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Abstract 

The launch of AlphaFold series has brought deep-learning techniques into the molecular structural science. As 
another crucial problem, structure-based prediction of protein-ligand binding affinity urgently calls for advanced 
computational techniques. Is deep learning ready to decode this problem? Here we review mainstream structure-
based, deep-learning approaches for this problem, focusing on molecular representations, learning architectures 
and model interpretability. A model taxonomy has been generated. To compensate for the lack of valid comparisons 
among those models, we realized and evaluated representatives from a uniform basis, with the advantages and short-
comings discussed. This review will potentially benefit structure-based drug discovery and related areas.
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Introduction
Proteins, which frequently interact with other molecules 
to perform functions, are key participators in a wide 
spectrum of cellular processes. Interactions may occur 
between proteins and diverse ligand types, such as small 
organic molecules, nucleic acids and protein peptides. 
Particularly, inhibitors that bind to specific proteins 
to mediate disease progression (e.g. Gefitinib to EGFR 
protein in cancer therapies [1]) are examples of small-
molecule ligands, making the interactions between such 
ligands and the target proteins a valuable objective of 
drug-development research.

Studies of protein-ligand interactions are mainly 
focused on the sites, modes or affinities of binding [2]. A 
drug-like ligand typically interacts with the target protein 
in a specific binding site (mostly a deep pocket), through 
a favorable binding orientation. The ligands that bind 
to the protein with high affinities are the initial aim of a 
drug-discovery pipeline. Determining the binding poses 
(site and orientation) for ligands to a target protein and 
estimating the binding affinities have therefore become 
two essential problems in computational drug discovery 
(CDD). Molecular docking is a well-developed class of 
computational methods that determine ligand-binding 
poses by efficiently searching the structural space and 
scoring the candidate poses [3]. Current docking meth-
ods can fastly produce binding poses that are quite close 
to the X-ray conformations (RMSD within 2 Å ) [4], offer-
ing a possible alternative to experimentally resolved 
binding poses (e.g. by X-ray crystallography [5] and NMR 
spectroscopy [6]). A docking method commonly lever-
ages a forcefield [7–11] to estimate the intermolecu-
lar forces (e.g. electrostatic interactions, van der Waals 
forces and desolvation effects), and recommends those 
binding poses with better forcefield scores. Although 
such scoring schemes are capable of measuring binding 
poses, they often fail in further tasks like distinguishing 
binders from non-binders and ranking the ligands for 
target proteins. Binding affinities, commonly quantified 
by dissociation constant ( Kd ) or inhibition constant ( Ki ), 
are more competent scores in these tasks. Effectively pre-
dicting such binding affinities is thus crucial, but has long 
been an open challenge in CDD.

Although a group of models for protein-ligand bind-
ing affinity prediction (PLBAP) rely on simple pro-
tein sequences and their evolutionary information 
(e.g. DeepDTA [12], DeepFusionDTA [13], GraphDTA 
[14] and CAPLA [15]), decoding the affinities from a 
deeper, structural perspective is always of high interests. 
The rapid release of protein-ligand binding structures 
(poses), by either docking engines or experimental tech-
niques, provides a structural basis for rational PLBAP. 
Alongside the structural data, the increasingly revealed 

experimental affinity data (e.g. Kd/i and IC50) [16, 17] has 
further facilitated supervised learning for PLBAP. Earlier 
machine-learning PLBAP models place a heavy emphasis 
on feature engineering, where protein-ligand interactions 
are estimated by domain-expertise-driven rules [18] or 
represented by exhaustive relevant factors [19, 20]. Later, 
there is a trend towards simplified feature engineering 
[21–24] and more powerful learning processes in PLBAP. 
Nevertheless, traditional machine-learning models (e.g. 
random forests and shallow neural networks) often have 
limited learning capabilities that hardly achieve favorable 
predictions.

In recent decades, deep neural networks (DNNs), which 
are credited with the strong learning capability on less 
engineered and unstructured data, have come into play in 
PLBAP. DNNs can absorb simple inputs, like atom coordi-
nates and types [25] or statistics forms of pairwise atom-
contacts [26], and learn them to predict protein-ligand 
binding affinity in an end-to-end manner. Beyond that, 
DNNs are prevalently used to learn geometric representa-
tions of protein-ligand complex structures [27, 28], such as 
voxelized grids [29] or molecular graphs [30], to provide 
high-quality PLBAP. Noteworthily, most of these works 
encounter heterogeneous data processing, coding plat-
forms and validation procedures, calling for a comprehen-
sive review and evaluation on them. On the other hand, 
although showing great potential in predictive accuracy in 
PLBAP, most DNNs are frequently questioned of their low 
interpretability. A reasonable discussion on their interpret-
abilities at the model level or in the post-hoc analysis stage 
[31–35] is the other goal of this work. Last but not least, 
there is a lack of exploring the screening performances 
of those deep-learning models in current works, bearing 
down on their practical value and requiring a study on their 
screening power. In what follows, we review mainstream 
deep-learning PLBAP models with a focus on the feature 
representations, learning architectures and interpretability. 
To compensate for the lack of valid and fair comparisons 
among them, a series of evaluations on the scoring and 
screening power of those models have been accomplished.

Deep‑learning PLBAP models
According to the feature representations and learning 
architectures, deep-learning PLBAP models are roughly 
categorized as in Table 1.

