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Abstract 

Safety is one of the important factors constraining the distribution of clinical drugs on the market. Drug-induced liver 
injury (DILI) is the leading cause of safety problems produced by drug side effects. Therefore, the DILI risk of approved 
drugs and potential drug candidates should be assessed. Currently, in vivo and in vitro methods are used to test DILI 
risk, but both methods are labor-intensive, time-consuming, and expensive. To overcome these problems, many 
in silico methods for DILI prediction have been suggested. Previous studies have shown that DILI prediction models 
can be utilized as prescreening tools, and they achieved a good performance. However, there are still limitations 
in interpreting the prediction results. Therefore, this study focused on interpreting the model prediction to analyze 
which features could potentially cause DILI. For this, five publicly available datasets were collected to train and test 
the model. Then, various machine learning methods were applied using substructure and physicochemical descrip-
tors as inputs and the DILI label as the output. The interpretation of feature importance was analyzed by recognizing 
the following general-to-specific patterns: (i) identifying general important features of the overall DILI predictions, 
and (ii) highlighting specific molecular substructures which were highly related to the DILI prediction for each com-
pound. The results indicated that the model not only captured the previously known properties to be related to DILI 
but also proposed a new DILI potential substructural of physicochemical properties. The models for the DILI predic-
tion achieved an area under the receiver operating characteristic (AUROC) of 0.88–0.97 and an area under the Preci-
sion-Recall curve (AUPRC) of 0.81–0.95. From this, we hope the proposed models can help identify the potential DILI 
risk of drug candidates at an early stage and offer valuable insights for drug development.
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Introduction
Drug-induced liver injury (DILI) refers to injuries caused 
to the liver by various supplements, herbs, medications, 
or other chemical compounds, resulting in liver dysfunc-
tion [1, 2]. From mild abnormalities to acute liver fail-
ure, DILI can cause extensive liver damage and, in some 
cases, can be fatal. The estimated global annual preva-
lence rate of DILI was 13.9 ± 2.4 per 100,000 people [3]. 
DILI usually occurs by unpredictable drug reactions or 
idiosyncratic metabolic responses, creating difficulties 
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in drug discovery. There have been numerous reports of 
adverse drug reactions and severe toxicities leading to 
the withdrawal of drugs from clinical studies by pharma-
ceutical companies [4]. The results of clinical trials show 
that approximately 90% of new active substances fail to 
gain regulatory approval due to poor efficacy and unex-
pected toxicity [5]. Despite being developed and mar-
keted successfully, drugs can be withdrawn if they cause 
side effects. Among the types of adverse drug reactions, 
DILI has been the leading cause of drug withdrawal and 
disapproval during drug discovery in recent decades [6–
8]. Therefore, early prediction and assessment of DILI are 
major challenges in drug development.

In general, experimental animal models are used to 
predict DILI. However, they are time-consuming, labor-
intensive, and have poor concordance between species 
[9]. A previous study found that 43% of clinical toxici-
ties were not identified in animal studies for 64 marketed 
drugs [10]. In vitro cellular models are limited in repre-
senting the complexities of human DILI and are ineffec-
tive for toxicity mechanisms. Several studies on DILI risk 
prediction using in silico methods have been proposed to 
alleviate these issues. In previous studies, conventional 
machine learning methods, such as k-nearest neighbor 
Bayesian modeling, random forest (RF), support vector 
machine (SVM), and extreme gradient boosting algo-
rithms, have been executed to predict hepatotoxicity 
[11–13]. In addition, the importance of the molecular 
substructure of the RF was assessed using the Gini coef-
ficient [14]. The bits in molecular fingerprints corre-
sponded to different chemical groups, and the fingerprint 
with a high Gini coefficient indicated the hepatotoxic 
risk of the chemicals in the study [13]. A few attempts 
have also been made to develop deep-learning models 
based on molecular fingerprints [15, 16]. A convolutional 
neural network (CNN) based on embedded molecular 
fingerprint features was used for predicting DILI [16]. 
However, most of the studies focused on performance 
improvement rather than interpretation. In addition, 
nearly all the studies identified feature importance only 
for feature selection or specific models. Recently, it has 
been proposed to use an attention mechanism to identify 
structure–activity or the structure–property relationship 
to interpret deep learning architectures [17]. Zheng et al. 
predicted various chemical properties such as aqueous 
solubility, stability, and bioactivity.

