2010. There are a few 
notable follow-up studies published after this review. 
Using a dataset of 123 FDA approved drugs, Avgy-David 
and Senderowitz [27] showed that retaining 70% of con-
formers ranked by the energy difference between the 
Boltzmann average and the local minimum conforma-
tion retrieved a bioactive conformation for 80% of the 
ligands. On a larger dataset of 260 ligands, Habgood [28] 
showed that using a pluralistic approach compiling the 
top-ranked conformer from ascending potential energy 
and ascending solvation energy ranking leads to modest 
improvements of early enrichment of bioactive-like con-
formations compared to using the top-ranked conform-
ers of a single ranking method. Therefore, descriptors 
such as the SASA or the RGyr, and the (strain) energy 
showed limited discriminative power of bioactive-like 
conformations among conformer ensembles, and fur-
ther research is needed to find more information-rich 
descriptors.

Turning to the analysis of chemistry data, deep learn-
ing can be harnessed to extract information from con-
formations for fast and accurate property, energy, or 
force prediction, using machine learning potentials [29]. 
Deep learning has recently gained popularity in chem-
istry applications such as molecule generation [30, 31], 
3D generation models [30, 32], molecular property pre-
diction [33], conformation generation [34, 35] molecular 
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docking [36, 37], binding affinity prediction [38, 39] or 
protein/complex structure prediction [40, 41]. As one 
particular implementation of deep learning models, 
atomistic neural networks (AtNN) process individual 
atom features along with encoding of their coordinates to 
obtain a single contribution per atom, that are summed 
to obtain a conformation-level output prediction. Ini-
tial AtNNs like ANI [42] or AIMNet [43] use atom-wise 
environment vectors with radial and angular features, 
produced using a modified version of the Behler and Par-
rinello symmetry functions [44], as input in atom-type 
specific neural networks to obtain energy prediction 
within chemical accuracy. Gilmer et  al. [45] use a mes-
sage passing neural network where raw interatomic dis-
tances are encoded in the edge feature (real or virtual 
bonds), to predict 13 QM9-computed properties [46] 
within chemical accuracy (as described in the work of 
Faber et al. [47]).

AtNNs developed later followed the interaction block 
paradigm, pictured in Fig. 1, where the message passing 
is performed between raw atomic embeddings encoding 
at least the atomic number, convolving messages between 
neighbouring atoms (up to a certain cut-off) using basis 
function representations of 3D information such as dis-
tances, valence angles, or torsion angles; increasing 
amount of 3D information incorporated is often referred 
to as expressiveness of the graph neural network [48]. The 
mean absolute error of QM9 properties prediction using 
ComENet [49], that encodes distances along with valence 
angles and torsion angles, is on average half the one using 
the older SchNet model only encoding distances [50] 
(e.g., the mean absolute error of the HOMO-LUMO gap 
is 63 meV for SchNet and 32 meV for ComENet). There-
fore, the recent more expressive AtNNs are state-of-the-
art models for processing molecular conformations to 
predict their properties.

To our knowledge, AtNNs have not been used for bio-
active conformation biasing, i.e., to extract specific infor-
mation that discerns bioactive-like conformations from 
non-bioactive conformations of the same ligand. In this 
work, we trained AtNNs on generated conformers of a 
curated subset of PDBbind  [51]   ligands to predict the 
overlayed ARMSD of a given conformation to its closest 
known bioactive conformation. AtNN predictions were 
then used to rank an initial pool of conformers, with the 
aim of selecting a smaller conformer ensemble with an 
enrichment of bioactive-like conformations, to be further 
input in a rigid-ligand docking algorithm. Compared to 
the latest study on bioactive conformation biasing [28], 
the size of the PDBbind dataset after curation is a hun-
dred times larger, allowing re-evaluation of previously 
identified descriptor (e.g., SASA or RGyr) and energy 
ranking methods on this larger dataset.

Methods
PDBbind data processing
Data on bioactive conformations were obtained from 
PDBbind [51]  refined and general sets v2020, which is 
the largest dataset of protein-ligand complexes extracted 
from the Protein Data Bank (PDB) with corresponding 
binding affinity values. PDBbind metadata was extracted 
from the downloaded tab-separated index files. The 
starting PDBbind dataset contains 19,443 complexes for 
12,921 unique ligands.

To restrict the current work to complexes with known 
metadata, the first step (step 1. in Fig. 2) was to remove 
PDBbind entries having no Uniprot accession number 
(the “Uniprot ID” field is filled with “------” for 354 com-
plexes) and no ligand name (the field “ligand name” is 
“()” for 2 complexes). A ligand name cleaning was then 

Fig. 1 Schematic representation of AtNNs architecture. A AtNNs 
take as input a conformation in the form of atomic numbers 
with corresponding atomic coordinates to output a single value 
for the conformation. B Architecture of an interaction block. A new 
atom embedding is produced by using an input atom embedding 
and basis functions (encoding the 3D structure) through a message 
passing paradigm performing convolutions between atoms 
in a neighbourhood subgraph defined by a distance cut-off
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applied, removing the extra parenthesis surrounding the 
3-letter codes and applying some manual corrections 
listed in Additional file 1 to fit up-to-date ligand names 
in the PDB. PDBbind instances that didn’t have a 3-letter 
ligand name present in Ligand Expo [52], representing 
mostly polymers, oligosaccharides, or outdated 3-letter 
codes, were removed. This step left 16,743 complexes 
with 12,671 unique ligands from the original dataset.

To check if the ligand structures determined in the 
PDB corresponds to their reference structure in Ligand-
Expo, the second step (step 2 in Fig.  2) was a chirality-
aware structure matching between the two molecules 
as follows. The mapping between 3-letter code ligand 
names in the PDB to corresponding reference stereo-
specific CACTVS SMILES structures was obtained 
from the LigandExpo website. SMILES were parsed 
using RDKit [53] v.2020.09.1.0 with Python 3.7.10 using 
the MolFromSmiles function. Bioactive conformations 
were extracted primarily from mol2 files using the Mol-
FromMol2File function in RDKit. For the 2054 ligands 
for which the mol2 file could not be parsed (e.g., error 
in atom typing, or invalid valency), the sdf file was used 

instead using the SDMolSupplier function in RDKit. If 
the sdf file failed to be parsed as well, this conformation 
was not used. Hydrogen positions were not read from 
the mol2 and sdf files. The AssignStereochemistryFrom3D 
function in RDKit was used on molecules extracted from 
sdf files because they did not embed chirality, as opposed 
to mol2 files which has chirality embedded. Then, PDB-
bind and Ligand Expo molecules were standardised 
using the molvs package [54] 0.1.1 and neutralised using 
the neutralize_mol python function given in the RDKit 
Cookbook [55]. The two molecules were input to a chi-
rality-aware chemical structure match in RDKit using 
the GetSubstructMatch function. If the matching failed, 
the AssignBondOrdersFromTemplate RDKit function was 
used since bond orders in PDBbind might be different 
to the one in Ligand Expo (as protonation states are rec-
omputed in PDBbind), and matching was retried. After 
this matching step, we reached 13,460 conformations for 
10,481 unique ligands where structures including chiral-
ity from the PDB matched that from LigandExpo.

To produce a diversity of energetically plausible con-
formers to train the model on, the third step (step 3a in 
Fig.  2) was to generate up to 250 conformers using the 
CSD Conformer Generator [10] for each unique ligand 
using the CSD Python API [56] v.3.0.9 (hydrogens are 
added during generation). 250 conformers were gener-
ated for 6478 unique ligands (62%) and less than 250 con-
formers were generated for the remaining low flexibility 
ligands, and hence a total of 1,845,400 conformations 
(the distribution of the number of generated conformers 
is shown in Additional file 1: Fig. S1E).

To measure how similar generated conformers of 
ligands are to known bioactive conformations, the fourth 
and final step (step 3b in Fig.  2) was to compute the 
ARMSD of each conformer to each bioactive conforma-
tion of its corresponding ligand, referred to as  ARMSDbio. 
The ARMSD were computed using the CSD Python API 
rmsd function. We found at least one similar generated 
conformer using a 1 Å ARMSD threshold for 10,817 bio-
active conformations (comprising 8513 unique ligands), 
representing an 80% retrieval (81% of unique ligands). 
This retrieval is lower than the 92% reported by Cole 
et  al. [10] when evaluating the CSD conformer genera-
tor; however, the latter was done on the smaller Platinum 
dataset that contained ligands with an improved quality 
of the atom coordinates fitting to experimental electron 
density.