PLBAP based on TACNN models
Gomes and co-workers have devised Atomic Convolutional 
Neural Networks (ACNNs), which absorb the coordinates 
C = {Ci|i = 1, . . . ,N } = {(xi, yi, zi)|i = 1, . . . ,N } and 
types AT P = {atpi|i = 1, . . . ,N } of atoms in a molecu-
lar structure (Fig. 1A) and output the estimated energy E of 
this molecule [25]. A molecule is represented by a feature 
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tensor T(i, j, k) outlining the local chemical environments 
of each atom. T(i, j, k) is generated by applying atom-type 
convolutions to the distance matrix ( ∈ R

N×M ) [45] and 
atom-type matrix ( ∈ R

N×M ), which are derivatives of C 
and AT P . It can be expressed as:

where Ci represents the coordinates of the i-th atom ai 
( i = 1, . . . ,N  ), aij ( j = 1, . . . ,M ) is the j-th nearest spa-
tial neighbor of ai , and ωk ∈ � ( k = 1, . . . ,K  ) indicates 
a specific atom type (e.g. C, O and N). Such a feature 
tensor ( ∈ R

N×M×K  ) is fed into a radial-pooling layer to 
prevent overfitting and reduce parameters. A pooling fil-
ter fq ( q = 1, . . . ,Q ) combines the pairwise interactions 
between an atom ai and its neighbors having a specific 
type ωk as:

(1)T(i, j, k) =

{

� Ci − Cij � atpij = ωk

0 otherwise
where Rc is a distance threshold (e.g. 12Å ), and rq and σq 
are learnable parameters. The feature tensor after pooling 
( ∈ R

N×K×Q ) is flattened and fed row-wise into several 
atomistic dense layers. Outputs for each row indicate the 
estimated atomic energy ( Ei ), and combining them yields 
the total estimated energy (E) of the molecule.

ACNN-based PLBAP adopts a learning archi-
tecture that implies a ligand-binding thermody-
namic cycle (Fig.  1B). The binding affinity in this 
architecture is estimated as the energy difference 
between the complex and the two binding molecules 
( y = �G = Gcomplex − Gprotein − Gligand ). As reported in 
this work, simply employing 15 atom types (C, N, O, F, 

(2)

P(i, k , q) =

M
�

j=1

fq(T(i, j, k))

where fq(x) =







1
2e

−
(x−rq )

2

σ2q (cos(πxRc )+ 1) 0 < x < Rc

0 x ≥ Rc

Table 1  Classification of deep-learning PLBAP models

∗ TI translation invariance, RI rotation invariance, PI atom permutation invariance

TE translation equivariance, RE rotation equivariance, PE atom permutation equivariance

Type Feature representation 
R

Symmetry 
properties∗ of R

Key learning 
architecture

Model 
interpretability

Representatives

TACNN Atom coordinates & types TE/RE/PE Concatenated ACNNs Model-level ACNN [25]

TIMC−CNN IMC profiles TI/RI/PI 2D-CNNs None OnionNet [26], OnionNet-2 [36], IMCP-Score [37]

TGrid−CNN Grid voxels TI/RE/PI 3D-CNNs Post-hoc analysis KDEEP [29], Pafnucy [38], CNN-Score [39], Deep-
Atom [40], Sfcnn [41]

TGraph−GCN Molecular graphs TI/RI/PI GCNs Model-level GraphBAR [30], APMNet [42], PotentialNet [43], 
GraphDTI [44]

Fig. 1  The inputs and learning architecture for ACNN-based PLBAP. A The inputs for an ACNN module. B The learning architecture for PLBAP. The 
red numbers indicate the number of filters in radial-pooling layer or the numbers of units in atomistic dense layers
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Na, Mg, P, S, Cl, Ca, Mn, Zn, Br, I and others regarded 
as a single type), 3 radial filters ( rq = 0, 4.0 or 8.0, σ 2

q  
= 2.5) and 3 atomistic dense layers (sizes of 32, 32 and 
16) can yield state-of-the-art prediction performances 
(validated on PDBbind benchmarks).

Model Interpretability TACNN  models possess a hier-
archical structural of model-level interpretability. The 
atom-type convolutions and radial pooling operations 
lead to the estimation of atomic pairwise interactions, 
providing the interpretability at an elementary level. 
The atomistic fully connected layers then increase this 
interpretability to a molecular level, by accumulating 
pairwise interaction energies into the total energy of a 
molecule. At the top level, a thermodynamic cycle of 
ligand-binding process is imposed to achieve an overall 
interpretability in physico-chemical mechanisms.

PLBAP based on TIMC−CNN models
This category represents protein-ligand interactions 
with intermolecular contacts (IMCs), and feeds the 
re-organized features (e.g. matrices) to 2-dimensional 
convolutional neural networks (2D-CNNs) for learn-
ing the data relationships. An intermolecular contact is 
defined as a pair of atoms, one from the protein aPi  and 
the other from the ligand aLj  , within a distance thresh-
old dcut [21]. Considering all atom types for the protein 
( �P ) and ligand ( �L ), it leads to M = |�P | × |�L| types 
of IMCs. These IMCs can be further refined using the 
concept of shell space [26]. Regarding aLj  as a spheri-
cal center, the space between two spherical boundaries 
(with radii of dcut1 and dcut2 ) forms a shell and any pro-
tein atom aPi  within this shell will form a refined IMC 
with aLj  . For a protein-ligand complex, M IMC types 
�IMC = {ωIMC

m } = {(ωm

1
,ωm

2
)|ωm

1
∈ �P ,ωm

2
∈ �L,m = 1,

. . . ,M} and K distance shells 
� = {δk} = {(dkcut1, d

k
cut2]|k = 1, . . . ,K } result in a feature 

matrix ( ∈ R
M×K  ) exhibiting multi-range intermolecular 

interactions (Eq. 3).