This study applied permutation feature importance 
and attention mechanism to machine learning models 
for interpretable DILI predictions. This study recognized 
general-to-specific patterns, which focused on the overall 
importance of features in each model and how the spe-
cific molecular substructure significantly contributed to 
the DILI prediction for each compound. First, to achieve 

this, public datasets were collected. The molecular 
descriptors, including substructure and physicochemical 
properties, from the obtained compounds were calcu-
lated to predict DILI. With these features, RF, light gradi-
ent boosting machine (LGBM), logistic regression (LR), 
and neural network (NN) with attention models were 
built. Lastly, permutation feature importance for gen-
eral patterns and self-attention for specific patterns were 
employed.

Materials and methods
Data collection
Five publicly available datasets were collected (Fig. 1a).

The first dataset was from the Food and Drug Admin-
istration’s (FDA) National Center for Toxicological 
Research (NCTR) has established FDA-approved drug 
labeling to assess the potential risks of DILI in humans 
[18]. The NCTR divides drugs into the following three 
classes: (i) drugs with a Boxed Warning and that have 
been withdrawn from the market are labeled “most-DILI-
concern”; (ii) drugs that contain no precautions regard-
ing DILI are labeled “no-DILI-concern”; and (iii) 
drugs that do not meet the other categories are labeled 
“less-DILI-concern.”

The second dataset was from a study by Greene et al. 
assigned compounds to the following four classifica-
tions associated with hepatotoxicity: (i) compounds with 
observed human hepatotoxicity were labeled “HH”; (ii) 
compounds that were generally considered safe but had 
weak evidence of human hepatotoxicity were labeled 
“WE”; (iii) compounds with observed animal hepatotox-
icity but not tested on humans were labeled “AH”; and 
(iv) compounds that had no evidence of hepatotoxicity in 
any species was labeled “NE” [19].

The third dataset was from a study by Xu et al. classi-
fied drugs into the following groups using clinical data on 
hepatotoxicity: (i) drugs not marketed in the US, with-
drawn from the market, received a black box warning 
from the FDA, or had more than ten clinical reports due 
to hepatotoxicity were labeled as “DILI positive,” drugs 
marketed with a hepatotoxicity warning on the label, had 
a well-known association to liver injury, or a Pfizer inter-
nal drug candidate whose development was ceased due to 
hepatotoxicity concern were also labeled as “DILI posi-
tive”; and (ii) drugs that did not meet any of the above 
positive criteria were labeled as “DILI negative” [20].

The fourth dataset was from a study by Liew et  al. 
divided drugs into the following two classes: (i) drugs 
with transient and asymptomatic liver function abnor-
malities, liver function abnormalities, hepatitis, jaundice, 
cholestasis, fulminant hepatitis, liver failure, or fatality 
to the liver were labeled as “DILI positive”; and (ii) drugs 
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not associated with any adverse hepatic effects were 
labeled as “DILI negative” [21].

The fifth dataset was the Drug-Induced Liver Injury 
Rank (DILIrank) is the largest reference drug list related 
to DILI in humans [22]. The DILIrank dataset is com-
posed of FDA-approved drugs and divided into the fol-
lowing four classes: (i) drugs with potential to cause 

severe clinical outcomes are labeled as “Most-DILI-con-
cern”; (ii) drugs that can cause liver injuries but rarely lead 
to severe outcomes are labeled as “Less-DILI-concern”; 
(iii) drugs with a low perceived risk and rare or nonexist-
ent liver injuries are labeled as “No-DILI-concern”; and 
(iv) drugs with a DILI concern but without verified cau-
sality were labeled as “Ambiguous-DILI-concern drug.” 

Fig. 1 Overall data collection process. a First, we collected the public five datasets. b DILI positives and DILI negatives were selected by filtering 
drugs and compounds clearly related to DILI. c After integrating the datasets, duplicates and unclear structural formats were removed. Additionally, 
when the class label of compounds had a conflict, the DILIrank or NCTR data label was assigned. d NCTR, Greene, Xu, and Liew datasets were used 
as the training set and the DILIrank dataset was used as the test set
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This study tried to use only drugs and compounds clearly 
associated with DILI, thus drugs labeled as "less-DILI-
concern" in the NCTR, compounds labeled as “WE” and 
“AH” in the study by Greene et al., and drugs labeled as 
“Less-DILI-concern” and “Ambiguous-DILI-concern” in 
the DILIrank were excluded (Fig. 1b).