Dataset splitting
The dataset was split into training, validation, and test 
subsets with ratios of number of unique ligands of 80%, 
10% and 10%, respectively, using different splitting strate-
gies (step 4 in Fig.  2). The random split corresponds to 

Fig. 2 PDBbind data processing and splitting for modelling. Step 1. 
The PDBbind dataset is limited to complexes with known Uniprot 
ID of proteins and ligand names in LigandExpo. Step 2. Only ligands 
that matches the LigandExpo reference (chirality included) are kept. 
Step 3. Up to 250 conformers for each unique ligand are generated 
(a), leading to a dataset of conformers. The ARMSD to the closest 
bioactive conformation is computed for each conformer (b). Step 4. 
The dataset containing bioactive and generated conformers is split 
using a random or scaffold splitting
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a random repartition of the unique ligands between the 
training, validation, and test set. The list of unique ligands 
is shuffled, then the first 80% is assigned to the training 
set, the next 10% to the validation set and the remaining 
10% to the test set. The scaffold split was done by first 
computing the Bemis-Murcko scaffold of each ligand 
using the GetScaffoldForMol in RDKit, then computing 
the Morgan fingerprints radius 3 (from the family of Cir-
cular Fingerprints [57], similar to ECFP6) of the scaffold 
with RDKit, and clustering each ligand based on the scaf-
fold fingerprint such that the minimal Tanimoto similar-
ity within a cluster is 50% using the fcluster function in 
scipy [58]. Then the training subset was filled with ran-
domly chosen clusters until the number of conformations 
covered reaches 80%, the validation subset was filled with 
clusters up to another 10% of conformations, and the test 
subset was filled with the remaining clusters. Each split 
was done 5 times to account for subset variability.

A ligand can have multiple bioactive conformations 
(one conformation per complex with a protein, to the 
same or different proteins, as shown in the ligand-target 
distribution analysis in Additional file  1: Fig. S1), and 
therefore a generated conformer for the ligand will have 
one ARMSD per corresponding bioactive conformation. 
As it is counter-intuitive for modelling to have multiple 
output ARMSD values for a unique input conformer, 
we decided to only use the lowest  ARMSDbio (i.e., the 
ARMSD to the closest bioactive conformation) for fur-
ther analysis.

Model architecture and training
AtNNs take an atomic point cloud as input in the form 
of atomic numbers and positions (bond types are not 
considered), as shown in Fig.  1A. The atomic numbers 
are in this network type generally converted to vectors 
using a learnable embedding (i.e., each atomic number is 
mapped to an initial vector that is learned by the model) 
and the atomic positions are used to compute intera-
tomic distances, polar coordinates (encoding angles), and 
torsion angles. The atomic geometries are encoded with 
basis functions (inspired from physics) as edge features: 
for instance, SchNet [50] encodes distances using radial 
basis functions, DimeNet++ [59] encodes distances and 
polar coordinates respectively using Radial Bessel basis 
functions and 2D spherical Fourier-Bessel basis func-
tions using spherical harmonics, while ComENet [49] 
encodes distances along with torsion angles, and polar 
coordinates by using two distinct sets of spherical Bessel 
basis functions using spherical harmonics. One neigh-
bourhood subgraph per atom is built based on a distance 
cut-off. Interactions blocks use input atom embeddings 
and basis functions to produce new atom embeddings, 
pictured in Fig. 1B. Within an interaction block, the basis 

functions are processed to edge weights that will be com-
bined with the input atom embedding using a message 
passing paradigm, performing convolutions between the 
atoms in the neighbourhood subgraph to update each 
atom embedding. After going through a series of inter-
action blocks, each processed atom embedding is then 
input in a final series of feed-forward neural networks to 
obtain a single output value per atom, that are summed 
to obtain a single output value for the conformation.

In this work, three different AtNNs were used to 
extract information from a 3D conformation to obtain 
a single output, namely SchNet [50], DimeNet++ [59] 
and ComENet [49] and for details of each method please 
see the original works cited. Pytorch v.1.8.0 [60] was 
used as the neural network library, using the Torch Geo-
metric v.2.0.2 [61] implementation of the SchNet and 
DimeNet++ model and DIG v.1.0.0 [62] implementation 
of the ComENet model with default parameters (listed in 
“Default parameters for atomistic neural networks” sec-
tion in Additional file 1).

The heavy atoms of the conformation were given as 
input of each AtNN considered, and the output of each 
AtNN model was trained to predict the  ARMSDbio using 
a mean-squared error loss (MSELoss in Pytorch) with 
the default Pytorch Adam optimizer [63] with a learn-
ing rate of  10−5 for SchNet and  10−4 for DimeNet++ 
and ComENet, after initial learning rate tuning to reach 
monotonically decreasing validation loss throughout 
training. Early stopping with a patience of 5 on the vali-
dation loss was setup to stop the model once the vali-
dation loss has stopped decreasing, keeping the model 
with the lowest validation loss. One instance of each 
AtNN per split was trained, resulting in 15 models per 
split type, totalling 30 models per AtNN. The average 
epoch duration was 6  min for SchNet, and 8  min each 
for DimeNet++ and ComENet using a computer running 
Ubuntu 20.04 with an AMD Ryzen 9 5900x CPU, one 
Nvidia RTX 3080 GPU (using CUDA) and 32 GB RAM, 
with an average of 20 epochs per model for the random 
splits, and 15 epochs for the scaffold splits.

ARMSD regression evaluation
The regression performance of the model in retrieving 
the real  ARMSDbio value for input generated conformers 
of each test set was assessed with the root-mean-square 
error (RMSE) metric (using the MSELoss and sqrt func-
tions in Pytorch), and the coefficient of determination  R2 
(using the R2Score in torchmetrics [64] v0.9.1) between 
all predicted and real  ARMSDbio values.

Evaluation of the ranking of generated conformers
The primary objective of the current work was to test 
the ability of AtNN models to retrieve bioactive-like 
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conformations among the top ranked conformers and 
reduce the rate of non-bioactive conformations. Con-
formers having an  ARMSDbio lower than 1 Å were 
labelled as bioactive-like conformations, while conform-
ers having an  ARMSDbio higher than 2.5 Å were labelled 
as non-bioactive conformations, to stay consistent with 
the classification established by Musafia and Senderowitz 
[17]. For each molecule having at least one bioactive-like 
conformation and not having only bioactive-like con-
formations (as there would be no gain in ranking con-
formers in this case), generated conformers were ranked 
according to their AtNN predicted  ARMSDbio. The ranks 
were scaled (i.e., divided by the number of generated 
conformers for the molecule) to range between 0 and 
1, the rank of the first bioactive-like conformation and 
first non-bioactive conformation were stored, and the 
median rank per split was computed. Early enrichment 
of bioactive-like conformations and non-bioactive con-
formations were assessed using the Boltzmann-Enhanced 
Discrimination of Receiver Operating Characteristic 
(BEDROC) [65], which is a weighted version of the ROC 
metric, ranging between 0 and 1 to account for variable 
ratio of bioactive-like conformers per molecule, and giv-
ing higher values to conformer rankings having bioac-
tive-like conformations in earlier ranks. The BEDROC 
α parameter was set to 20, according to Truchon et  al. 
[65], where the presence of labelled conformations in the 
8% top-ranked will contribute to 80% of the score. The 
BEDROC of bioactive-like conformations will from here 
on be referred to as  BEDROCbio-like while the BEDROC 
of non-bioactive conformations will be referred to as 
 BEDROCnon-bio.

Generated conformers ranking baselines
Bioactivity‑unaware baselines
Five bioactivity-unaware baselines (i.e., methods that do 
not relying on knowledge of the bioactive conformation) 
have been evaluated in their abilities to enrich bioactive-
like conformation in early ranks. The first ranking base-
line was to rank conformers using a random number 
from a standard normal distribution for each conformer 
using the Numpy [66] random.randn function, in ascend-
ing order, and referred to as “Random order”. Some con-
former generators have (pseudo-)random generation 
order, and this baseline can mimic this scenario. This 
baseline evaluates how often we observe an early enrich-
ment of bioactive-like conformations or impoverishment 
of non-bioactive conformations by chance.

The second ranking baseline was to keep the original 
CSD conformer generator order, according to the like-
lihood of the torsion angle based on profiles observed 
in the Cambridge Structural Database (CSD), referred 
to as “CSD Probability”. Cole et al. [10] showed on the 

diverse Platinum dataset that this conformer generator 
is able to retrieve a bioactive conformation for 90% of 
molecules using all conformers, 70% using the first 10% 
of conformers and 40% using the first generated confor-
mation, using an ensemble size of 250 conformers, and 
therefore represents a strong baseline.

The third baseline was the Sage energy baseline, 
which is a ranking of conformers with ascending poten-
tial energy, as it was shown that in most of the cases, 
bioactive conformations have low strain energies to a 
local minima [21]. Single point energies were computed 
for each conformer (hydrogens were added using the 
AddHs in RDKit in case they were not embedded in the 
structure) using the Sage 2.1.0 force field [67] imple-
mented in the OpenFF 0.14.5 Python toolkit [68].

The fourth baseline was the SASA baseline, that 
ranks conformers by descending SASA value, as it was 
shown that bioactive-like conformations tend to have 
higher SASA compared to other conformers [24, 26]. 
The SASA of each conformer was computed using the 
rdFreeSasa.CalcSASA function in RDKit.

The fifth baseline was the RGyr baseline, that ranks 
conformers by descending RGyr, as it was shown that 
bioactive-like conformations tend to be more elon-
gated compared to other conformers [20, 24]. The RGyr 
of each conformer was computed using the Descrip-
tors3D.RadiusOfGyration function in RDKit.

