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Abstract 

Mass spectrometry (MS) is an analytical technique for molecule identification that can be used for investigating 
protein‑metal complex interactions. Once the MS data is collected, the mass spectra are usually interpreted manually 
to identify the adducts formed as a result of the interactions between proteins and metal‑based species. However, 
with increasing resolution, dataset size, and species complexity, the time required to identify adducts and the error‑
prone nature of manual assignment have become limiting factors in MS analysis. AdductHunter is a open‑source 
web‑based analysis tool that  automates the peak identification process using constraint integer optimization 
to find feasible combinations of protein and fragments, and dynamic time warping to calculate the dissimilarity 
between the theoretical isotope pattern of a species and its experimental isotope peak distribution. Empirical 
evaluation on a collection of 22 unique MS datasetsshows fast and accurate identification of protein‑metal complex 
adducts in deconvoluted mass spectra.
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Introduction
Mass spectrometry (MS) is a well-established analytical 
technique for chemical identification and molecular 
weight determination of various analytes [1]. The 
experimental output is a mass spectrum consisting of 
intensity values at corresponding mass-to-charge ratios 
(m/z). Analysis of small molecules by electrospray 
ionization (ESI)-MS, one of the most widely used MS 

techniques, results in mostly singly-charged ions. In 
the case of proteins or other biomolecules, which have 
much higher molecular weights, charge state envelopes 
are formed from ions at different charge states, but 
originate from the same molecule. The isotopes of 
the elements present in the protein and its adducts 
change the isotope peak pattern for each peak, forming 
Gaussian-type profiles. Due to the complexity of such 
spectra, maximum entropy deconvolution [2, 3] as a 
pre-processing step facilitates the analysis of proteins 
reconstituting the charge state envelope for each species 
detected into neutral mass peaks.

MS has proven particularly valuable in characterizing 
metallodrug interactions with proteins, e.g., protein-
metal complex stoichiometry, adduct composition, 
binding sites, and structural changes [4–12]. For current 
metallodrugs to progress toward clinical development, it 
is crucial to understand the pharmacological properties, 
notably metallodrug-protein interactions [13–15].
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However, interpreting mass spectra is typically done 
manually, which can be time-consuming, tedious, and 
error-prone due to the complexity of mass spectra, in 
particular for reactive species that can undergo changes 
not only upon interacting with proteins, but also by reac-
tion with matrix components or during the analysis pro-
cess with solvent molecules.

Software solutions have been explored to automatize the 
identification of protein adducts, but for example, Analysis 
of Protein Modifications from Mass Spectra ( Apm2 s) [16] 
is targeted at proteomics workflows, pyOpenMS [17] is a 
mass spectrometry-based proteomics analysis tool but not 
specifically designed for identifying protein-metal com-
plex adducts. The Nesvizhskii lab and collaborators have 
created a suite of software1 for proteomics and metabo-
lomics applications [18–22] which are well supported for 
these applications. mMass [23] and pyQms [24] are either 
again focused on proteomics or metabolomics, and limited 
to a narrow set of inputs, or have had no further develop-
ment and support in recent years.

Therefore, AdductHunter is introduced here as a web-
based tool that automates the identification of protein-
metal complex adducts in deconvoluted mass spectra, 
which, to the best of our knowledge, is the first tool of its 
kind for this purpose.

Implementation
AdductHunter is a web-based tool that automates the 
identification of protein adducts in deconvoluted mass 
spectra (see Fig.  1). It requires a series of input files 
and parameters, returning a downloadable output file 
that contains a list of (feasible) species corresponding 
to different peaks in the input spectrum (see Fig.  2 
for its general algorithm). These species are sorted by 
their similarity to the experimental peaks as scored by 
closeness of fit (loss) to isotope pattern and mass error.