These datasets from five different studies have 
been integrated into a single dataset. First, dupli-
cate compounds were detected and eliminated based 
on PubChem’s compound identifier (CID). Then the 
canonical simplified molecular-input line-entry sys-
tem (SMILES), a chemical notation method that repre-
sents the molecular structure as a character string, was 
obtained based on their CID [23]. After that, compounds 
with the same or unclear SMILES were eliminated. When 
the class labels conflicted, the label from the DILIrank or 
NCTR datasets, which strictly classified the drug, was 
assigned (Fig. 1c). Four data sets, NCTR, Greene, Xu, and 
Liew, were used as the training set. The DILIrank was 
only used as the test set (Fig. 1d). Finally, the training set 
consisted of 1398 compounds, of which 768 were DILI 
positive and 550 were DILI negative. The test set con-
sisted of 452 compounds, of which 184 were DILI posi-
tive and 268 were DILI negative. A summary of the final 
dataset is shown in Table 1.

Molecular descriptors
Molecular substructure and physicochemical proper-
ties were used as input features in this study. First, the 
SMILES structure was converted to a molecular finger-
print, a way to describe the molecular structure by con-
verting it into a bit string. An extended-connectivity 
fingerprint (ECFP), one of the molecular fingerprints, 
was used in this study. ECFP is designed to capture the 
local structural features [24]. The ECFP was followed 
by a number indicating the number of the largest effec-
tive diameter. The number is equal to twice the number 
of iterations performed. This study used the ECFP6. The 
ECFP6 contains all the possible paths through an atom 
with a radius of 3 and extracted molecular substructures 
with a maximum width of six bonds. In addition, the 
ECFP transformed the molecular structures into vectors 

of integers in a given dimension. The higher the radius 
and dimension, the better the bit collisions are avoided. 
Lastly, the ECFP represents the presence of specific 
molecular substructures, making analysis results easy to 
interpret. For example, a “1” is assigned when the sub-
structure exists, and a “0” is assigned when the substruc-
ture does not exist. An ECFP6 of 1024 bits was generated 
as the molecular descriptor for each compound in the 
datasets. In summary, when the radius size was set at 3, 
the substructures of the molecules with a radius size of 3 
or less were extracted and converted into numerical iden-
tifiers by a slightly modified Morgan algorithm [25]. The 
identifiers of all extracted substructures were hashed into 
a binary vector of 1024. Consequently, the binary vector 
of set bits represented the molecular substructure. The 
mean and standard deviation of each binary vector values 
are displayed in Additional file 1: Fig. S1.

In addition, eight physicochemical descriptors were 
calculated from the SMILES, including the molecu-
lar weight (MW), octanol–water partition coefficient 
(ALOGP), number of hydrogen bond donors (HBD), 
number of hydrogen bond acceptors (HBA), polar sur-
face area (PSA), number of rotatable bonds (ROTB), 
number of aromatic rings (AROM), and number of struc-
tural alerts (ALERT). Some of these physicochemical 
descriptors are known to be strongly related to the DILI 
prediction [26, 27]. As the values of the physicochemi-
cal descriptors varied significantly, they were scaled to 
zero mean and one variance [28]. Additional file  1: Fig. 
S2 shows the distribution of theses physicochemical 
descriptors and Additional file  1: Fig. S3 shows the dis-
tribution after applying the standard scaler to the phys-
icochemical descriptors. All the features were calculated 
using an open-source cheminformatics software, RDKit 
[29].

Machine learning models
The RF, LGBM, LR, and NN with attention models 
were constructed and optimized. The RF is an ensem-
ble method that learns a multitude of decision trees 
[30]. First, 1398 bootstrap sets, a subset of the training 
set through sampling with replacement, were gener-
ated. Then, a decision tree was trained using the boot-
strap set with randomly selected features. The process 
was repeated to generate a multitude of decision trees. 
Finally, the prediction was calculated by averaging the 
predictions of each decision tree. The following hyperpa-
rameters of the RF were optimized; the number of trees 
in the RF, the maximum number of features considered 
for splitting a tree, and the maximum depth in each deci-
sion tree.