Bioactivity‑based baseline
A sixth and last baseline depending on a reference 
dataset, in our case the training set, was designed, 
as opposed to the bioactivity-unaware approaches 
described in the previous subsection. For a given test 
molecule, the TFD2SimRefMCS baseline first identifies 
the closest molecule in the reference set using the Tani-
moto similarity of Morgan fingerprints, then computes 
the Maximum Common Substructure (MCS) between 
the two molecules (using the rdFMCS module [69] in 
RDKit), calculates the Torsion Fingerprint Deviation 
(TFD) [70] using torsion angles involved in the MCS 
between each test molecule conformer and the bioac-
tive conformation of the reference, and finally rank 
conformers according to the calculated TFD. Morgan 
fingerprints with radius 3 and including chirality, MCS 
with chirality matching and default TFD computations 
were performed in RDKit. For PDBbind molecules, the 
minimum TFD (across conformers) to reference MCS 
is lower than 0.25 for 80% of the molecules, as shown in 
Additional file 1: Fig. S2, indicating a low deviation to 
reference that can be harnessed to select bioactive-like 
conformations (which is also used in the CORES [71] 
method).
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Protein class dependent performance calculation
In order to analyse performance as a function of the 
protein target class, the ChEMBL database [72] version 
29 was downloaded in SQLite format and loaded into 
Python with pandas v.1.2.5 [73] to extract the first level 
protein classification information for as many Uniprot ID 
in PDBbind as possible. The SQL query to extract data is 
given in Additional file 1. A protein class was found for 
9428 complexes out of the 13,460 complexes present in 
the processed PDBbind dataset.

Since enzymes were the most represented protein class 
with 77% of complexes (7322 complexes), we additionally 
loaded the Enzyme classification data using the Enzyme 
Commission (EC) numbers from Expasy [74] where the 
available EC data was parsed in a table linking each Uni-
prot ID to the EC number. We obtained EC data for 8,800 
complexes out of the 13,460 in the processed PDBbind 
dataset. Ranking performances between classes of the 
third EC level (out of four) was compared.

Rigid‑ligand docking seed selection
To evaluate real-world relevance of the methods devel-
oped here, the model capabilities of selecting bioac-
tive-like conformations for rigid-ligand docking were 
assessed, with the objective of retrieving poses similar 
to the binding pose using a limited number of input con-
formations. For molecules having at least one bioactive-
like conformation, AtNNs (or baselines) were used to 
rank conformers, and the highest-ranking fraction of 1%, 
5%, 20% and 100% of all conformers were rigidly docked 
on the cognate protein, as shown in the workflow in 
Fig.  3. Proteins were prepared using the same sequence 
of functions with the CSD Python API, namely the 
add_hydrogens, remove_ligand, remove_all_metals and 
remove_all_waters functions. Rigid-ligand docking (fix_
ligand_rotatable_bonds set to “all”) was performed with 

GOLD [75] in the CSD Python API, where binding sites 
were defined as protein atoms at a maximal distance of 6 
Å from any cognate ligand atom, ten diverse poses were 
produced per conformer using the PLP scoring function, 
and the top-scoring pose per conformer was selected for 
downstream evaluation, i.e., a maximum of 250 poses per 
molecule for the 100% fraction.

For each fraction of selected conformers, the propor-
tion of molecules having a correct pose with an ARMSD 
within 2 Å to the native pose was identified, referred to 
as successful docking rate, when taking the top-scoring 
pose, or when taking the pose with the closest ARMSD 
to the native pose (to mimic the case where poses closest 
to the native pose are given the best score). It is worth 
noting that the ARMSD threshold to label bioactive-
like conformation (1 Å) is lower than the one generally 
used to discriminate successful docking poses (2 Å). The 
reason for this choice is that the former is an overlayed 
ARMSD (conformations are first aligned) while the lat-
ter is not overlayed (two poses are compared within the 
same frame, e.g., a binding pocket), leading to a larger 
number of degrees of freedom that makes it harder to 
retrieve the exact pose, hence the larger threshold chosen 
here for successful pose acceptance.

Flexible ligand docking baseline
As opposed to rigid-ligand docking that only samples 
the position of the ligand in the pocket, flexible-ligand 
docking also samples values of torsion angles centred on 
rotatable bonds of the ligand, leading to different per-
formances depending on the protein target as shown in 
an earlier study [76]. For each molecule tested in rigid-
ligand docking, the first generated conformer was used as 
seed, and ten poses were produced. Parameters in GOLD 
were the same as the one used in rigid-ligand docking 

Fig. 3 Rigid-ligand docking and pharmacophore searching workflow for one ligand, using the AtNN ranking method (blue numbers are 
predicted  ARMSDbio values). Up to 250 conformers have been first generated using the CSD conformer generator, then an AtNN is used to predict 
the  ARMSDbio, that will be used to rank conformations and select only a fraction of top ranked conformers as rigid-docking seed or to be tested 
using a pharmacophore query. The AtNN ranking approach was compared to baselines
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except for the rotatable bonds that were not fixed (fix_
ligand_rotatable_bonds set to None).

Pharmacophore searching
In addition to the rigid-ligand docking for structure-
based virtual screening, the early ranking of bioactive-
like conformers of the models and baselines was tested in 
a pharmacophore searching procedure to emulate ligand-
based screening, as shown in Fig.  3. For each test set, 
the bioactive conformation of each molecule in the test 
set was used to produce a pharmacophore query using 
CrossMiner [77] through the CSD Python API: all phar-
macophoric features among “donor projected”, “acceptor 
projected” and “ring planar projected” were computed 
for the conformation, and a random subset of up to 5 
features were chosen to represent a pharmacophore 
that fits the bioactive conformation. The generated con-
formers of the corresponding molecule were screened 
against the pharmacophore query. The molecules hav-
ing no generated conformer matching the pharmacoph-
ore were removed from the analysis, removing around 
half of the molecules in each test set, because either no 
bioactive-like conformation was present in the generated 
conformer set, or none of the bioactive-like conforma-
tions matched the pharmacophore (i.e., the pharmacoph-
ore search only compares the matching between features 
of the generated conformer and the query, while the 
ARMSD aggregates position difference between all heavy 
atoms). For fractions of the highest-ranking conformers 
of 1%, 5%, 20% and 100%, the fraction of molecule match-
ing the pharmacophore query, referred to as hit rate, was 
computed (100% fraction takes all conformers, therefore 
the hit rate is guaranteed to be 100%).

Results and discussion
AtNN conformer ranking shows early enrichment 
of bioactive‑like conformations on a par with the slower 
bioactivity‑based baseline
We first analysed whether  ARMSDbio predicted by 
AtNNs could be used to rank generated conformers with 
the objective of retrieving a higher rate of bioactive-like 
conformations  (ARMSDbio ≤ 1 Å) and a lower rate of 
non-bioactive conformations  (ARMSDbio > 2.5 Å) in the 
early ranks. On random and scaffold splits of a curated 
subset of PDBbind, we trained AtNNs with increasing 
levels of expressiveness (i.e., completeness of embed-
ded 3D information), namely SchNet, DimeNet++ and 
ComENet, on training sets to predict the  ARMSDbio 
then used the  ARMSDbio predictions in ascending order 
to rank generated conformers of corresponding test 
set molecules (regression performances are shown in 
“Regression results” section in Additional file  1: Fig. S3 
and Table  S1). We compared the AtNNs performance 

to five bioactivity-unaware baselines, that are randomly 
ordering conformers (Random order), initial conformer 
generator order based on CSD torsion angle probabil-
ity (CSD Probability), Sage force field ascending energy 
ranking (Sage energy), decreasing solvent accessible 
surface area (SASA) ranking, and decreasing radius of 
gyration (RGyr) ranking. We also designed a bioactivity-
based baseline, that ranks conformers by the Torsion 
Fingerprint Deviation (TFD) of the Maximum Com-
mon Substructure (MCS) to the bioactive conformation 
of the closest molecule in the training set (TFD2Sim-
RefMCS). The early enrichment of bioactive-like con-
formations for each method in the random and scaffold 
splits is shown in Fig. 4A; Table 1. On the random split 
test sets, the median  BEDROCbio-like is 0.12 ± 0.01 for the 
Random order baseline, on a par with the SASA baseline 
with a median  BEDROCbio-like of 0.13 ± 0.02, while the 
early enrichment of bioactive-like conformation is lower 
for the RGyr baseline, with a median  BEDROCbio-like 
of 0.05 ± 0.02, which is an opposite result to what was 
observed in previous studies [20, 24] on much smaller 
datasets (i.e., less than 100 ligands) that showed that 
bioactive-like conformations had higher SASA and RGyr. 
On the other hand, the early enrichment of bioactive-like 
conformations is better for the CSD Probability baseline 
with a median  BEDROCbio-like of 0.17 ± 0.02, and for the 
Sage energy baseline with 0.18 ± 0.03. The TFD2Sim-
RefMCS baseline leads to a median  BEDROCbio-like of 
0.31 ± 0.02, showing better early enrichment of bioactive-
like conformations for this bioactive-based method com-
pared to all bioactivity-unaware baselines. While ranking 
with SchNet predictions, the least expressive AtNN, 
leads to a lower median  BEDROCbio-like of 0.21 ± 0.05, 
the most expressive ComENet model leads to a median 
 BEDROCbio-like of 0.29 ± 0.02, being the only AtNN to 
be on a par with the TFD2SimRefMCS baseline. Hence, 
more expressive AtNNs leads to better early enrichment 
of bioactive-like conformations than bioactivity-unaware 
baselines, and with similar performance to the bioactiv-
ity-based baseline.