OnionNet employs K = 60 shells spanning from 0 to 30Å 
( δ1 = (0, 1Å] , δ2 ∼ δ60 with fixed intervals of 0.5Å ), and 8 
types for both protein and ligand atoms ( �P = �L = { C, 
N, O, H, P, S, HAX and Du} ) to identify IMCs. Similarly, 
OnionNet-2 profiles the contacts between protein resi-
dues and ligand atoms in different distance shells [36]. 
Regarding each type of IMCs ( ωIMC

m  ) within a distance 
shell ( δk ) as a specific type of interactions, we can pro-
file these interactions using quantities, average contact 
distances and other properties (e.g. pharmacophoric fea-
tures). IMCP-Score [37] simply profiles such interactions 
by quantity of the contacts and the average atomic dis-
tances of them (Eq. 4).

IMC-based features can be arranged as matrices or ten-
sors (Fig.  2A) to be fed into 2D-CNNs. Conventional 
2D-CNN architectures are commonly adopted for 

(3)

FOnionNet(m, k) =
∑

i,j

Im,k(a
P
i , a

L
j )

with Im,k(a
P
i , a

L
j ) =

{

1 (atpPi , atp
L
j ) = ωIMC

m & � CPi − CLj �∈ δk
0 otherwise

(4)

FIMCP(m, k) = (p1, p2)

= (

∑

i,j

Im,k(a
P
i , a

L
j ),

∑

i,j

Im,k(a
P
i , a

L
j ) · � CPi − CLj �

∑

i,j

Im,k(a
P
i , a

L
j )

)

Fig. 2  The feature representation and learning architecture of TIMC−CNN models. A The feature representation. B The learning architecture used 
by OnionNet for PLBAP. The red numbers indicate the numbers of filters in convolution layers or the numbers of units in dense layers
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learning these features, and Fig. 2B presents the one used 
by OnionNet [26]. It includes 3 consecutive convolu-
tion layers ( 4 × 4 kernels with stride 1), 1 flattening layer, 
3 consecutive dense layers (400, 200 and 100 units) and 
1 output layer. In the model-training phase, a custom-
ized loss function, involving both the Person’s correlation 
coefficient and the root-mean-square error, is adopted by 
OnionNet. This category of models are easy to generate, 
and have led to competitive PLBAP (validated on PDB-
bind benchmarks).

Model Interpretability: Although neither model-
level nor post-hoc interpretability was provided in the 
original works of TIMC−CNN  Models, they can be partly 
explained in a post-hoc manner, such as by measuring 
the feature importance in affinity predictions.

PLBAP based on TGrid−CNN models
This category leverages molecular grids to represent pro-
tein-ligand complexes, and employs three-dimensional 
CNNs (3D-CNNs) to learn the grids. The molecular grid 
representation of a protein-ligand complex structure S 
emphasizes the binding area instead of the whole struc-
ture, in order to ease the computational burden. It cap-
tures the features of the binding area at regularly spaced 
intervals (resolution). Suppose the binding area of S is 
represented as a grid with the size of XÅ× Y Å× ZÅ and 
the resolution of rÅ . Each cell c ( rÅ× rÅ× rÅ ) in the 
grid is delineated as a feature vector f c = (f c1 , f

c
2 , . . . , f

c
K ) , 

indicating a multi-channel voxel. Integrating all these 
voxels leads to a 4D tensor as follows,

Here (x, y, z) indicates the center of c . Given a complex 
structure and the grid size (e.g. X = Y = Z = 24 and 
r = 1 in KDEEP [29]), the key to constructing a molecu-
lar grid is properly assigning features to each cell.

All TGrid−CNN models start from the atom-level fea-
tures. They mostly cover general properties (e.g. atom 
types) [29, 38, 39, 41, 46], physico-chemical properties 
(e.g. excluded volume, partial charge, heavy-atom neigh-
bors, hetero-atom neighbors, and hybridization) [29, 38, 
46] and pharmacophoric properties (e.g. hydrophobicity, 
aromaticity, H-bond donor/acceptor, and ring member) 
[29, 38–40, 46]. These properties are commonly esti-
mated by SMARTS patterns [47, 48] or simple geometric 
rules [48, 49]. Each atom ai is characterized by K prop-
erties as pai = (p

ai
1 , p

ai
2 , . . . , p

ai
K ) , which can be used to fill 

in the molecular grid having a coincident center with the 
ligand. There are two common strategies for filling infor-
mation in the grids. KDEEP, DeepAtom and CNN-Score 

(5)F(x, y, z) = f c with







−X
2 < x < X

2

−Y
2 < y < Y

2

−Z
2 < z < Z

2

adopt an expensive method that measures the contribu-
tions of each atom ai to each cell cj and accumulates the 
contributions for cj . As an instance, KDEEP quantifies 
the contributions by Euclidean distances and calculates 
the k-th channel feature of cell cj as Eq. 6.

Where raiVDW  is the van der Waals radius of ai , and CAi  and 
C
C
j  are coordinates of the centers of ai and cj . Another 

strategy is simply aggregating the features for atoms 
located in each cell. Pafnucy, DeepFusionNet [46] and 
Sfcnn employ this strategy, which is efficient but may 
lead to low interpretability (e.g. for categorical features). 
Given a grid-filling strategy, a complex can be repre-
sented by one filled grid covering all protein and ligand 
atoms (Fig. 3A), or two concatenated grids treating pro-
tein and ligand atoms separately (Fig. 3B). Due to the lack 
of rotation invariance of grid representations, data aug-
mentation by rotating the grids is frequently adopted to 
strengthen the data (Fig. 3C).