AdductHunter is freely accessible on GitHub2 under 
an MIT license or at adduc thunt er. wicke rlab. org and was 
created using Python 3. Hence, it is dependent on several 
Python packages, namely pyOpenMS [17], ORTools [25], 
SciPy [26], and Flask [27]. In this section, we outline the 

Protein Adduct Stoichiometry Prediction
Note: all files must be excel spreadsheets ('.csv' or '.xlsx')

Peak Search
Mass tolerance: 2.1

Minimum peak height: 0.01

Minimum mass difference between two protein adducts: 4.0

Re-calibration of mass spectrum: Automatic
Return all peaks detected (even those without any feasible species): No

Feasible Set
Maximum unique standard adducts: 2

Coordination number of metal: 3

Minimum number of proteins: 1  (for when there are multiple proteins)

Maximum number of proteins: 1  (for when there are multiple proteins)
Isotope pattern generation method: Hyperfine

Submit

Choose file for deconvoluted mass spectrum of adducted protein sample Browse

Choose file for compound description and constraints Browse

Choose file for standard adduct description and constraints (or do not upload and use default) Browse

Fig. 1 Webpage layout showing input files and parameters for peak identification and the constraint optimization formulation

1 www. nesvi lab. org/ softw are. html. 2 www. github. com/ dlon4 50/ MS- Prote in- Adduct- Ident ifica tion.

https://adducthunter.wickerlab.org/
https://www.nesvilab.org/software.html
https://github.com/dlon450/MS-Protein-Adduct-Identification
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specifics behind AdductHunter’s implementation, along-
side examples of a well-studied protein/metallodrug sys-
tem [4, 5, 28–30], namely ubiquitin (Ub) incubated with 
cisplatin (cis-Pt(NH3)2 Cl2 ), to provide clarity on usage.

Input files
Three input files are required; (1) the deconvoluted mass 
spectrum, for example obtained using Maximum Entropy 
Deconvolution in Bruker DataAnalysis to produce a 
charge neutral spectrum [2, 3]; (2) a file that lists the 
protein and any atoms, ions, and solvents contained in 
the sample and their corresponding constraints, such as 
charge and coordination number, the number of expected 
adducts formed; and (3) a description of the standard 
adducts involved in the sample and their corresponding 

constraints, which is expected to be very similar for most 
experiments. These are required to be of .xlsx or .csv file 
types and assumed to have the correct formatting (see 
Tables 1, 2, 3 and Additional Files 1 and 2 for examples of 
the expected layout for these input files).

Peak identification
AdductHunter begins by identifying peaks within the 
mass spectrum. Users are required to specify three 
parameters involved in this process: (1) the (normalized) 
noise threshold or minimum peak height; (2) the 
minimum distance between adjacent peaks in atomic 
mass units; and (3) whether a linear re-calibration of 
the spectrum is required using known peaks as internal 
standards. In the case that a re-calibration is applied, 

Peak identification
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Fig. 2 Overview of the underlying algorithm to AdductHunter
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all mass-to-charge values are shifted equally, either 
according to the difference between the (theoretical) 
peak isotopic mass of the protein and the closest 
identified isotopologue peak in the mass spectrum, or a 
user-specified value.

With these parameters set, peaks are identified 
in a two-step process. The spectrum intensities are 
first normalized to the most abundant peak, then 
peaks exceeding the minimum height threshold are 
identified using SciPy’s peak detection function, which 
yielded similar results to several recently reported 
MS peak detection algorithms [31–33]. Higher-
resolution MS, however, picks up a much greater 
number of low intensity peaks, leading to more peaks 
having an intensity larger than the noise threshold 
and a significant number of false positive peaks. As a 
result, a second filtering step was included in the peak 
identification process. Filtering uses the minimum 
distance between peaks to remove peaks belonging to 
the same species, ensuring isotope peaks within the 
same isotope pattern are only detected once, a feature 
increasingly relevant in mass spectra collected with 
higher resolution instruments (see Fig. 3). Additionally, 

users can specify to only return detected peaks with at 
least one feasible species in the output.

The peak isotopic mass refers to the highest nominal 
mass peak by intensity-weighted average of the hyper-
fine mass distribution (at each integer mass) of a species. 
The most abundant isotopologue typically matches that 
of commercial isotope pattern predictors on the scale 
of 10−3 parts per million (ppm), e.g., the Bruker isotope 
pattern generator [34]. These mass values are later used 
in the constraint optimization formulation to linearly 
approximate the true mass value of a species.