We next analysed the early enrichment of all 
methods on the scaffold split test sets, as shown in 
Fig.  4B; Table  1. SchNet ranking showed a median 
 BEDROCbio-like of 0.16 ± 0.05, on a par with the best 
bioactivity-unaware baseline that was Sage energy 
with a median  BEDROCbio-like of 0.17 ± 0.04. On the 
other hand, DimeNet++ and ComENet outperformed 
the bioactivity-unaware baselines with a median 
 BEDROCbio-like of 0.21 ± 0.02 and 0.23 ± 0.05 respec-
tively, and on a par with the TFD2SimRefMCS base-
line with a median  BEDROCbio-like of 0.26 ± 0.05, but 
showing lower values than their random split counter-
parts. These results also display the higher variability 



Page 9 of 23Baillif et al. Journal of Cheminformatics          (2023) 15:124  

between the different scaffold splits compared to the 
random splits, with for instance a standard devia-
tion of 0.05 for ComENet on the scaffold splits versus 
0.02 on the random splits. Therefore, we observe simi-
lar trends but with higher variability for the median 
 BEDROCbio-like for each ranking method, and lower 
median  BEDROCbio-like for AtNNs than for the random 
split test sets.

We also compared the computational cost of ranking 
between AtNNs and the baselines. After an initial train-
ing lasting two hours on average, ranking conformers 
of molecules in a test set using SchNet, DimeNet++ 
and ComENet takes on average 70  s, 100  s and 80  s 
wall clock time respectively using a Nvidia RTX 3080 

Fig. 4 Median BEDROC of bioactive-like (A, B) and non-bioactive conformations (C, D) for all molecules of the test sets, for the random (A, C) 
and scaffold splits (B, D). Each point represents a split. AtNNs and TFD2SimRefMCS show higher median BEDROC of bioactive-like conformations 
than bioactivity-unaware baselines indicating better early enrichment of desirable conformations. They also show lower median BEDROC 
of non-bioactive conformations, indicating higher impoverishment (lower early enrichment) of undesirable conformations

Table 1 Median  BEDROCbio-like on test sets (mean ± standard 
deviation)

Ranker Random split Scaffold split

Random order 0.12 ± 0.01 0.13 ± 0.03

CSD probability 0.17 ± 0.02 0.16 ± 0.03

Sage energy 0.18 ± 0.03 0.17 ± 0.04

SASA 0.13 ± 0.02 0.12 ± 0.02

RGyr 0.05 ± 0.02 0.05 ± 0.06

SchNet 0.21 ± 0.05 0.16 ± 0.05

DimeNet++ 0.26 ± 0.02 0.21 ± 0.02

ComENet 0.29 ± 0.02 0.23 ± 0.05

TFD2SimRefMCS 0.31 ± 0.02 0.26 ± 0.05
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with CUDA. The TFD2SimRefMCS baseline required 
a higher runtime with an average of 300  s, while the 
CSD Probability baseline does not require any addi-
tional processing, the Random order baseline takes 
one random shuffling iteration (requiring less than one 
microsecond of runtime), and the Sage energy requires 
around 500  s of wall clock time. Therefore, using the 
most expressive AtNN leads to an early enrichment of 
bioactive-like conformations comparable to using the 
bioactivity-based baseline at a lower processing cost.

AtNN conformer ranking shows early impoverishment 
of non‑bioactive conformations on a par 
with the bioactivity‑based baseline
We next evaluated if the model could help removing 
non-bioactive conformations from the early ranks, with 
the objective to reduce the number of false positives 
from potentially wrong poses in rigid-ligand docking 
or avoid wrong hits in pharmacophore searching. This 
is referred to by Musafia and Senderowitz [17] as early 
‘impoverishment’. To this end, we computed the median 
BEDROC of non-bioactive conformations, shown in 
Fig.  4C; Table  2. The Random order baseline shows a 
median  BEDROCnon-bio of 0.32 ± 0.03 while the CSD 
Probability, Sage energy, and SASA baselines show simi-
lar median  BEDROCnon-bio of 0.30 ± 0.02, 0.33 ± 0.03 and 
0.30 ± 0.04 respectively, indicating similar impoverish-
ment of non-bioactive conformations. It is worth noting 
that for the Random order baseline, the  BEDROCnon-bio 
(0.32) is higher than the  BEDROCbio-like (0.12), this is 
due to the number of non-bioactive conformations being 
higher than the number of bioactive-like conformations 
for most molecules, and the parameter α of the BED-
ROC equal to 20, where the presence of labelled (i.e., 
bioactive-like, or non-bioactive) conformations in the 
8% top-ranked contributes to 80% of the score. The RGyr 
baseline show lower median  BEDROCnon-bio of 0.2 ± 0.07 

compared the other bioactivity-unaware baselines, indi-
cating a better early impoverishment of non-bioactive 
conformations. While the RGyr baseline was not better 
than the Random order baseline for early enrichment of 
bioactive-like conformation, it shows worse early impov-
erishment of non-bioactive conformations (i.e., having 
less more non-bioactive conformations in early ranks), 
suggesting that non-bioactive conformations have on 
average lower RGyr values in the tested molecules. Sch-
Net, DimeNet++, ComENet and the TFD2SimRefMCS 
baseline showed median  BEDROCnon-bio of 0.11 ± 0.07, 
0.05 ± 0.03, 0.03 ± 0.02 and 0.10 ± 0.03 respectively, indi-
cating an improved early impoverishment compared 
to bioactivity-unaware baselines. On the scaffold split 
test sets, we observe similar values for the bioactivity-
unaware baselines while AtNNs and TFD2SimRefMCS 
show slightly higher median  BEDROCnon-bio, as shown 
in Fig.  4D; Table  2, indicating similar trends. There-
fore, these results indicate that conformer ranking using 
AtNNs leads to early enrichment of bioactive-like con-
formations and impoverishment of non-bioactive confor-
mations on a par with the slower TFD2SimRefMCS and 
better than bioactivity-unaware baselines.

For flexible ligands with a low number of bioactive‑like 
conformations, bioactivity‑based methods outperform 
bioactivity‑unaware baselines for early enrichment 
of bioactive‑like conformations
Ranking performances evaluated on all ligands might 
be overestimated, as the enrichment of bioactive-like 
conformations might be biased by the number of gen-
erated conformers (i.e., higher for molecules having low 
flexibility) or the ratio of bioactive-like conformations 
(i.e., higher for molecules having a lot of bioactive con-
formations). We thus identified a restricted subset of 
molecules having 250 generated conformers with fewer 
than 5% of bioactive-like conformations. This repre-
sented a total of 1485 molecules, on average 214 per 
test set, representing around 29% of analysed ligands, 
for which it is harder to find a bioactive conformation 
by chance in early ranks. As opposed to the conformer 
ranking analysis that was performed on the complete 
test sets in the previous section, we evaluated the early 
enrichment of bioactive-like conformations on mol-
ecules from this ‘hard’ test set only. We found that the 
bioactivity-unaware baselines failed at enriching bioac-
tive-like conformations in the early ranks, with the best 
baseline being the Sage energy baseline with a median 
 BEDROCbio-like of 0.02 ± 0.01, as shown in Fig.  5A; 
Table  3. On the other hand, DimeNet++, ComENet 
and the TFD2SimRefMCS baseline showed higher 
enrichment, with 0.09 ± 0.03, 0.12 ± 0.04 and 0.13 ± 0.02 
respectively. For each ranking method, the median 

Table 2 Median  BEDROCnon-bio on test sets (mean ± standard 
deviation)

Ranker Random split Scaffold split

Random order 0.32 ± 0.03 0.31 ± 0.03

CSD probability 0.3 ± 0.02 0.3 ± 0.04

Sage energy 0.33 ± 0.03 0.3 ± 0.04

SASA 0.3 ± 0.04 0.28 ± 0.04

RGyr 0.2 ± 0.07 0.21 ± 0.09

SchNet 0.11 ± 0.07 0.15 ± 0.03

DimeNet++ 0.05 ± 0.03 0.08 ± 0.04

ComENet 0.03 ± 0.02 0.05 ± 0.02

TFD2SimRefMCS 0.11 ± 0.03 0.14 ± 0.03
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 BEDROCbio-like on these harder test sets are less than 
half the median  BEDROCbio-like on the full test sets. 
ComENet showed an average median  BEDROCbio-like 
of 0.30 versus the Sage energy showing 0.18 on the 
full test sets, representing a 1.6-fold increase, while 
there is a sixfold increase on this hard subset. On 
the scaffold split test sets, SchNet showed a median 
 BEDROCbio-like of 0.03 ± 0.01, that did not outperform 
the three bioactivity-unaware baselines like the Ran-
dom order baseline with a median  BEDROCbio-like of 
0.02 ± 0.01, as shown in Fig.  5B; Table  3. DimeNet++ 
and ComENet showed a similar median  BEDROCbio-like 
value with 0.07 ± 0.02 (threefold increase), outperform-
ing bioactivity-unaware baselines, and on a par with 

Fig. 5 Median BEDROC of bioactive-like (A, B) and non-bioactive conformations (C, D) on harder test sets containing only molecules having 
250 generated conformers and less than 5% bioactive-like conformations, for the random (A, C) and scaffold splits (B, D). Each point represents 
a split. AtNNs and TFD2SimRefMCS show higher median BEDROC of bioactive-like conformations than bioactivity-unaware baselines indicating 
better early enrichment of desirable conformations. They also show lower median BEDROC of non-bioactive conformations, indicating higher 
impoverishment (lower early enrichment) of undesirable conformations

Table 3 Median  BEDROCbio-like on harder test sets 
(mean ± standard deviation)

Ranker Random split Scaffold split

Random order 0.01 ± 0.0 0.02 ± 0.01

CSD probability 0.01 ± 0.01 0.01 ± 0.0

Sage energy 0.02 ± 0.01 0.02 ± 0.01

SASA 0.01 ± 0.0 0.01 ± 0.0

RGyr 0.0 ± 0.0 0.0 ± 0.0

SchNet 0.05 ± 0.03 0.03 ± 0.01

DimeNet++ 0.09 ± 0.03 0.07 ± 0.02

ComENet 0.12 ± 0.04 0.07 ± 0.02

TFD2SimRefMCS 0.13 ± 0.03 0.1 ± 0.05
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the TFD2SimRefMCS baseline with 0.10 ± 0.05 (fivefold 
increase). Hence, AtNN and TFD2SimRefMCS ranking 
methods outperform the bioactive-unaware baselines 
for the early enrichment of bioactive-like conforma-
tions with a greater difference ratio on a more difficult 
subset, compared to the whole test set.