The learning architectures employed by this category 
include simple (similar to Fig.  2B) [38], self-developed 
[41] or well-developed architectures in other fields (e.g. 
SqueezeNet [29, 50], ShuffleNet [40, 51] and Caffe [39, 
52]). As demonstrated in the work of Sfcnn, going 
deeper in CNN architectures did not promote predic-
tion improvements. Considering the large resources 
(augmented grids) consumed here, light-weight learning 
architectures like SqueezeNet (used by KDEEP) is a fine 
option. SqueezeNet was first developed to compress the 
learnable parameters in earlier architectures like AlexNet 
[53], and inspired the architecture of KDEEP exceedingly 
(Fig. 3D). The grid representations will first go through a 
convolution layer ( 7× 7× 7 kernels with stride 2) and a 
series of fire modules before the final output layer. Each 
fire module is composed of a squeeze layer (n 1× 1× 1 
kernels) and an expand layer (4n 1× 1× 1 and 4n 
3× 3× 3 kernels). For instance, Fire2 module involves 
16 kernels in squeeze layer and 128 kernels (64 1× 1× 1 
and 64 3× 3× 3 kernels) in expand layer. The pooling 
layers combine 3× 3× 3 voxels at strides of 2. This cat-
egory plays a major role in deep-learning PLBAP models 
(validated on PDBbind benchmarks), while may be lim-
ited to the expensive computations.

Model Interpretability: KDEEP and DeepAtom lack 
both model-level and post-hoc interpretability [29, 40]. 
CNN-Score provides a visualization strategy for evaluat-
ing prediction-level post-hoc interpretability. It applies 
masking [54] to various regions in a grid, and the mask-
ing-induced differences in predicted scores yield a heat-
map revealing important regions. Crucial residues in 

(6)f
cj
k =

∑

i

(1− e
−(

r
ai
VDW

�CAi −C
C
j �

)12

)p
ai
k
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the binding area are often highlighted in such analyses, 
implying that CNN-Score predicts binding affinities 
based on key features of protein-ligand interactions. Paf-
nucy adopts two ways in post-hoc interpretability analy-
sis. L2-regularized model-training provides the profile of 
feature importance by showing the weight distributions 
of the first-hidden-layer convolutional filters. Wider-
range weights are proposed to pass more information to 
the deeper layers and therefore have greater impact on 
the predictions. Aside from above dataset-level interpre-
tations, Pafnucy also provides a voxel-removal strategy 
for prediction-level interpretations. By removing voxels 
( 5Å× 5Å× 5Å ) at different positions in the featuriza-
tion area ( 20Å× 20Å× 20Å ), the resulted prediction 
changes were investigated further. Key intermolecular 
interactions (e.g. Hydrogen bond, π-π interaction and 
hydrophobic contacts) were revealed by such analysis. 
Sfcnn was explained at the prediction-level, by hot-spot 
areas of the input features that are closely related to the 
predictions [41]. These hot-spot areas or heat-maps were 
generated based on gradient-weighted class activation 
mapping (Grad-CAM) analysis [55] and visualized using 
Mayavi [56]. As uncovered in the work of Sfcnn, such 
hot-spot areas highly corresponded to important pro-
tein-ligand interactions like hydrophobic contacts and 
hydrogen bonds.

PLBAP based on TGraph−GCN models
This group of models represent a protein-ligand com-
plex by a graph {V,E} , where V indicates the nodes 
and E the edges. (i) For PLBAP, V = {ai|i = 1, . . . ,N } 
generally covers all the ligand atoms and the atoms in 
the ligand-binding site of the protein (e.g. those within 
a predefined distance from any ligand atom). Practi-
cally, a fixed number N for a set of complexes, such as 
N = 200 adopted by GraphBAR [30], is required for 
batch-computations. Each ai ∈ V is characterized by M 
atom-level features that resemble those in grid repre-
sentations (Sect.  PLBAP based on TGrid−CNN  models), 
leading to a node-feature matrix MV ∈ R

N×M for each 
complex. (ii) Originally, E of a molecular graph encom-
passes all the covalent bonds, which can be encoded in 
an adjacency matrix A ∈ R

N×N  with Aij = 1 signifying a 
chemical bond between atoms ai and aj . As an instance, 
APMNet [42] considers the covalent bonds as E in the 
graph representations for PLBAP. However, the bind-
ing between a protein and its ligands counts heavily on 
noncovalent interactions, such as hydrogen bonds and 
π − π stacking. It necessitates the generalization of A 
to an adjacency tensor ( RN×N×Net ) as below.