LGBM is a gradient-boosting framework and a tree-
based learning algorithm [31]. Decision trees have a 

Table 1 Data summary of the final dataset

Category Dataset DILI positive DILI negative Total

Training (76%) NCTR 169 179 348

Greene 149 80 229

Xu 12 34 46

Liew 438 337 775

Total 768 630 1398

Test (24%) DILIrank 184 268 452
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level-wise growth strategy, whereas LGBM has a leaf-
wise growth strategy with depth constraints. By selecting 
the leaf that was expected to reduce loss the most, the 
tree was grown vertically. The LGBM has the advantages 
of fast training speed and higher efficiency but has the 
risk of overfitting. The following hyperparameters of the 
LGBM were optimized; the max number of leaves in one 
tree and the number of boosting iterations. To deal with 
overfitting, two hyperparameters were optimized; the 
minimal number of data in one leaf and the maximum 
depth of the tree model.

LR calculates the likelihood of an event occurring based 
on an independent variable dataset [32]. The magnitude 
of the LR coefficients represents the relative importance 
of each independent variable in influencing the predic-
tion. Larger coefficient values indicate a stronger impact 
on the prediction, while smaller coefficients suggest a 
weaker influence. This interpretation allows for iden-
tifying the importance of each independent variable in 
the prediction. The following hyperparameters of the 
LR were optimized; the maximum number of iterations 
taken and the strength of the regularization. To obtain 
optimal hyperparameters for each model, Randomized-
SearchCV in Scikit-learn was applied [33]. Randomized-
SearchCV tries random combinations of a predefined 
range of hyperparameter sets and searches for better 
models. The optimal hyperparameter sets were obtained 
with 50 iterations. Optimal parameters obtained from 
the hyperparameter tuning of each model are shown in 
Additional file 1: Table S1.

A self-attention mechanism was adopted to determine 
which parts of the molecule influenced the prediction 
model [34]. The attention mechanism was used to weigh 
the importance of features by calculating the correla-
tion between the inputs and output. First, the vectorized 
structure and physicochemical descriptors were concat-
enated. The concatenated vectors were fed into the fully 
connected layer. An attention mechanism then took 
them as the input and output vector of weights ( Watt ). 
Formally, the formula is:

where Watt is the attention weight, softmax is the func-
tion that normalizes the sum of the vectors to be 1, and 
inp is the input vector, which is the concatenated vector, 
and where g(x) is the fully connected layer without the 
activation function, W  is the weight matrix, and b is the 
bias. The output of the g(inp) function was used as the 
input for the softmax function, and the attention weight 
was calculated. Then, an element-wise product of the 

(1)Watt = softmax
(

g(inp)
)

(2)g(x) = Wx + b

attention weight and input vector was conducted using 
the formula:

where ⨀ denotes the element-wise product and v is the 
weighted vector. After this, v was used as the input for 
the multilayer perceptron (MLP). Each dense layer except 
the last layer was applied to the ReLU activation and He 
initialization [35, 36]. In addition, batch normalization 
for the model regularization was performed and a 0.25 
dropout rate was set after each layer to prevent overfit-
ting [37, 38].

MLP contains multiple layers, and each layer is com-
posed of multiple nodes. To obtain the optimal number 
of layers and nodes, a Bayesian optimization was done 
[39]. Bayesian optimization creates a surrogate model 
for the objective function and hyperparameter pairs and 
explores the optimal hyperparameter set through evalua-
tions by updating the hyperparameters sequentially. The 
optimal number of layers and nodes is shown in Addi-
tional file 1: Table S1.

As a result, the weighted feature vector ( v ) was fed into 
one layer with 512 nodes, and the sigmoid as an activa-
tion in the last layer was used to predict DILI. Binary 
cross-entropy loss, early stopping, Adam optimizer, 100 
epochs, and 32 batch size were employed [40]. The struc-
ture of NN with attention is illustrated in Fig. 2

Feature importance
To understand the features related to DILI, the model 
prediction was analyzed in the following two ways to 
recognize the general-to-specific patterns: (i) identifying 
important features of the overall DILI predictions and (ii) 
highlighting specific molecular substructures.