Optimization problem
Once peaks within the mass spectrum have been detected, 
AdductHunter will determine their corresponding 
speciations by formulating an optimization problem, 
involving an objective function subject to a set of 
constraints, at each identified peak p. The objective 
function measures the dissimilarity (distance) between 
the theoretical isotope pattern of a given species and 
the experimental isotope distribution of the peak. The 
constraints are established from user-defined parameters 

Table 1 Input file for a deconvoluted mass spectrum in the 
mass range of 8000–11,000 recorded for a mixture of Ub and 
cisplatin containing mass, m, and intensity, I, values

Intensities can be of any unit as they will be normalized relative to the most 
abundant peak

# m(Da) I

1 8000 419733

2 8000.561 215877

3 8001.474 168996
.
.
.
  .

.

.

.

.

.

2225 10997.12 116811

2226 10998.31 231463

2227 10999.56 231444

Table 2 Species description and constraints input table for a sample containing the protein ubiquitin (Ub) and cisplatin

Min, Max indicate the minimal and maximal values for each component in any identified peak

M refers to the maximum number of the corresponding coordinating species per metal

An empty value means there is no limit, which is expected here as these adducts do not coordinate to the metal centre

The charge needs to be provided as positive or negative integers

Species Formula Min Max Type M Charge

Ubiquitin C378H629N105O118S1 1 1 Protein 0

Platinum Pt 0 3 Metal 2

Ammonia NH3 0 6 Other 2 0

Water H2O 0 3 Other 2 0

Chlorine Cl 0 6 Other 2 − 1

Table 3 Input table of standard adducts and constraints for the 
ubiquitin and cisplatin system

Min and Max indicate each component’s minimal and maximal values in any 
identified peak

M refers to the maximum number of the corresponding coordinating species 
per metal

An empty value means there is no limit, which is expected here as these adducts 
do not coordinate to the metal centre

The charge needs to be provided as positive or negative integers

Species Formula Min Max M Charge

Hydrogen H 0 10 1

Sodium Na 0 1 1

Lithium Li 0 1 1

Potassium K 0 1 1
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and files, forming the set of feasible solutions. In the 
context of this problem, a feasible solution refers to a 
combination of input compounds that gives a potential 
species matching the peak-centred experimental isotopic 
distribution. This gives the general formulation:

where x is the vector of the number of molecules for 
each compound, φ(x, p) is the dissimilarity between 
species x and the experimental distribution around 
peak p, and F(p) is the set of feasible species at peak p. 
For example, to represent UbPt( NH3)2 , we would have 
x = (xUb, xPt, xNH3 , · · · )

T = (1, 1, 2, 0, · · · , 0)T .
Due to noise and inaccuracies in the collection and 

averaging of mass spectra, the true species may not be 
optimal, that is, there exists another species that has 
an isotope pattern more similar to the experimental 
isotope distribution. However, the correct species is 
highly likely to be contained within the feasible set, if 
sensible constraints and parameters have been provided. 
Thus, returning all feasible species is helpful for post-
optimization validation and analysis.

Constraint integer optimization formulation
A constraint integer optimization (CIO) formulation 
is a type of integer optimization formulation where all 
feasible integer solutions are returned. The formulation 
takes advantage of the problem structure and constraints 
to ensure sensible species are generated. Although once 
thought to be intractable, it has shown great advances in 
efficiency and speed in recent years, and can be solved 
quickly using industry-grade solvers such as CPLEX [35] 

(1)
min φ(x, p)
s.t. x ∈ F(p)

and GUROBI [36], much faster than enumerating all 
possible solutions.

To start, the decision variables, xi , are defined as the 
number of molecules present for protein/adduct i, each 
having a mass of mi , for every i in the set of all species, 
C. The mass value here takes into account the charge dis-
crepancy from adding a metal-based fragment, ci , of spe-
cies i by removing the mass of ci protons from its peak 
isotopic mass, that is,

where Pi is the most abundant isotopologue of the 
species.