(7)Aijk =

{

1 ai and aj have an edge of type k
0 otherwise

Fig. 3  The grid representation and learning architecture of TGrid−CNN models. A One grid that covers both protein and ligand atoms. B Two 
concatenated grids that featurize protein and ligand atoms separately. C An augmented grid representation. D The learning architecture for PLBAP 
(used by KDEEP). The red numbers indicate the numbers of filters in convolution layers or the numbers of units in dense layers
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Where Net is the number of edge types, and any slice 
of the tensor A::k indicates a specific type of adjacency. 
Different from the chemical bonds, noncovalent interac-
tions are commonly determined according to pairwise 
atomic distances below some threshold values. Poten-
tialNet [43] uses the first slice A::1 to show covalent 
adjacency, while the following A::k (k ≥ 2) to indicate 
noncovalent interactions identified by distance thresh-
olds (e.g. < 3Å ). GraphBAR [30] relies on Net distance 
shells � = {δk} = {( 4(k−1)

Net
, 4k
Net

]|k = 1, . . . ,Net} , and 
assigns Aijk = 1 if the distance between ai and aj falls in 
the k-th shell. DeepFusionNet [46] adopts two dis-
tance shells � = {δ1, δ2} = {(0, 1.5], (1.5, 4.5]} to discrimi-
nate between covalent and noncovalent adjacencies, and 
directly utilizes the atomic distances as the adjacency val-
ues (Eq. 8).

Similarly, GraphDTI [44] presents the covalent adja-
cency by the first slice A::1 (logical), while combines the 
covalent and noncovalent interactions within 5Å in A::2 
(Eq. 9).

Here the adjacency values for noncovalent interac-
tions are weaker than those for covalent bonds. Beyond 
above, some models (e.g. APMNet [42]) further charac-
terize the edges by one-hot encoding of multiple bond 
types (e.g. single, double and triple bonds), leading to 

(8)Aijk =

{

�Ci − Cj� �Ci − Cj� ∈ δk
0 otherwise

(9)Aij2 =











1 ai and aj are covalently bonded

e−
(�Ci−Cj�−µ)2

σ �Ci − Cj� ≤ 5 & no covalent bond between ai and aj
0 otherwise

an edge-feature matrix ME . A schematic diagram of 
graph representations is displayed in Fig.  4A. Models 
like PLANET [57] and GraphscoreDTA [58] treat protein 
residues as nodes and connect consecutive residues by 
edges, which result in simple 1D graphs and are regarded 
as sequence-based. Accordingly, they are out of scope for 
this review.

Molecular graph representations that are invariant 
to rotations [27, 28] can be learned by Graph Convolu-
tional Networks (GCNs) [59–61]. Most GCNs adopt a 
message-passing mechanism, which iteratively updates 
the features of each node ( ht+1

i  ) by gathering information 
from its neighborhood ( rt+1

i  ) and generates a graph-level 
feature vector ( f̂  ) based on updated node features. This 
process can be expressed as follows.

where h0i  comes from the initial node features MV  , 
Nr(ai) indicates all the neighboring atoms of ai upon 
a specific type of adjacency, T is the number of itera-

tions, and MPt , Ut and Gr (permutation-invariant) are 
learned functions that differentiate among various GCN 
models. GraphBAR relies on a spectral GCN architec-
ture (Fig.  4B) to learn the molecular graphs. The node-
feature matrix MV  is preprocessed (by dense layer 

(10)















rt+1
i =

�

aj∈Nr(ai)

MPt(h
t
i , h

t
j )

ht+1
i = Ut(h

t
i , r

t+1
i )

f̂ = Gr({hTi |ai ∈ V})

Fig. 4  The graph representation and learning architecture of TGraph−GCN models. A A schematic diagram of graph representation. B The learning 
architecture for PLBAP (used by GraphBAR). The red numbers indicate the numbers of filters in graph convolution layers or the numbers of units 
in dense layers
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with 128 units and a dropout rate of 0.5) before going 
into graph convolutional blocks GCBk ( k = 1, . . . ,Net ). 
The fundamental propagation rule for layers in GCBk 
is Ht+1

k = σ(LkH
t
k�

t
k) , where Ht

k is the node-feature 
matrix of the t-th layer, �k is a matrix of trainable 
parameters ( ∈ R

Nin×Nout ), σ(·) indicates an activation 
function (e.g. ReLU) and Lk cencerns the k-th type of 
adjacency ( Lk = D− 1

2 ÃkD− 1
2 = D− 1

2 (A::k + IN )D
− 1

2 
with Dii =

∑

j Ã
k
ij ). Each GCBk includes three convo-

lutional layers (128, 128 and 32 filters) and three dense 
layers (128, 128 and 16Net units) with a dropout rate of 
0.5. Aggregating all node features in GCBk ( f̂k ), concat-
enating them ( �k f̂k ) and connecting them to a dense 
layer (128 units with dropout) finally lead to the out-
put of binding affinity. APMNet primarily involves two 
message-passing modules in its learning architecture. 
Module 1 includes a series of graph convolutional skip 
blocks GCSBk , with each block considering the intial 
node-feature matrix ( MV  ) and sharing the weights dur-
ing feature propagations. The outputs HT

k  from GCSBk 
( k = 1, . . . ,K  ) in module 1 are averaged ( H̄ ) and fed into 
module 2 for further learning, with ME taken into con-
sideration. The outputs of module 2 are aggregated at the 
node-level and connected to the dense/output layer for 
PLBAP. PotentialNet connects two gated graph neural 
network (GGNN) modules in a cascade way, and gathers 
the graph features at a node-level (ligand atoms only) to 
feed them into a number of dense layers. GraphDTI [44] 
leverages the gated graph attention (distance-aware) lay-
ers to update node features and learn noncovalent inter-
actions at the binding site. The updated features after T 
layers for all ligand atoms are aggregated and fed to dense 
layers for predictions. Favorable PLBAP performances 
have been yielded from this category of models (validated 
on PDBbind benchmarks).