1. To identify the general important features of the 
overall DILI predictions, permutation feature importance 
was used to identify the feature importance in the RF, 
LGBM, and LR models. Permutation feature importance 
is the prominent representative of feature importance 
measures as it’s model-agnostic [41]. The permutation 
feature importance was implemented in three steps: (1) 
single feature value in the test dataset was randomly 
shuffled while keeping the other features unchanged, 
(2) using the shuffled feature value, new predictions 
and evaluations were made, and (3) the feature impor-
tance was scored based on the performance differences 
between the original prediction and the new predictions. 
The larger performance difference obtained a higher 
score, indicating that the feature contributed significantly 
to the prediction. Therefore, through the permutation 
feature importance, the features which had a predictive 
power overall in each model were detected. In addition, 
in the LR, the coefficient was used to identify feature 

(3)v = Watt ⊙ inp
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importance. As with permutation feature importance, 
the larger the coefficient, the more influence the feature 
had on the model.

These methods enabled the identification of feature 
importance across the entire datasets.

2. Highlighting the specific molecular substructures 
as mentioned in the ‘Machine Learning Models’ section, 
the attention weight implicitly indicates the contribu-
tion of the substructure of the compound to DILI. With 
the ECFP6, each bit where the attention weight was cal-
culated corresponded to the molecular substructure. A 
higher attention weight indicated that the substructure’s 
corresponding feature was closely associated with toxic-
ity. True positive compounds and their molecular sub-
structures with a high attention weight were analyzed. 
The experimental procedure is illustrated in Fig. 3

Model evaluation
We evaluated machine learning model using two methods. 
First, a hold-out validation was performed with a single test 
to validate the models. NCTR, Greene, Xu, and Liew data-
sets was used as training set and DILIrank was used as test 
set. Second, stratifiedKFold was performed to reduce bias 
in the data. The dataset was shuffled before being split then 
distributed based on the proportions of DILI negative and 

DILI positive compounds. Then, the models were validated 
by repeated stratified tenfold cross validation.

After each model training, all models were evaluated 
based on accuracy, sensitivity, specificity, precision, and 
F1 score, which were calculated as follows. In this study, 
all models were evaluated based on accuracy, sensitivity, 
specificity, precision, and F1 score, which were calculated 
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Precision =
TP

TP + FP
,

(4)F1 score = 2×
Pre × Sen

Pre + Sen

Fig. 2 The structure of NN with attention. Physicochemical and structural descriptors were calculated from the compound. Then, both features 
were concatenated and took into account the fully connected layer. An attention mechanism took them as the input and output an attention 
weight. The attention weight was element-wise multiplied with the input vector and fed into the fully connected layer. After that, the sigmoid 
activation function classified the DILI label. Finally, the substructures of the molecules that influenced the model prediction were identified 
by analyzing the attention weight
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where TP, FP, TN, and FN represent true positive, false 
positive, true negative, and false negative, respectively. 
The area under the receiver operating characteristic 
(AUROC) and the area under the precision-recall curve 
(AUPRC) were also utilized to evaluate the prediction 
performance of the models. An AUROC and AUPRC of 
0.5 suggests a random classifier, while an AUROC of 1 
represents a perfect classifier.

Results and discussion
Performance of machine learning models for DILI 
prediction
Four machine learning models were evaluated and 
compared to the performance of a previous study by 

Nguyen-Vo et  al., which generated a model by applying 
a CNN model based on molecular fingerprint-embedded 
features [16]. The model by Nguyen-Vo et al. was trained 
with public datasets and used the DILIrank dataset as an 
independent set, which was the same test set that was 
used in this study. The performance of the models with 
hold-out validation and stratified k-fold cross validation 
is shown in Additional file 1: Tables S2 and S3. Addition-
ally, the AUROC and AUPR performances are illustrated 
in Fig. 4

The performance calculated with hold-out validations 
are illustrated in Fig. 4a, b. In hold-out validation, accu-
racy varied from 0.81 to 0.90, sensitivity varied from 0.77 
to 0.96, specificity varied from 0.62 to 0.90, precision 