Constants/parameters in the formulation are defined 
in either the web application or the compound constraint 
files. The user-defined parameters in the web application 
are as follows: 

 i. The peak tolerance, t, defined as the neighbourhood 
of mass values around a peak p, at which a 
combination of species forms a feasible protein 
adduct. It is enforced by the constraint: 

 ii. The maximum number of unique standard adducts, 
r, in any feasible solution. We define standard 
adducts as those adducts frequently observed in 
ESI-MS, that is, the alkali metal ions Na+, Li+ and 
K+, as well as H+. To enforce this, the indicator 
variables ds = �{standard adduct s is selected} , to 
track which standard adducts have been selected, 
will need to be added with the following constraint: 

 where S is the set of all standard adducts and 

 iii. The minimum, g, and maximum, h, number of 
proteins in a multi-protein use case, in any feasible 
solution. Again, the indicator variables za = �{pri-
mary a is selected} , to track which primaries have 
been selected, will need to be added with the fol-
lowing constraint: 

 where A is the set of all primaries.

(2)mi = Pi − 1.007825ci, ∀i ∈ C ,

(3)p− t ≤
∑

i∈C

mixi ≤ p+ t

(4)
∑

s∈S

ds ≤ r,

(5)1{X} :=

{

1 if X is true,

0 otherwise.

(6)g ≤
∑

a∈A

za ≤ h,

Fig. 3 Peaks identified in mass spectra recorded for ubiquitin (Ub) 
and cisplatin mixtures at low, medium, and high resolution
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 iv. The coordination number, v, of metal k used. The 
coordination number for linear complexes is 2, for 
square planar and tetrahedral complexes is 4, and 
for octahedral complexes is 6, to name a few. For 
cisplatin, the platinum (II) metal center has v = 4 . 
AdductHunter supports one type of metal at a 
time. This constraint is enforced by: 

 For the compound description/constraint files (see 
Tables  2, 3), the user-defined parameters are as 
follows:

 v. The lower and upper bounds li and ui , respectively, 
for species i in any feasible solution, enforced by 
constraints: 

 vi. The maximum number of coordinating species, nj , 
per metal k for each binding species j, enforced by 
the constraint: 

 where B is the set of all binding compounds.
Putting all of this together, along with non-negativity 
constraints, the final CIO formulation defining the 
feasible set F(p) at peak p is:

As an example, we illustrate in the system involving 
ubiquitin incubated with cisplatin the CIO formulation 
defining the feasible set at the peak corresponding to a 
mass of 8774.6028 Da:

(7)
∑

i∈C\{k ,S}

xi ≤ vxk

(8)li ≤ xi ≤ ui, ∀i ∈ C

(9)xj ≤ njxk , ∀j ∈ B,

(10)

p− t ≤
∑

i∈C

mixi ≤ p+ t

∑

s∈S

ds ≤ r

g ≤
∑

a∈A

za ≤ h

∑

i∈C\{k ,S}

xi ≤ vxk

li ≤ xi ≤ ui, ∀i ∈ C

xj ≤ njxk , ∀j ∈ B

ds ∈ {0, 1} ∀s ∈ S

za ∈ {0, 1} ∀a ∈ A

xi ∈ Z≥0, ∀i ∈ C

where the set of all species C =
{

Ubiquitin, Platinum,

Ammonia, . . . , Potassium
}

 , the set of binding compounds 
B =

{

Ammonia,Water, Chlorine
}

 , the set of standard 
adducts S =

{

Lithium, Sodium, Potassium
}

 , the peak tol-
erance t = 2 , the maximum number of unique standard 
adducts r = 2 , the metal k is Platinum with a coordina-
tion number v = 4 , and the maximum number of coordi-
nating species is nj = 2 for all binding compounds j ∈ B . 
Notice that since there is only one protein in this system, 
we do not have the multi-protein constraint.

Objective function
With the constraints established, we require an 
objective function that measures the similarity in 
shape and mass between theoretical and experimental 
isotope distributions, or the dissimilarity assuming 
a minimization problem. Furthermore, the effects of 
preceding and succeeding noisy peaks far from the peak 
for the most abundant isotopologue should be ignored, 
as well as intensities below a certain height due to the 
noise in high-resolution data—these do not help the 
measurement of similarity. Thus, only values within 
a certain user-specified interval of the current peak 
are considered when comparing the theoretical and 
experimental distributions.