Model Interpretability: GraphBAR is to some extent 
explainable at the model-level. Each filter corresponding 
to A::k convolves the first-order neighborhood of a node 
and generates related node features. Summed features 
of all nodes (row-wise aggregation of HT

k  ) imply spe-
cific protein-ligand interactions in the binding site, and 
concatenating various interactions for a protein-ligand 
pair then leads to the total binding affinity. Analogously, 
other models such as APMNet and GraphDTI can also 
be interpreted at the model-level from the perspective of 
energies. Beyond that, these models can also be explained 
by measuring the feature importance in the predictions, 
as a post-hoc analysis.

Evalution of models
Evaluation of scoring performances
To generally evaluate the four types of models ( TACNN , 
TIMC−CNN , TGrid−CNN and TGraph−GCN ), we have con-
structed representatives using the uniform training data 
and property-generation rules. Training and valida-
tion data. The frequently accessed PDBbind Refined Set 
(V2020) [16, 62] was employed for model training, with 
the Core Set used for hyperparameter tuning. Two CSAR-
HiQ data sets [63, 64] from another source were adopted 
for testing the models. These sets (details in Additional 
file 1: Table S1) are all comprised of experimentally deter-
mined protein-ligand complex structures with their bind-
ing constants ( Kd/i ). The original sizes of them are 5,316 
for Refined Set, 285 for Core Set, 175 for CSAR-HiQ Set 1 
and 167 for CSAR-HiQ Set 2, respectively. 460 overlapped 
complexes between the Refined Set and the others were 
removed from the Refined Set, resulting in a final training 
set of 4856 complexes. A PLBAP model attempts to cor-
relate the structure of a protein-ligand complex with the 
binding affinity ( − logKd/i in this study). Atomic prop-
erty generation. General and pharmacophoric properties 
of atoms in the protein-ligand complexes were generated 
by OpenBabel [65] and RDKit [66]. Standing on atomic 
properties, different molecular representations for 
TACNN , TIMC−CNN , TGrid−CNN and TGraph−GCN models 
can be generated. Model training. Given a feature repre-
sentation (e.g. atom coordinates/types, IMC matrix, grid 
or graph), we mainly tuned the parameters (e.g. batch size 
bs and number of epochs epc) related to the training pro-
cess, with the majority of model parameters fixed (from 
well-validated architectures). The learning architectures 
were realized using Tensorflow with the loss function of 
mean squared error and the optimizer of Adam. Hyper-
parameters were tuned by KerasTuner, and all computa-
tions were GPU-accelerated. Model construction details 
can be found in the Additional file. Evaluation rules. 
Pearson’s Correlation (PC) and root-mean-squared error 
(RMSE) between the predicted and true binding affinities 
were adopted as the evaluation indices. A higher PC and 
a lower RMSE indicate a better prediction performance.

By combining different feature representations with 
various model architectures, we have trained 26 rep-
resentatives ( M1 ∼ M26 ) belonging to the four types 
of models ( TACNN : M1 ∼ M6 , TIMC−CNN : M7 ∼ M10 , 
TGrid−CNN : M11 ∼ M18 and TGraph−GCN : M19 ∼ M26 ). 
The scoring performances of these models (details in 
Additional file  2: Table  S2) are now presented in Fig.  5, 
where a band covers the performances of all the models 
in each group and a line shows the median performance 
of each model group.

Considering both the training and testing phases, 
TGrid−CNN models are more easily to overfit the training 
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data (a high training PC - median of 0.9899, but moder-
ate testing PCs - medians of 0.6128/0.7090 for the two 
CSAR-HiQ sets). In the testing phase, TIMC−CNN and 
TGraph−GCN models stand out as two strong competi-
tors (median testing PCs of 0.6396/0.6847 for TIMC−CNN 
and 0.6424/0.7054 for TGraph−GCN ), while TACNN mod-
els generally perform inadequately in the predictions 
(median testing PCs of 0.5363/0.6785). The TGrid−CNN 
models have a wider span in PC, mostly because of the 
marked difference between augmented grids and original 
data. However, the large computational resources con-
sumed in the learning of augmented data by TGrid−CNN 
models strongly hinder the further development of such 
models. As shown in our experiments, quadrupled grids 
led to an approximately four-time growth in training 

time and storing memory (Additional file1: Table  S3). 
Taking into account the prediction accuracy and required 
computational resources, TGraph−GCN models are argua-
bly the most promising and refinable methods in current 
PLBAP tasks.

Regarding the 26 representative models, the best per-
formers in terms of the validation PC ( M5 , M9 , M12 and 
M26 in Additional file 1: Table S2) were selected to stand 
for the four types of models. These models are described 
as follows.

•	 M5 is a TACNN model. It employs 12 neighbors and 
15 atom types in the atom-type convolution layer. A 
distance threshold of Rc = 12Å , 6 filters (interval of 
2Å for rq ) and σ 2

q = 2.5 are adopted for radial pool-

Fig. 5  Scoring performances of representative deep-learning PLBAP models. The models were trained on PDBbind Refined Set, validated on the Core 
Set (for hyperparameter tuning) and finally tested on two CSAR-HiQ sets. The lines show the median values of each type of models

Table 2  Representative deep-learning PLBAP models and their scoring performances

Model (ID) Training (PDBbind Refined 
Set)

Parameter-tuning (PDBbind 
Core Set)

Test1 (CSAR-HiQ Set 1) Test2 (CSAR-HiQ 
Set 2)

PC RMSE PC RMSE PC RMSE PC RMSE

TACNN ( M5) 0.5189 1.7564 0.5692 1.7939 0.5596 1.9749 0.6804 1.6298

TIMC−CNN ( M9) 0.7851 1.2607 0.7843 1.4807 0.6365 1.8011 0.6123 1.7329

TGrid−CNN ( M12) 0.9224 0.8939 0.9235 1.0079 0.5531 1.9451 0.684 1.6373

TGraph−GCN ( M26) 0.6403 1.5178 0.6969 1.6733 0.6706 1.7414 0.737 1.5098
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ing. 3 atomistic dense layers (sizes of 32, 32 and 16) 
are stacked to yield the molecular energy. The whole 
model was trained with 200 epochs and a batch size 
of 24.