Fig. 3 The overall experimental procedure. a The structural and physicochemical descriptors of the dataset were calculated. Both features were 
used as the input, and the DILI label as the output. The RF, LGBM, LR, and NN with attention were used. To interpret the models, b identifying 
important features of the overall DILI predictions using the permutation feature importance and c highlighting specific molecular substructures 
were conducted by analyzing the attention weight
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varied from 0.74 to 0.85, and the F1 score varied from 
0.77 to 0.89. The AUROC varied from 0.88 to 0.97, and 
the AUPRC varied from 0.81 to 0.95. The RF model 
obtained the highest accuracy, sensitivity, F1 score, 
AUROC, and AUPRC. The NN with attention model 
provided the highest specificity and precision but gave a 
relatively low sensitivity. The CNN and the proposed RF 
models had comparable AUROC performance, with an 
AUROC of 0.96 and 0.97, respectively. In summary, the 
RF model was optimal with an accuracy of 0.90, sensitiv-
ity of 0.96, specificity of 0.87, precision of 0.83, F1 score 
of 0.89, AUROC of 0.97, and AUPR of 0.95. The perfor-
mance calculated with stratified tenfold cross validation 
are illustrated in Fig. 4c, d. All values are average scores 
of tenfold. In stratified tenfold cross validation, accuracy 
varied from 0.72 to 0.78, sensitivity varied from 0.71 to 
0.80, specificity varied from 0.72 to 0.76, precision var-
ied from 0.73 to 0.78. The RF model obtained the highest 

accuracy, sensitivity, specificity, precision, and F1 score. 
The AUROC varied from 0.76 to 0.87, and the AUPRC 
varied from 0.75 to 0.87. The RF model obtained the 
highest accuracy, sensitivity, specificity, precision, F1 
score, AUROC, and AUPRC. The NN with attention 
model provided the highest specificity. In summary, the 
RF model was optimal with an accuracy of 0.78, sensitiv-
ity of 0.80, specificity of 0.76, precision of 0.78, F1 score 
of 0.79, AUROC of 0.87, and AUPR of 0.0.87.

Overall feature importance
A total of 1032 features, including structural features 
(n = 1024) and physicochemical descriptors (n = 8), were 
used for model development. Among them, the features 
which were generally important in predicting DILI were 
determined. All features were ranked by measuring the 
effect of the permutation of the variables on perfor-
mance. To achieve robustness, the permutations were 

Fig. 4 a AUROC and b AUPR performance of hold-out validation. Four data sets, NCTR, Greene, Xu, and Liew, were used as the training set 
and the DILIrank was only used as the test set. c AUROC and d AUPR performance of stratified tenfold cross validation. The shaded region indicates 
95% confidence interval
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repeated 50 times, and the AUROC was used as the per-
formance metric. The permutation feature importance 
results obtained from the RF, LGBM, and LR models are 
illustrated in Fig.  4. Of the 1032 features, the 10 most 
important features obtained by the model are shown. In 
the y-axis of the figures, the word indicates one of the 
physicochemical descriptors, and the number indicates 
one of the structural features. Additionally, the top 3% 
most feature importance results are displayed in Addi-
tional file 1: Fig. S4.

In the RF model, the substructural features of 356, 849, 
314, 227, 464, 935, 893, and 798 showed a high impor-
tance in the order (Fig.  5a). Additional file  1: Table  S4 
shows the molecular substructures corresponding to 
these features. For the physicochemical descriptors, 

ALOGP and AROM showed high importance in the 
order. ALOGP, the most important feature in the RF 
model, was significantly higher than other features, with 
a mean of 0.006 and a standard deviation (SD) of 0.0029 
for the decrease in the AUROC. In the LGBM model, 
the substructural features of 80, 464, 378, 806, 314, 392, 
981, and 650 showed a high importance in the order 
(Fig.  5b). Additional file  1: Table  S5 shows the molecu-
lar substructures corresponding to these features. For 
the physicochemical descriptors, ALOGP and AROM 
showed high importance in the order. ALOGP, the most 
important feature in the LGBM model, was significantly 
higher than other features, with a mean of 0.0521 and an 
SD of 0.016 for the decrease in the AUROC. In the LR 
model, substructural features of 237, 80, 486, and 392 