AdductHunter uses Dynamic Time Warping (DTW) 
[37] to find the dissimilarity between distributions, 
that is, φ(x, p) is the (Euclidean) distance between the 
optimally aligned theoretical and experimental isotopic 
distributions. DTW works by computing a distance 
matrix between the two isotopic distributions, where 
each cell in the matrix represents the distance between 
a specific point in one distribution and a specific point 
in the other distribution. The optimal path through the 
distance matrix that minimizes the total distance between 
the two distributions is then computed by constructing 
a cost matrix that accumulates the distances between all 
possible pairs of points in the two distributions. The cost 
matrix is then traversed in a way that minimizes the total 

(11)

8772.6028 ≤ mUbxUb + · · · +mKxK ≤ 8776.6028

dLi + dNa + dK ≤ 2

xUb + · · · + xCl ≤ 4xPt

1 ≤ xUb ≤ 1, ..., 0 ≤ xK ≤ 2

xNH3 , xH2O, xCl ≤ 2xPt

ds ∈ {0, 1} ∀s ∈ S

xUb, xPt, ..., xK ∈ Z≥0
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accumulated cost along the path, that is, the optimally 
aligned dissimilarity between the two distributions.

Output table
After the optimization problem is solved, a table of 
feasible protein adducts with an indication of the closest 
fit for each peak is returned (see Table  4). The table is 
sorted by experimental peak mass and closeness of fit 
(loss). Here, the theoretical peak mass is recorded as the 
most abundant isotopologue for a given species and is 
used to calculate mass error in ppm.

Results and discussion
We examined the performance of AdductHunter on 
a variety of datasets to understand its effectiveness 
in accurately identifying protein adducts, as well as 
discuss here its limitations and further development.

AdductHunter was specifically developed to iden-
tify adducts formed between metal complexes and pro-
teins. A collection of 22 unique datasets was analyzed to 
provide a comprehensive performance benchmark for 
AdductHunter (see Table  5). The metal complexes used 
were cisplatin, oxaliplatin, RAPTA-C, RM-175, Au-1, 
Au-2, and Au-3, with formulas cis-Pt(NH3)2 Cl2 , Pt(C6

H14 N2)(C2 O4 ), Ru(η6-C10 H14)(PN3 C6 H12)Cl2 , [Ru(η6-C12

H10)(C2 H8 N2)Cl]PF6 , [Au(C19 H17 N2)(OH)]PF6 , Au(C12 
H11 N2 O2)Cl2 , and Au(C12 H10N)Cl2 , respectively. The 
proteins used were cytochrome c (CyC, C560 H874 Fe1
N148 O156 S4 ), ubiquitin (Ub, C378 H629 N105 O118 S1 ), hen 
egg-white lysozyme (HEWL, C613 H951 O185 N193 S10 ), and 
myoglobin (Mb, C769 H1212 N210 O218 S2 ). Each data set 
contained a mixture of at least one protein and one metal 
complex (see Table  5). We compared the output from 
AdductHunter for each dataset against the correspond-
ing ground truth, that is, the manually identified protein 
adducts.

Peak identification
Peak detection in mass spectra is subject to identifying 
many false positives, especially at low intensities where 
noise is prevalent. Here, we define false positives as 

Table 4 Truncated output table for a spectrum recorded for a Ub/cisplatin containing feasible solutions and their corresponding 
measures

The columns PO, Mass, and Peak, refer to the proton offset, theoretical nominal mass peak, and experimental mass peak, respectively