•	 M9 is a TIMC−CNN model. Its feature representation 
( 64 × 60 matrix) concerns 64 IMCs and 60 distance 
shells (from OnionNet). The model, with a similar 
architecture as OnionNet ( conv1 = 16 , conv2 = 64 
and conv3 = 128 ), was trained with 200 epochs and a 
batch size of 128.

•	 M12 is a TGrid−CNN model. Its feature represen-
tation ( 21× 21× 21× 16 tensor) emphasizes a 
20Å× 20Å× 20Å grid with a resolution of 1Å , and 
captures the properties of protein and ligand atoms 
separately (each for 8 properties from KDEEP) at each 
voxel. The final model, with a light-weight architec-
ture from KDEEP, was trained with 100 epochs, a 
batch size of 64 and a learning rate of 10−5 (L2-regu-
larization adopted to prevent from overfitting).

Fig. 6  Interpretability of representative PLBAP models. A Model-level interpretability of TACNN models. B Heatmaps showing the feature importance 
for a TIMC−CNN model. C Heatmaps showing the importance of position-related features for a TGrid−CNN model. D Importance of the node features 
for a TGraph−GCN model. E Importance of the voxel channels for a TGrid−CNN model
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•	 M26 is a TGraph−GCN model. A threshold of 6Å , which 
crops a binding area of < 400 atoms for each com-
plex, is adopted by this model. Its feature representa-
tion then involves a node-feature matrix ( 400× 18 ) 
concerning 18 atomic properties from Pafnucy, and 
an adjacency tensor ( 400× 400× 3 ) with each slice 
indicating intermolecular contacts in a certain range 
( 0 ∼ 2Å , 2Å ∼ 4Å or 4Å ∼ 6Å ). The model, with a 
similar architecture as GraphBAR (4 layers in each 
convolutional block), was trained with 200 epochs 
and a batch size of 64.

The scoring performances of these models are exhibited 
in Table 2.

Model interpretability
TACNN models can be explained, to some extent, at the 
model-level (Fig.  6A). While the other three types 
of models ( TIMC−CNN , TGrid−CNN and TGraph−GCN ) 
can be interpreted in a post-hoc manner, mostly by 
revealing the feature significance and detecting hot-spot 
areas. Based on the three best performers in Table  2 
( M9 for TIMC−CNN , M12 for TGrid−CNN and M26 for 
TGraph−GCN ), we leveraged a dataset-level masking tech-
nique to uncover important features for each model. We 
first evaluated each model on the validation set (PDB-
bind Core Set), yielding the PC of pc0 and the RMSE of 
rmse0 . Then specific features were masked (set to zero) 
for all complexes in the validation set, and the masked 
data were fed into the model for a re-evaluation (yielding 
pci and rmsei ). A larger PC drop ( �pci = pci − pc0 ) or 
RMSE increase ( �rmsei = rmsei − rmse0 ) implies higher 
importance of the masked features.
TIMC−CNN . M9 represents a complex by an IMC matrix 

( 64 × 60 ), where each position (j,  k) in this matrix is a 
specific feature and its importance can be measured 
through the masking scheme. By collecting the impor-
tance data with respect to all the positions, the heatmaps 
regarding PC drops and RMSE increases were gener-
ated (Fig.  6B). Here intermolecular contacts in distance 
shells s20 ∼ s26 ( 11Å ∼ 14Å ) are more highlighted for a 
PC drop, and those in s44 ∼ s52 ( 23Å ∼ 27Å ) are more 
important for an RMSE increase. Another model M7 in 
this category can be explained similarly, as displayed in 
Additional file 1: Figure S1. TGrid−CNN . M12 characterizes 
a complex by a molecular grid ( 21× 21× 21× 16 ), and 
we masked the features in two ways. First, each position 
(j, k, l) ( 1 ≤ j, k , l ≤ 21 ) in the grid was masked for impor-
tance investigation (Fig. 6C). Here the origin is the ligand 
center and the protein atoms around this center show 
higher importance in PC drops or RMSE increases. Due 
to the various protein-ligand binding orientations, this 

dataset-level study can only show a rough picture of the 
position importance. Second, we masked each property 
channel of the grid voxels (total of 16 channels), leading 
to an importance plot in Fig. 6E. Apparently, the ligand-
related channels play a more important role than the pro-
tein-related channels, and the increase in RMSE is more 
correlated with the excluded volume of ligand atoms. A 
similar interpretation for M11 in this category is shown 
in Additional file 1: Figures S2∼ 3. TGraph−GCN . M26 rep-
resents a complex by a node-feature matrix ( 400× 18 ) 
and an adjacency tensor ( 400× 400× 3 ). Each node 
feature (total of 18 features) was examined according to 
the masking technique, generating an importance plot in 
Fig. 6D. As shown here, features like partial charge, ring 
membership, hydrophobicity and hydrogen-bond donor 
are more important for a PC drop. The hybridization type 
stands out for an increase in RMSE, followed by partial 
charge and ring membership. As another example, M23 in 
this category can be interpreted by Additional file 1: Fig-
ure S4.