Fig. 5 The permutation feature importance of the machine learning models. a-c The 10 most important features were ranked, and their boxplots 
show the distribution of the decrease in the AUROC score. The lower the saturation, the higher the importance score of the feature. d The 10 most 
important features were analyzed with the coefficient of the LR. Features related to a positive DILI prediction are shown in blue, and those related 
to a negative DILI prediction are shown in red. The lower the saturation, the higher the importance score of the feature. Large absolute means 
that feature is important
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showed a high importance in the order (Fig.  5c). Addi-
tional file 1: Table S6 shows the molecular substructures 
corresponding to these features. For the physicochemi-
cal descriptors, ROTB, AROM, HBD, ALOGP, MW, and 
HBA showed high importance in the order. ROTB was 
the most important feature in the LR model, with a mean 
of 0.0375 and an SD of 0.0185. The feature importance 
with coefficient in the LR model was further analyzed 
(Fig.  5d). Substructural features of 464, 612, 659, 392, 
138, 807, and 80 showed a high importance in the order. 
Additional file 1: Table S7 shows the molecular substruc-
tures corresponding to these features. For the physico-
chemical descriptors, HBA, AROM, and ROTB showed 
high importance in the order. The feature importance in 
the LR model was analyzed in two ways. ROTB, AROM, 
HBA, and substructural features of 80 and 392 were 
found to be of common importance in both methods.

In all models, the importance of each feature was iden-
tified. Analyzing the results of the feature importance, 
substructural features of 80 and 464 showed a high cor-
relation with the DILI prediction. As mentioned in the 
‘Molecular descriptor’ section, binary vectors of the 
ECFP6 represent the molecular substructures in bits 
through a hash function. In this process, there may be 
collisions between bits where the features and molecu-
lar structures do not correspond exactly one-to-one. 
Thus, the molecular substructures corresponding to the 
features of 464 and 80 were additionally identified. The 
molecular substructures associated with the features of 
464 and 80 were identified in several compounds and are 
shown in Table 2.

There are several studies that support this analysis. The 
substructural feature 80 corresponds to several molecular 
substructures. Among them, Acetohydrazide exacerbates 
liver cell injuries [42]. Hydrozine, one of the molecular 
substructures corresponding to the substructural feature 
464, is known to cause liver damage [42, 43]. The phar-
maceutical industry paid attention to controlling hydra-
zine levels due to liver toxicity. Of the physicochemical 
descriptors, AROM had important overall importance in 
the entire model. Next, ALOGP showed a high correla-
tion with DILI in three feature importances. Particularly, 
ALOGP was the highest predictor of DILI in the RF and 
LGBM models. In the permutation feature importance 
of the LR model, the physicochemical descriptorshad a 
significant impact on predicting DILI, and six of the ten 
most important features were, in order, ROTB, AROM, 
HBD, ALOGP, MW, and HBA. ALOGP and AROM are 
known to be associated with the risk of DILI [26, 44–46]. 
ALOGP is used to measure a drug’s lipophilicity, and 
AROM is the number of aromatic rings. DILI-positive 
drugs had higher lipophilic and greater aromatic ring 
counts than DILI-negative drugs [46]. This is consistent 

with these findings, which confirmed that AROM has a 
positive correlation with DILI.

Importance of specific molecular substructures
To investigate which parts of the molecule played an 
important role in predicting DILI, several compounds 
in the test data were analyzed. Among the true positive 
compounds, the compounds with high prediction prob-
abilities (p ≥ 0.8) were Pazopanib, Rifampin, Itraconazole, 
Imatinib, Dactinomycin, Tasosartan, and Atorvastatin. 
The molecular substructures that significantly contrib-
uted to the DILI were highlighted through their attention 
weights. The three most important molecular substruc-
tures with high attention weights in each compound are 
displayed in Additional file 1: Fig. S5. Several highlighted 
results of the analysis were further compared with exter-
nal literature.

Aniline derivatives commonly in Pazopanib and Dac-
tinomycin influenced the prediction of DILI (Fig. 6a, c). 
Many compounds with aniline moieties are known to be 
mutagenic, and structure alerts are frequently marked in 
substituents known to form anilines [47, 48]. In particu-
lar, the aniline derivatives in Pazopanib are identified as 
a structural alert in the analysis of drugs associated with 
black box warnings due to hepatotoxicity [47]. One of the 
molecular substructures that significantly contributed 
to Imatinib’s DILI positive prediction was the trimethyl-
amine group (Fig. 6b). The other DILI prediction models 
found that trimethylamine groups only appeared in DILI 
positives [49]. Finally, it was found that fluorine bonded 
to a sp3 carbon contributed the most to the DILI predic-
tion of Atorvastatin (Fig. 6d). In the presence of fluorine 
atoms, drug lipophilicity increases, which could increase 
the intracellular concentration of hepatotoxic drugs [12, 
50, 51]. This study confirmed that this model can deter-
mine well-known DILI structural alerts. Therefore, the 
highlighted molecular substructures have not yet been 
reported but may potentially affect DILI.