We also investigated the ranking metrics of non-bio-
active conformations on this hard subset. The ranges of 
values are shown in Fig. 5C, D; Table 4, and they are simi-
lar to those observed on the whole test set, in that bioac-
tivity-unaware baselines showed median  BEDROCnon-bio 
higher than 0.2, while it did not exceed 0.1 for AtNNs 
and TFD2SimRefMCS. Therefore, AtNN and TFD-
2SimRefMCS ranking methods also outperform the 
bioactivity-unaware baselines for the impoverishment of 
non-bioactive conformations in early ranks in the more 
difficult subset.

AtNN ranking performance advantage 
over bioactivity‑unaware baselines is observed exclusively 
on protein classes overrepresented in PDBbind
We next assessed if ranking performance was depend-
ent on the number of samples per protein class, as 
we observe an unequal distribution of complexes for 
ChEMBL protein classes, as shown in Additional file  1: 
Table S2. As the SASA and RGyr baselines did not show 
better early enrichment of bioactive-like conformations 
or early impoverishment of non-bioactive conformations 
than random, they were not considered in the following 
analysis. We grouped the ligands by corresponding pro-
tein class and computed the median  BEDROCbio-like and 
 BEDROCnon-bio per split. On the random split test sets, 
for the enzyme protein class, being the most represented 
class (7322 out of 9902 labels), the median  BEDROCbio-like 
is 0.30 ± 0.02 for ComENet, 0.34 ± 0.01 for the TFD2Sim-
RefMCS baseline and 0.18 ± 0.02 for the Sage energy 
baseline, showing that the AtNN and TFD2SimRefMCS 

baseline are consistently showing better early enrich-
ment than the bioactivity-unaware baselines, as shown 
in Additional file  1: Fig. S4 and Table  S2. For the other 
classes, the inter-split variability can exceed 0.05 BED-
ROC units, thus it is unsure whether the AtNNs and 
the TFD2SimRefMCS baseline are really outperforming 
the other baselines: on transcription factors, the TFD-
2SimRefMCS baseline shows a median  BEDROCbio-like 
of 0.26 ± 0.08, ComENet a median  BEDROCbio-like of 
0.25 ± 0.12, while the Sage energy baseline shows a 
median  BEDROCbio-like of 0.18 ± 0.07. On the scaffold 
splits test sets, for the enzyme class, the best AtNN 
ComENet shows a median  BEDROCbio-like of 0.24 ± 0.04, 
higher than the best bioactivity-unaware baseline Sage 
energy with a median  BEDROCbio-like of 0.18 ± 0.03, and 
lower than the TFD2SimRefMCS baseline with a median 
 BEDROCbio-like of 0.29 ± 0.04. The high inter-split vari-
ability (higher than 0.05 BEDROC units) observed for 
the other protein classes does not allow to differentiate 
performances between all methods. For the early impov-
erishment of non-bioactive conformations, the median 
 BEDROCnon-bio for enzymes is consistently over 0.25 for 
bioactivity-unaware baselines, while for bioactivity-based 
methods it is below 0.10 on the random splits and below 
0.15 on the scaffold splits, and the high inter-split vari-
ability for other classes is also observed here. Therefore, 
the bioactivity-based methods only show improved early 
enrichment of bioactive-like conformations and impov-
erishment of non-bioactive conformations for enzymes.

We then focused on enzymes in more detail, separating 
the different classes using the third level of the EC clas-
sification. There is also an unequal distribution of sam-
ples in these enzyme classes, as shown by the histogram 
of the number of complexes per enzyme class in Addi-
tional file 1: Fig. S5. When ranking conformers, we found 
that AtNN and TFD2SimRefMCS baselines consistently 
outperform the bioactivity-unaware baselines on the 
median  BEDROCbio-like for the first, third and sixth most 
represented enzyme classes out of 134 classes, namely 
the 2.7.11 class of protein-serine/threonine kinases with 
a median  BEDROCbio-like of 0.31 ± 0.05 for ComENet ver-
sus 0.22 ± 0.04 for the Sage energy, the 3.4.21 class of the 
serine endopeptidases with a median  BEDROCbio-like of 
0.39 ± 0.07 for ComENet versus 0.12 ± 0.06 for the Sage 
energy, and the 3.4.23 class of aspartic endopeptidases 
with a median  BEDROCbio-like of 0.45 ± 0.16 for ComENet 
versus 0.15 ± 0.07 for the Sage energy, as shown in Addi-
tional file  1: Fig. S6A, B and Table  S3. For the other 
enzyme classes, there is no observed difference between 
the AtNN ranking and bioactivity-unaware baselines 
(e.g., for the fourth most represented enzyme class that is 
4.2.1, comprising hydro-lyases), or there is a large inter-
split variability, as shown for the eighth most represented 

Table 4 Median  BEDROCnon-bio on harder test sets 
(mean ± standard deviation)

Ranker Random split Scaffold split

Random order 0.31 ± 0.01 0.29 ± 0.03

CSD probability 0.29 ± 0.01 0.25 ± 0.04

Sage energy 0.3 ± 0.02 0.26 ± 0.04

SASA 0.28 ± 0.03 0.24 ± 0.04

RGyr 0.16 ± 0.03 0.15 ± 0.1

SchNet 0.09 ± 0.05 0.13 ± 0.04

DimeNet++ 0.04 ± 0.02 0.05 ± 0.03

ComENet 0.02 ± 0.0 0.04 ± 0.02

TFD2SimRefMCS 0.07 ± 0.02 0.1 ± 0.04
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class that is 2.1.1 (comprising methyltransferases), where 
the median  BEDROCbio-like ranges between 0 and 0.85 for 
SchNet ranking. Similarly, we analysed the early impov-
erishment of non-bioactive conformations using the 
median  BEDROCnon-bio. We observed that AtNN and 
TFD2SimRefMCS baselines consistently outperforms 
the bioactivity-unaware baselines for the three most-
represented enzyme classes, with median  BEDROCnon-bio 
on average under 0.2 for AtNN and TFD2SimRefMCS 
ranking, and median  BEDROCnon-bio on average over 
0.2 for the bioactivity-unaware baselines. These results 
indicate that the AtNNs and bioactivity-based baseline 
show better enrichment of bioactive-like conformations 
and impoverishment of non-bioactive conformations for 
the most-represented protein target classes in the train-
ing/reference data. Hence, if we have more ligands in the 
training set for an enzyme of interest, we are more likely 
to identify bioactive-like conformations of new ligands.

AtNN ranking is more efficient on test molecules having 
a large MCS to training molecules
We next analysed whether the size of the MCS to the 
training set molecule with the highest Tanimoto similar-
ity of Morgan fingerprint (with radius 3) was an indica-
tor of good model performance. We grouped the MCS 
sizes by bins of 10 heavy atoms and show the distribution 
of median  BEDROCbio-like for each splitting strategy in 
Fig. 6; Table 5. We observe that for MCS sizes between 20 
and 40 heavy atoms, the AtNNs and TFD2SimRefMCS 
ranking show better early enrichment than the bioactiv-
ity-unaware baselines on the random split, as shown in 
Fig.  6A: for the bin “[30, 40[”, ComENet ranking shows 
a median  BEDROCbio-like of 0.44 ± 0.10, the TFD2Sim-
RefMCS baseline shows 0.48 ± 0.07 while the best bioac-
tivity-unaware baseline Sage energy shows 0.09 ± 0.05. 
There is no early enrichment advantage of bioactivity-
based methods over bioactivity-unaware methods when 

Fig. 6 Median BEDROC of bioactive-like conformations depending on the size (number of heavy atoms) of the MCS to the closest training 
molecule, for the random (A) and scaffold (B) split test sets. Each point represents a split. For MCS sizes between 20 and 40 heavy atoms, AtNNs 
and TFD2RefSim rankers outperforms the bioactivity-unaware baselines

Table 5 Median  BEDROCbio-like for different MCS size to training molecules (mean ± standard deviation)

Test set MCS size binned Random order CSD probability Sage energy SchNet DimeNet++ ComENet TFD2SimRefMCS