Identity PO Intensity Mass Peak ppm Closeness of Fit Closest

Ub 0 0.823263 8564.634 8564.63 0.359771 0.331434 TRUE

Ub + Pt 2 0.025543 8757.589 8757.608 2.199949 0.602192 TRUE

Ub + Pt + NH3 2 0.204161 8774.61 8774.624 0.979775 0.569154 TRUE

Ub + Pt + H2O 2 0.204161 8775.6 8774.624 111.1512 1.737765 FALSE
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 5 Information for all datasets used in this study. The metal 
complexes cisplatin, oxaliplatin, RAPTA‑C, RM‑175, Au‑1, Au‑2, 
and Au‑3 have formulas cis‑(NH3)2 PtCl2 , Pt(C6 H14 N2)(C2 O4 ), Ru(η6‑ 
C10 H14)(PN3 C6 H12)Cl2 , [Ru(η6‑C12 H10)(C2 H8 N2)Cl]PF6 , [Au(C19 H17 N2)
OH]PF6 , Au(C12 H11 N2 O2)Cl2 , and Au(C12 H10N)Cl2 , respectively

The proteins cytochrome c (CyC), ubiquitin (Ub), hen egg-white lysozyme 
(HEWL), and myoglobin (Mb) have formulas C560 H874 Fe1 N148 O156 S4 , C378 H629

N105 O118 S1 , C613 H951 O185 N193 S10 , and C769 H1212 N210 O218 S2 , respectively

The instruments used were Bruker Solarix 7T FT-ICR (FT-ICR), Waters QToF 
Ultima API (WA) and Bruker maXis qTOF (qTOF) mass spectrometers, with 
deconvolution resolutions of 100,000, 25,000, and 30,000, respectively

Under the Proteins column, Mix refers to an equimolar mix of all proteins; HEWL, 
CyC, Ub, and Mb

Mb-H refers to the same dataset directly above, but with a higher sampling rate

MIS refers to manually identified species, that is, the number of ground truth 
species

Metal 
complexes

Proteins Instrument 
used

MIS Reference

Cisplatin CyC FT‑ICR 14 Unpublished data

HEWL FT‑ICR 4 Unpublished data

Mb FT‑ICR 19 Unpublished data

Ub FT‑ICR 20 Unpublished data

Ub WA 20 [5]

Mix FT‑ICR 13 Unpublished data

Oxaliplatin CyC FT‑ICR 18 Unpublished data

HEWL FT‑ICR 8 Unpublished data

Mb FT‑ICR 11 Unpublished data

Mb‑H FT‑ICR 11 Unpublished data

Ub FT‑ICR 5 Unpublished data

Mix FT‑ICR 10 Unpublished data

RAPTA‑C CyC FT‑ICR 8 Unpublished data

HEWL FT‑ICR 4 Unpublished data

Mb FT‑ICR 19 Unpublished data

Mb‑H FT‑ICR 19 Unpublished data

Ub FT‑ICR 12 Unpublished data

Mix FT‑ICR 16 Unpublished data

RM‑175 Ub qTOF 2 [11]

Au‑1 CyC, Ub qTOF 10 [41]

Au‑2 CyC, Ub qTOF 23 [41]

Au‑3 CyC, Ub qTOF 32 [41]
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peaks detected by the tool but not ground truth peaks, 
and false negatives as ground truth peaks that were not 
picked up by the tool. The peak detection algorithm 
in AdductHunter is highly sensitive to the normalized 
minimum peak height. A lower minimum peak height 
allows AdductHunter to detect more manually identified 
peaks, although with diminishing returns and increasing 
false positives (see Fig. 4). Through testing and assuming 
an equal weight on false positives and false negatives, 
a value of 0.01 was found to be optimal; decreasing 
the setting to 0.005 added many false positives with 
few manually identified peaks, likely due to noise, and 
increasing the value to 0.02 removed a notable portion 
of manually identified peaks with a less significant 
reduction in false positives. Another notable parameter 
in peak detection is the minimum distance between two 
(manually identified) adjacent peaks, found to be 15.9 Da 
over all datasets and set to 15 as a default.

The other significant parameter to be defined is the 
tolerance around peaks, t. Peak tolerance makes strides 
at accounting for noise in mass spectra and error in the 
mass approximation of the adduct in AdductHunter. 
Here, individual compound masses are summed instead 
of finding the most abundant isotopologue for the 
adduct, which is a non-linear, non-continuous, and 
computationally-expensive calculation. Consequently, 
we decided to keep the formulation linear as it is a close 
approximation of the true mass value. This parameter 
has the most flexibility, uncertainty, and, alongside the 

minimum peak height, is where computational efficiency 
in the constraint optimization is most affected.