Limitations of the study
This study can be further improved by considering the 
following. The Morgan fingerprint algorithm can affect 
the model prediction. The ECFP6 was used to capture 
molecular substructures with radius of 3. Therefore, 
molecular substructures with larger radius sizes might 
have been missed. In addition, a few molecular sub-
structures were collided with one feature due to the hash 
function used to calculate the structure features. Fur-
ther research is needed to resolve this feature ambiguity. 
Lastly, this study did not consider dose-dependent DILI. 
The dose is an important feature because the induction of 
DILI may vary with the dose. However, this study lacked 
detailed data sources and standard doses of the drugs. 
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Table 2 Molecular substructures corresponding to features

Feature Substructure Description SMILES

80 N

N

2,3-Dimethylindazole Cc1c2ccccc2nn1C

OH

N
H

(1S,2S)-1-cyclohexyl-2-(methylamino)propan-1-ol ccc(cc)[C@H](O)[C@H](C)NC

O

2-isopropoxypropane C[C@H](C)Oc(c)c

O

N
H

NH2

Acetohydrazide cC(= O)NN

OH Pentan-3-ol CCC(O)CC

464

O

Cl

Cl

2,3-Dichloro-4-methylanisole COc1ccc(C)c(Cl)c1Cl

N
H

4-Ethyl-3-methylene-1,2,3,4-tetrahydroquinoline cc1cNc2ccccc2C1CC

NH

Ethenamine ccn

H
N

H2N

Methylhydrazine CNN

O

O

1,2-dimethoxy-4-methylbenzene cc1ccc(OC)c(OC)c1
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When all the limitations are addressed, the DILI predic-
tion will be more accurate.

Conclusion
An interpretable prediction for DILI was proposed in 
this study. This study applied machine learning mod-
els using molecular substructural and physicochemical 
descriptors, and the models achieved overall AUROC 
values ranging from 0.88 to 0.97. These models tried to 
interpret the DILI predictions in two ways. First, through 

permutation feature importance, the molecular sub-
structure features of 80 and 464 and the physicochemi-
cal descriptors of AROM and ALOGP were identified 
to be highly important. These features were previously 
reported to have significant correlations with DILI. How-
ever, during the process of converting molecular struc-
tures into bits, one feature may be assigned to multiple 
molecular substructures. Therefore, an analysis of the 
attention weight for each compound was further con-
ducted to identify which molecular substructure had a 

Table 2 (continued)

Feature Substructure Description SMILES

OH

HO

2-ethyl-3,5-dimethylbenzene-1,4-diol CCc1c(O)cc(C)c(O)c1C

Cl

F (Z)-3-choloro-4-fluoropenta-1,3-diene ccc(Cl)c(c)F

Cl 1-chloro-3-methylbenzene Cc1cccc(Cl)c1

O

Cl

Cl

2,3-dichloro-1-methoxy-4-methyldbenzene COc1ccc(C)c(Cl)c1Cl

N

Cl

1-(4-chloro-2-methylphenyl)pyrrolidine cn(c)-c1ccc(Cl)cc1C

O
Si

O

O
Trimethoxy(methyl)silane CO[Si](C)(OC)OC

OH

O OH

OH

3-hydroxy-2-(1-hydroxypropyl)pentanoic acid CCC(O)C(C(= O)O)C(O)CC

The dashed lines represents conjugated double bonds and the bold font are molecular substructures known to be related to DILI
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substantial impact on the DILI prediction. This analysis 
showed that specific molecular substructures, such as 
aniline derivatives, trimethylamine groups, and fluoro-
carbons, significantly contribute to the DILI prediction. 
These substructures are well-known structural alerts 
highly associated with DILI, confirming that the model 
performed well in predicting DILI. The proposed model 
enables proactive DILI prediction for compounds dur-
ing drug development, thereby enhancing drug safety and 
preventing potential side effects in advance. Additionally, 
the model’s interpretability is expected to aid research-
ers in making modifications or alternative exploration 
of those substructures to mitigate DILI, as it can identify 
risks associated with specific molecular substructures.
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