Random [0, 10[ 0.35 ± 0.08 0.41 ± 0.14 0.4 ± 0.18 0.44 ± 0.11 0.48 ± 0.13 0.43 ± 0.12 0.37 ± 0.13

[10, 20[ 0.16 ± 0.02 0.22 ± 0.03 0.26 ± 0.04 0.27 ± 0.02 0.28 ± 0.04 0.26 ± 0.03 0.23 ± 0.05

[20, 30[ 0.11 ± 0.02 0.15 ± 0.02 0.14 ± 0.02 0.21 ± 0.03 0.23 ± 0.05 0.3 ± 0.03 0.41 ± 0.07

[30, 40[ 0.04 ± 0.02 0.07 ± 0.03 0.09 ± 0.05 0.23 ± 0.08 0.31 ± 0.08 0.44 ± 0.1 0.48 ± 0.07

[40, 50[ 0.04 ± 0.04 0.12 ± 0.15 0.04 ± 0.05 0.13 ± 0.06 0.3 ± 0.12 0.43 ± 0.32 0.55 ± 0.17

Scaffold [0, 10[ 0.15 ± 0.05 0.39 ± 0.28 0.33 ± 0.14 0.35 ± 0.21 0.44 ± 0.32 0.38 ± 0.17 0.5 ± 0.25

[10, 20[ 0.16 ± 0.03 0.2 ± 0.04 0.23 ± 0.05 0.19 ± 0.07 0.22 ± 0.04 0.22 ± 0.04 0.21 ± 0.05

[20, 30[ 0.1 ± 0.01 0.13 ± 0.03 0.14 ± 0.02 0.13 ± 0.06 0.19 ± 0.06 0.25 ± 0.07 0.33 ± 0.07

[30, 40[ 0.05 ± 0.03 0.08 ± 0.01 0.1 ± 0.08 0.13 ± 0.07 0.21 ± 0.08 0.28 ± 0.09 0.35 ± 0.11

[40, 50[ 0.06 ± 0.07 0.05 ± 0.07 0.22 ± 0.36 0.18 ± 0.1 0.28 ± 0.25 0.48 ± 0.36 0.36 ± 0.42
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the MCS size is lower than 20 heavy atoms. Addition-
ally, we compared the size of the MCS and the minimum 
TFD (as computed by the TFD2SimRefMCS ranker) for 
molecules in PDBbind depending on whether the clos-
est reference molecule shared the same enzyme class or 
not. When the reference molecule has the same enzyme 
class, the size of the MCS was larger than when the ref-
erence molecule has a different enzyme class, with 24 ± 8 
versus 16 ± 7 heavy atoms, indicating that ligands bind-
ing to the same enzyme class in PDBbind have similar 
substructures, as well as the median minimum TFD that 
was lower with 0.04 versus 0.12, as shown in Additional 
file 1: Fig. S2. We can hence conclude that the AtNN and 
TFD2SimRefMCS ranking methods showed better early 
enrichment of bioactive-like conformations than bioac-
tivity-unaware baselines for ligands having a MCS larger 
than 20 heavy atoms to a training molecule.

Analysing ComENet early enrichment success
We next analysed several individual ranking examples 
for ligands of the most represented enzyme classes to try 
to understand cases where ComENet succeeds or fails 
at enriching bioactive-like conformations in early ranks. 
We started with the ranking of generated conformers of 
the ILI ligand from the 3ivh complex in the first random 
split test set. The bioactivity-unaware baselines failed in 
identifying bioactive-like conformations in early ranks, 
with  BEDROCbio-like ranging from 0.005 for the Random 
order baseline and the Sage energy baseline. ComENet 
outperformed the bioactivity-unaware baselines, with a 
 BEDROCbio-like of 0.68. The TFD2SimRefMCS baseline 
outperformed the AtNNs, with a  BEDROCbio-like of 0.85. 
Relating  ARMSDbio and the ComENet prediction, shown 
in Fig. 7A, it can be seen that ComENet predictions are 
positively correlated with the  ARMSDbio, with a Pearson 
coefficient of 0.78, meaning that conformations with low 
ComENet prediction have on average lower  ARMSDbio, 
increasing the chance of finding bioactive-like conforma-
tions at early ranks when sorting by ascending ComENet 
prediction.

We next analysed the Sage energies with regards to 
the  ARMSDbio, shown in Fig. 7B. At best, there is a weak 
correlation between these two features (Pearson coeffi-
cient = 0.12, p-value = 0.05), meaning that the low-energy 
conformers of this ligand do not have a low  ARMSDbio 
(i.e., the bioactive conformation is strained). We then 
investigated the relationship between the  ARMSDbio 
and the TFD of the MCS to bioactive conformation of 
the closest molecule in the training set, which was the 
“842” ligand, sharing a large MCS representing more 
than half of each molecule with 30 heavy atoms. As 
shown in Fig.  7C, the two values are positively corre-
lated, with a Pearson coefficient of 0.59, and showing that 

bioactive-like conformations have low TFD values, lower 
than 0.10. This means that the model identified conform-
ers of the test molecule having similar 3D configuration 
of the MCS to the closest training molecule.

We next analysed whether the model captured any 
similarity between the 3D structure of the MCS. We 
matched similar generated conformations between the 
two molecules based on the torsion angles involved in 
the MCS, binning torsion angles by 10 degrees, and we 
predicted values using ComENet for each conformation 
in a matched pair, showed in Fig. 7D. The predicted val-
ues between pairs of conformations with similar MCS are 
positively correlated with a Pearson coefficient of 0.87. 
Hence, we can conclude that the model learned to give 
similar output values for molecules that share similar 3D 
configuration of their MCS.

To compare the bioactive conformations of the test 
molecule and closest training molecules, we superim-
posed the complexes with PDB codes 3ivh and 3n4l 
(where the “842” ligand is bound to the same protein), 
shown in Fig. 7E. We observed that the bioactive confor-
mations have a similar binding pose for the MCS, which 
explains the correlation between predicted  ARMSDbio 
and how the model was able to retrieve bioactive-like 
conformations of the ILI ligand. These results suggest 
that the model is learning  ARMSDbio bias from specific 
substructure conformations that are present in the train-
ing set, helping the prediction for a substructure in the 
test set.

Analysing ComENet early enrichment failures
We next analysed cases where the model fails at early 
enrichment of bioactive-like conformations despite hav-
ing a large MCS to the training set. For the ranking of 
the JA4 ligand in the 6ma1 complex, Sage energy rank-
ing outperforms ComENet ranking for early enrichment 
with  BEDROCbio-like of 0.191 and 0.100 respectively. 
The TFD2SimRefMCS ranker was the best method with 
a  BEDROCbio-like of 0.897. The positive correlation of 
 ARMSDbio with the predicted ComENet values (Pear-
son coefficient = 0.29), as shown in Fig.  8A, is on a par 
with its correlation with the Sage energy (Pearson coeffi-
cient = 0.25), as shown in Fig. 8B, both lower than its cor-
relation with TFD to MCS of closest reference molecule 
(Pearson coefficient = 0.78), as shown in Fig. 8C. The only 
difference between the test ligand and the closest ligand 
(J9V ligand seen in the 6ma5 complex) in the training set 
is the addition of a chlorine atom, as visualised on Fig. 8E. 
However, we retrieve no apparent correlation between 
the ComENet predictions when matching conformers 
with torsion angles in the MCS using bins of 20 degrees, 
shown in Fig.  8D. This result shows that a single atom 
difference between two chemical structures can lead to 
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very different AtNN predictions. When looking at other 
test ligand predictions, we observe similar behaviour 
when training set molecules were similar except add-
ing/removing halogen atoms (e.g., 4lwv ligand similar to 
4lwu ligand, or 5t18 ligand similar to 5jrs ligand, data not 
shown). This might be due to the under-representation of 
halogen atoms in the molecules in PDBbind, making the 

neural network learning less from halogen atomic envi-
ronment, and failing to produce accurate  ARMSDbio on 
the test ligand. Hence one case where model performance 
significantly deteriorates is when ranking molecules that 
differ from the training set structures by a halogen atom.