Evaluation of screening performances
As another evaluation of above models, the screen-
ing powers that show the capability of identifying active 
binders (actives) from non-binders (decoys) were esti-
mated. Validation data. As a frequently-accessed data-
base in molecular docking tasks, the enhanced directory 
of useful decoys (DUD-E) provides challenging decoys 
to active compounds binding to specific target proteins. 
Two targets, muscle glycogen phosphorylase (PYGM) 
and epidermal growth factor receptor (EGFR), from 
DUD-E were considered. PYGM concerns 114 actives 
and 4045 decoys, leading to a small set of 4159 PYGM-
ligand pairs. EGFR has 832 actives and 35,441 decoys, 
constituting a large set of 36,273 EGFR-ligand pairs. 
These two sets (details in Additional file  1 : Table  S1) 
were used to contrastively investigate the screening 
powers of the deep-learning PLBAP models. The decoy-
to-active ratios ( rDTA =

ndecoy
nactive

 ) of these two sets are 
approximately 35.5 and 42.6. Generating protein-ligand 
complexes. Due to the lack of complex structures, the 
data in DUD-E could not be fed into deep-learning BAP 
models directly. As such, AutoDOCK Vina was leveraged 
to generate the protein-ligand complex structures (bind-
ing poses), each with a docking grid of 20Å× 20Å× 20Å 
placed at the ligand-center position of the template struc-
ture (PDB:1C8K for PYGM-ligand pairs and PDB:2RGP 
for EGFR-ligand pairs). When docking each pair of mole-
cules using Vina, 32 consecutive Monte-Carlo samplings 
were conducted and the best pose was outputted during 
the search. These parameters are commonly adopted in 
docking applications. Evaluation rules. Relying on a 
deep-learning PLBAP model, the binding affinities for 
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target-ligand complexes can be predicted and ranked. 
The proportion of actives in the top X% of ranked ligands, 
namely the enrichment factor ( EFX ), is a crucial indica-
tor showing the screening power of the model. Given an 
rDTA ( 1, 2, . . . , rmax

DTA ), the decoys can be randomly selected 
from the decoy pool, and we can calculate EFX for the 
actives coupled with selected decoys. The top 1 ∼ 5% of 
ranked ligands ( X = 1, 2, . . . , 5 ) were investigated in the 
enrichment analysis. To prevent from randomness, 10 
selections were drawn and averaged to produce the final 
EFX for each rDTA and X values. A higher EFX normally 
indicates a better screening performance.

The enrichment analysis was conducted to reveal 
the screening powers of PLBAP models on the PYGM 
and EGFR datasets (Figs.  7∼8). Here M5 , M9 and M26 

(Table  2) were selected to stand for TACNN , TIMC−CNN 
and TGraph−GCN models. Since TGrid−CNN models have 
a severer overfitting problem (as shown in Table  2), we 
adopted model M14 , which is computationally more 
expensive (built on augmented data) but with a better 
testing performance (Additional file  1 : Tables S2∼3), 
to represent TGrid−CNN . Generally speaking for Figs.  7∼
8, as rDTA increases, EFX decreases dramatically. The 
real applications often involve a high rDTA as actives are 
always the minority in the broad compound space, which 
puts a major obstacle to current PLBAP works. For the 
small PYGM dataset, the TGrid−CNN model performs 
marginally better as rDTA increases, particularly for the 
top 1% complexes. For the larger EGFR set that is more 
similar to the real states, TGraph−GCN and TIMC−CNN 
models are more competitive. Especially, the TGraph−GCN 
model retains an EF of 10 ∼ 20 as rDTA reaches 40, for the 
top 1% complexes. As such, TGraph−GCN models have bet-
ter potential to be developed into more powerful screen-
ing machines.

Conclusions
Deep-learning PLBAP models have their pros and 
cons that need to be weighted up for specific scoring 
tasks. TACNN models can be explained from the per-
spective of energy and thermodynamic cycle, and it is 
friendly to large-scale computations. However, they 
often have insufficient learning abilities for scoring or 
screening tasks. TIMC−CNN models count on the learn-
ing of multi-range intermolecular contact features by 
2D-CNN models. The feature representations are sim-
ple and can be efficiently learned. But such representa-
tions oversimplify the protein-ligand interactions and 
ignore the spatial information of the molecules, mak-
ing the explanation from the structural and physico-
chemical perspectives more difficult. TGrid−CNN models 
leverage the molecular structural information and vox-
elization techniques, laying a foundation of structural 
interpretation of protein-ligand interactions. But the 
generation of such voxel features is resource-intensive, 
rendering the generalization to large-scale computa-
tions impractical. The lack of rotational invariance 
puts even more obstacles to such models, particularly 
in screening tasks. TGraph−GCN models have demon-
strated great potential recently. They are less resource-
intensive but can capture molecular topologies more 
flexibly than TGrid−CNN models, making them competi-
tive in scoring and screening tasks. Refining the graph 
representations, developing neat but powerful learning 
architectures, and enhancing the interpretability can be 
promising ways to explore the potential of such mod-
els deeply. Devising more powerful machines, which 
are accurate in scoring tasks and also robust to tough 

Fig. 7  Screening performances of representative deep-learning 
PLBAP models on PYGM dataset from DUD-E 

Fig. 8  Screening performances of representative deep-learning 
PLBAP models on EGFR dataset from DUD-E 
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screening tasks (with high rDTA ), will be a key direction 
for future developments of PLBAP works.
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