Another failure mode of the AtNN ranking are cases 
where the test set molecule is a substructure of a larger 

Fig. 7 Inspection of a ComENet success case of early retrieval of bioactive-like conformations for the ILI ligand in the 3ivh complex. A Actual 
 ARMSDbio compared to ComENet prediction. B  ARMSDbio compared to the Sage energy. C  ARMSDbio compared to the TFD to the MCS 
of the closest molecule in training set. D Comparison between the ComENet predictions of the generated conformers of the test molecule 
and the predictions of generated conformers of the closest molecule based on matching conformers using torsion angles of their MCS. E Overlay 
between the bioactive pose of the ILI ligand in the 3ivh complex (green) and closest ligand “842” binding the same protein pocket in the 3n4l 
complex (cyan)
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training molecule, such as the MT3 ligand in the 3efj 
complex being a substructure of the AM7 ligand from 
the 2rfn complex. Both ligands show the same bind-
ing pose of their MCS, but the training set ligand has 
an extra tail directed towards outside the binding 
pocket, as pictured in Fig.  9E. The AtNN learned to 
recognize the correct structure of the MCS as shown 

by the positive correlation between the ComENet pre-
diction of the test molecule MCS and closest training 
molecule MCS when matching torsion angles (bins 
of 10°), with a Pearson coefficient of 0.74, as shown in 
Fig.  9D. However, the overall ComENet predicted val-
ues are not correct due to the addition of new atoms, 
as shown in Fig. 9A. Adding new atoms adds terms to 

Fig. 8 Inspection of a ComENet failure case of early retrieval of bioactive-like conformations for the JA4 ligand in the 6ma1 complex. A Actual 
 ARMSDbio compared to ComENet prediction. B  ARMSDbio compared to the Sage energy. C  ARMSDbio compared to the TFD to the MCS 
of the closest molecule in training set. D Comparison between the ComENet predictions of the generated conformers of the test molecule 
and the predictions of generated conformers of the closest molecule based on matching conformers using torsion angles of their MCS. E Overlay 
between the bioactive pose of the JA4 ligand in the 6ma1 complex (green) and closest ligand J9V binding the same protein pocket in the 6ma5 
complex (cyan)
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the sum of atomic contributions (that results in the 
single value  ARMSDbio prediction) and modifies the 
atomic environment that each interaction block is pro-
cessing to obtain atomic contributions. Hence, another 
case where the AtNN ranking does not outperform 

TFD2SimRefMCS baseline is when the tested ligand is a 
substructure of a larger training ligand. Therefore, even 
when the MCS between the test molecule and its clos-
est training molecule is larger than 20 heavy atoms, the 
model is prone to error due to specific atom changes or 
for significant molecular size difference.

Fig. 9 Inspection of a ComENet failure case of early retrieval of bioactive-like conformations for the MT3 ligand in the 3efj complex. A Actual 
 ARMSDbio compared to ComENet prediction. B  ARMSDbio compared to the Sage energy. C  ARMSDbio compared to the TFD to the MCS 
of the closest molecule in training set. D Comparison between the ComENet predictions of the generated conformers of the test molecule 
and the predictions of generated conformers of the closest molecule based on matching conformers using torsion angles of their MCS. E Overlay 
between the bioactive pose of the MT3 ligand in the 3efj complex (green) and closest ligand AM7 binding the same protein pocket in the 2rfn 
complex (cyan)
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Selecting the AtNN highest‑ranked conformers for GOLD 
rigid‑ligand re‑docking of PDBbind complexes leads 
to higher successful docking rate than bioactivity‑unaware 
baselines
We next assessed the selection of highest-ranked con-
formers by AtNNs in rigid-ligand docking, to validate 
if the early enrichment of bioactive-like conformations 
previously observed helps in a structure-based practical 
application. Using a limited number of conformers allows 
to accelerate rigid-ligand docking: since the runtime 
scales linearly with the number of docked conformers, 
then selecting a fraction of 1% of conformers represents 
a 100-fold speedup. For each PDBbind test set ligand, a 
fraction of the top-ranked conformers, ranked by AtNNs 
or baselines, were rigidly docked to their cognate protein 
using GOLD. Then, either the highest PLP score or the 
lowest ARMSD pose was chosen for each molecule, and 
the proportion of molecules having a docking pose with 
an ARMSD to the native pose lower than 2 Å was com-
puted as a success criterion. On the random splits, rigid-
ligand docking using all conformers (i.e., fraction = 100%) 
and selecting the highest score pose leads to a successful 

docking rate of 0.70 ± 0.01, on a par with flexible dock-
ing results that reaches a rate of 0.68 ± 0.01, as shown 
in Fig. 10A; Table 6. Selecting the highest score pose on 
the 1% top-ranked conformer fraction, ComENet and 
the TFD2SimRefMCS baseline lead to successful dock-
ing rates of 0.48 ± 0.02 and 0.52 ± 0.02 respectively, out-
performing the bioactivity-unaware baselines, with for 
instance the CSD Probability leading to a successful 
docking rate 0.39 ± 0.02. As we increase the fraction of 
selected conformers, the difference between bioactivity-
based and bioactivity-unaware methods decreases, i.e., at 
the 20% fraction, ComENet, TFD2SimRefMCS and CSD 
Probability show successful docking rates of 0.65 ± 0.02, 
0.66 ± 0.01 and 0.60 ± 0.01. Thus, ranking conformations 
using ComENet or the bioactivity-based baseline leads 
to improved successful docking compared to bioactiv-
ity-unaware baselines for small fractions of selected 
conformers.

On the scaffold splits, there is more variability between 
median success rate at the different fractions, such that 
only the TFD2SimRefMCS baseline is consistently out-
performing the bioactivity-unaware baselines at the 1% 

Fig. 10 Successful docking rate of the highest score pose (A, B) or lowest ARMSD pose (C, D) for GOLD rigid-ligand redocking of PDBbind selecting 
various fractions of conformers per docked ligand using different rankers, for the random (A, C) and scaffold (B, D) splits test sets. Each point 
represents a split. For early fractions, ComENet and TFD2SimRefMCS rankers retrieve a higher rate of successful docking than bioactivity-unaware 
baselines
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fraction, as shown in Fig. 10B; Table 6, where ComENet, 
TFD2SimRefMCS and CSD Probability leads to success-
ful docking rates of 0.43 ± 0.03, 0.48 ± 0.03 and 0.38 ± 0.02 
respectively. Therefore, using bioactivity-based meth-
ods does not show utility beyond very small conformer 
fractions.

Docking algorithms are not always giving the highest 
docking score to the pose closest to the native pose [9]. 
To simulate the ideal case where the docking algorithm 
gives the highest score to the bioactive pose, we next re-
evaluated the docking success rate by taking the poses 
with the lowest ARMSD instead of the highest scoring 
pose. Selecting all conformers shows a rigid-ligand dock-
ing success rate of 0.96 ± 0.00, outperforming flexible 
ligand docking having a rate of 0.86 ± 0.01, as shown in 
Fig.  10C; Table  7. Similar values are found for the scaf-
fold split, as shown in Fig.  10D; Table  7. Hence, while 
the scoring function does not identify a successful dock-
ing pose as the highest scoring pose for 26% of docked 
ligands, rigid-ligand docking produces more successful 
poses than flexible docking when looking at all poses. 
The same trend of improved performance of bioactiv-
ity-based methods over bioactivity-unaware baselines 
are observed for the 1% and 5% fractions of the random 

splits, and 1% fraction of the scaffold split, i.e., ComENet, 
TFD2SimRefMCS and CSD Probability lead to success-
ful rates of 0.54 ± 0.02, 0.57 ± 0.01 and 0.44 ± 0.02 for the 
1% fraction of the random split, as shown in Fig.  10C; 
Table  7. Therefore, using the AtNN to rank conformers 
and select the top-ranked fractions helps retrieving bio-
active-like conformations and subsequently successful 
docking, defined as achieving a pose close to the ligand-
bound crystal structure.

We finally performed the same analysis on specific 
test subsets corresponding to the 10 most represented 
enzyme classes, with successful rates of top score pose 
shown in Additional file 1: Fig. S7. For the 2.7.11, 3.4.21 
and 3.4.23 classes, AtNN and TFD2SimRefMCS ranking 
is outperforming bioactivity-unaware baselines, while it 
is not the case for the other most represented enzyme 
classes. For instance, for the 3.4.21 class, the successful 
rate of ComENet selection at the 1% fraction (0.59 ± 0.07) 
is on average 84% greater than the one from the CSD 
Probability (0.32 ± 0.09). These results suggests that rank-
ing methods leading to an early enrichment of bioactive-
like conformations for over-represented enzyme classes 
give a higher rate of successful poses when used to select 
a limited set of input conformations.

Table 6 Successful docking rates when selecting highest PLP score poses (mean ± standard deviation)

Test set Fraction (%) Random order CSD probability Sage energy ComENet TFD2SimRefMCS Flexible 
ligand 
docking

Random 1 0.34 ± 0.01 0.39 ± 0.02 0.37 ± 0.02 0.48 ± 0.02 0.52 ± 0.01 0.68 ± 0.01

5 0.49 ± 0.01 0.5 ± 0.02 0.48 ± 0.02 0.56 ± 0.02 0.6 ± 0.01

20 0.6 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.65 ± 0.02 0.66 ± 0.01

100 0.7 ± 0.01 0.7 ± 0.01 0.7 ± 0.01 0.7 ± 0.01 0.7 ± 0.01

Scaffold 1 0.36 ± 0.03 0.39 ± 0.04 0.35 ± 0.02 0.44 ± 0.04 0.48 ± 0.03 0.68 ± 0.02

5 0.5 ± 0.04 0.51 ± 0.03 0.47 ± 0.04 0.54 ± 0.04 0.54 ± 0.02

20 0.61 ± 0.03 0.61 ± 0.03 0.61 ± 0.03 0.62 ± 0.05 0.62 ± 0.02

100 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01

Table 7 Successful docking rates when selecting lowest ARMSD score poses (mean ± standard deviation)

Test set Fraction (%) Random order CSD probability Sage energy ComENet TFD2SimRefMCS Flexible 
ligand 
docking

Random 1 0.4 ± 0.01 0.44 ± 0.02 0.42 ± 0.02 0.54 ± 0.01 0.57 ± 0.01 0.86 ± 0.01

5 0.67 ± 0.01 0.66 ± 0.02 0.62 ± 0.01 0.71 ± 0.01 0.73 ± 0.01

20 0.87 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.85 ± 0.01

100 0.96 ± 0.0 0.96 ± 0.0 0.96 ± 0.0 0.96 ± 0.0 0.96 ± 0.0

Scaffold 1 0.42 ± 0.03 0.45 ± 0.04 0.4 ± 0.02 0.5 ± 0.04 0.53 ± 0.03 0.86 ± 0.01

5 0.68 ± 0.02 0.67 ± 0.02 0.61 ± 0.03 0.68 ± 0.02 0.68 ± 0.02

20 0.85 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.82 ± 0.02

100 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
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Selecting the AtNN highest‑ranked conformers 
for pharmacophore searching leads to slightly higher hit 
rate compared to bioactivity‑unaware baselines
We next assessed the selection of highest-ranked con-
formers by AtNNs in pharmacophore searching, to 
validate if the early enrichment of bioactive-like con-
formations previously observed helps in a ligand-based 
application as much as in the rigid-ligand docking. For 
each PDBbind test set ligand, a pharmacophore query 
was elaborated from the bioactive conformation with 
up to 5 pharmacophoric features, and a fraction of the 
top-ranked conformers, ranked by AtNNs or baselines, 
was screened against this query. Only the molecules 
where at least one generated conformer matches with 
the query was kept for the analysis, to setup the 100% 
fraction to a 100% hit rate, in order to evaluate the hit 
rate in different fractions, shown in Fig.  11; Table  8. 
On the random splits, selecting the 1% top-ranked 
conformer fraction leads to a hit rate of 0.31 ± 0.02 for 
the Random order baseline. The CSD probability and 
Sage energy baselines outperform the Random order 
baseline with hit rates of 0.37 ± 0.02 and 0.39 ± 0.04 

respectively. ComENet conformer ranking does not 
outperform the Sage energy baseline with a hit rate of 
0.41 ± 0.03, while the TFD2SimRefMCS outperforms 
all baselines and the model with 0.45 ± 0.02. Selecting 
the 5% top-ranked conformer fraction leads to slightly 
higher hit rates for ComENet (0.59 ± 0.03) and the TFD-
2SimRefMCS baseline (0.58 ± 0.02) compared to the 
bioactivity-unaware baselines, ranging from 0.51 ± 0.01 
to 0.55 ± 0.03. On the 20% fraction, ComENet slightly 
outperforms all baselines with a hit rate of 0.8 ± 0.02, 
compared to the best baseline being the TFD2Sim-
RefMCS with a hit rate of 0.76 ± 0.01. On the scaffold 
split, the ComENet model shows smaller hit rates, on a 
par with the Sage energy baseline as shown in Fig. 11B; 
Table 8, while the only the TFD2SimRefMCS at the 1% 
fraction outperforms the bioactivity-unaware baselines. 
Therefore, ranking conformers with ComENet predic-
tions leads to hit rates on a par or slightly higher than 
the bioactivity-based baseline, and higher than bioac-
tivity-unaware baselines for selected conformer frac-
tions above 1% for the random split.

Fig. 11 Pharmacophore searching hit rate selecting various fractions of conformers using different rankers, for the random (A) and scaffold 
(B) splits test sets. Each point represents a split. For early fractions (1% and 5%), TFD2SimRefMCS rankers shows a higher hit rate 
than bioactivity-unaware baselines, while for the 20% for the random split, ComENet shows a slightly higher hit rate

Table 8 Hit rates of pharmacophore searching (mean ± standard deviation)

Test set Fraction (%) Random order CSD probability Sage energy ComENet TFD2SimRefMCS

Random 1 0.31 ± 0.02 0.37 ± 0.02 0.39 ± 0.04 0.41 ± 0.03 0.45 ± 0.02

5 0.51 ± 0.01 0.52 ± 0.02 0.55 ± 0.03 0.59 ± 0.03 0.58 ± 0.02

20 0.76 ± 0.02 0.72 ± 0.02 0.75 ± 0.02 0.8 ± 0.02 0.76 ± 0.01

100 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Scaffold 1 0.32 ± 0.03 0.34 ± 0.02 0.37 ± 0.03 0.37 ± 0.03 0.42 ± 0.04

5 0.52 ± 0.02 0.51 ± 0.02 0.54 ± 0.03 0.55 ± 0.02 0.57 ± 0.05

20 0.77 ± 0.02 0.74 ± 0.01 0.75 ± 0.03 0.77 ± 0.02 0.76 ± 0.03

100 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
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Conclusions
In this study, we tackled the challenge of biasing con-
former ensembles towards bioactive-like conformations 
by predicting the Atomic Root-Mean-Square Deviation 
to its closest bioactive conformation  (ARMSDbio) for gen-
erated conformers of molecules using Atomistic Neural 
Network (AtNN) models. These predictions were used 
to rank the conformers of PDBbind test sets, generally 
obtaining a higher early enrichment of bioactive-like con-
formations and impoverishment of non-bioactive confor-
mations than the bioactivity-unaware baselines. The early 
enrichment performances of AtNNs were comparable 
to a bioactivity-based baseline that uses Torsion Finger-
print Deviation to the Maximum Common Substructure 
to the closest training molecule (TFD2SimRefMCS). This 
early enrichment was consistently observed for the most 
represented protein target classes in PDBbind such as 
enzymes, where the training set often contained similar 
ligands to test ligands with large MCS. Training and test 
ligands matched by MCS torsion angles showed similar 
AtNN predicted values, suggesting that AtNN memo-
rizes bioactive 3D arrangement of substructures, even 
though it struggles in specific cases, for example when 
the two structures differ by halogen atom positions or if 
the training set molecule is bigger. Finally, ranking using 
AtNN leads to higher successful docking rates than bio-
activity-unaware baselines when only a limited number 
of conformers per molecule is used for rigid-ligand re-
docking of PDBbind, and higher hit rates in pharmaco-
phore searching.

In the context of reduction of conformations to test in 
virtual screening methods such as the presented rigid-
docking procedure or pharmacophore elaboration and 
searching, the results obtained here suggest that select-
ing top-ranked conformations by AtNNs present similar 
results to MCS matching to similar molecules in a refer-
ence set while avoiding similarity or MCS computation, 
hence reducing computational time required. While the 
TFD2SimRefMCS baseline is directly interpretable by 
finding similar conformers (i.e., low TFD) of the MCS 
in the training set, it was found in our work to be two 
to three times slower than the AtNNs at test time (i.e., 
AtNNs require around two hours to train of a NVIDIA 
RTX 3080 GPU), and scales with the size of the training 
set. We therefore recommend using the AtNNs for con-
former ranking if users have access to a GPU, and if the 
training set is large (i.e., at least in the order of tens of 
thousands) and contains ligands of proteins similar to the 
protein for which new ligands are screened.

The main limitation of AtNN ranking is the limited 
applicability to new scaffolds, as shown by the reduced 
ranking performances shown in the scaffold split. AtNNs 
are better at ranking conformations of molecules which 

have structurally similar molecules in the training set, 
and molecules with different scaffolds represent unseen 
chemical space. Also, AtNNs ranking performances were 
only consistently higher than bioactivity-unaware base-
lines for the most represented protein classes. Therefore, 
in practice, we recommend using AtNNs for known pro-
teins for which there is sufficient ligand data available. 
This can be the case in initial conformation generation 
when in the training dataset there is a diversity of ligands 
with various scaffolds present, or when supporting lead 
optimization, where similar ligands are designed and 
therefore are expected to share similar binding poses for 
the common substructure.

The presented AtNN modelling approach only takes the 
ligand conformation as input, without explicitly incorpo-
rating knowledge of the protein target. However, ligands 
may bind to different proteins in different bioactive con-
formations. The model is trained to predict a single value 
that is the ARMSD to the closest bioactive conformation 
at training time; only one value is therefore predicted 
during evaluation, while it might be desirable to have one 
specific value per target. Potential improvements of cur-
rent work include incorporating protein representations 
in the model for target-specific  ARMSDbio prediction. 
Also, the current AtNN methods have been repurposed 
from computational physics tasks (e.g., energy predic-
tion), and their implementation could be adapted to the 
task at hand, for instance by implementing a global node 
in the graph neural network. Finally, the current work has 
been performed on conformers generated by the CSD 
conformer generator, which is based on crystal structure 
data. It is unsure whether the current approach is fully 
applicable to conformers generated with other methods, 
as the bond distances, valence angles, and sampled tor-
sion angle profiles are not identical between conformer 
generators.

Overall, the approach presented here uses AtNNs to 
bias conformer ensemble towards bioactive-like confor-
mations, representing an opportunity to accelerate con-
formation-seeded virtual screening techniques and other 
approaches where knowledge of a bioactive conformation 
is required.

Abbreviations
ARMSD  Atomic Root-Mean Square Deviation
ARMSDbio  ARMSD to the bioactive conformation
AtNN  Atomistic neural network
BEDROC  Boltzmann-Enhanced Discrimination of the Receiver Operat-

ing Characteristic
BEDROCbio-like  BEDROC of bioactive-like conformations
BEDROCnon-bio  BEDROC of non-bioactive conformations
MCS  Maximum common substructure
SASA  Solvent accessible surface area
RGyr  Radius of gyration
TFD  Torsion fingerprint deviation
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