Since t is directly proportional to the size of the feasible 
set, a large enough t is desired to be confident that as 
many manually identified species are captured in the 
feasible set, but not so large that numerous unwanted 
species are made feasible (see Fig.  5). Recall that only 
peaks with at least one feasible solution are returned 
in the output (and the best-fit species is found for each 
peak). As a result, a larger t will not only return more 
potential species, but more unique peaks as well; this 
brings about the detection of peaks as false positives that 
would not have been returned with a lower tolerance. 
Tolerance values were selected to be slightly larger than 
multiples of the atomic mass of a hydrogen atom at 1.008, 
that is, nH where n ∈ N , which has been approximated 
to n+ 0.1 . It was found that for the given data and 
tolerances greater than 3.1, no more peaks in the 
manually identified were returned, meaning the missing 
number of manually identified peaks did not change. 
Hence, increasing the tolerance past this point means 
new peaks returned are all false positives.

Default parameters
The results of the benchmarking tests were used to set 
the default parameters values for AdductHunter. As a 
broader range of data is tested and analyzed, a parameter 
search would prove useful to precisely determine their 
optimal values. Parameter values could also be made 
variable and dependent on the mass. The assignment 
of proton adducts became more challenging for higher 
adducts with larger masses, as they tended to be further 
away from the experimental peak, making reliable 
identification difficult. In the used datasets, higher mass 
adducts at lower intensity in the mass spectra and the 
peaks usually were surrounded by increased noise and 
complexity, which comes naturally with more individual 
components involved in each adduct. Thus, for peaks at 
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higher masses, parameters may need to accommodate 
for an increased feasible set to capture the previously 
identified peaks in the ground truth. For example, the 
peak tolerance could increase as the mass of the protein 
adducts increases, with possibly a smaller starting peak 
tolerance than the constant mass tolerance (3.1) used as 
mass error increases with adduction complexity. Future 
work may also include automatically calculating the noise 
threshold as a function of the baseline intensity and noise 
level of the spectrum, instead of being a user-defined 
input.

Objective function analysis
A variety of established similarity measures for the objec-
tive function were tested over all datasets to determine 
which metric would work best. We used the “similari-
tymeasures” package [38] to test the following measures: 
the area between curves [38], Partial Curve Matching 
[39], discrete Fréchet distance [40], and Dynamic Time 
Warping [37] with Euclidean and City Block (Manhat-
tan) distance measures. The normalized intensity values 
were also scaled by a range of weights – 0 (effectively 
only using mass), 10−1 , 100 , 101 , 102 , 103 – to understand 
its significance in finding the best fit. Dynamic Time 
Warping with an Euclidean distance measure was found 
to have the best average performance with a weight of 
10−1 on the intensity. However, other (tested) similarity 
metrics and weights may be used depending on the data 
(see Table  6  and Additional File 3). As noise affects the 
experimental intensities, more weight is applied to mass 
accuracy when comparing experimental and theoretical 
distributions. Using only mass however, performs poorly 
due to multiple feasible solutions having similar mass 
values.

A different type of objective function initially 
considered was to measure the mass error (ppm) at 
each peak p, which is a scaled form of the relative error 
between the peaks in the theoretical isotope pattern and 
experimental isotope distribution:

where T (x) is the theoretical peak mass of species x.
Parts per  million error calculations are a common 

approach in MS analyses [4], and would be substantially 
easier to implement and interpret than a distance metric. 
However, the linear mass approximation used to find 
theoretical mass peaks means that ppm would need to 
be measured after finding the feasible set to accurately 
calculate its value (as the isotope pattern is needed to 
find its peak, which is a non-linear process), hence it is 
unusable as an objective in the constraint formulation. 
Furthermore, using a full isotope pattern is more robust 
as there are cases where two consecutive isotope peaks 
have near identical abundance in the experimental 
spectrum, and so measured and theoretical distributions 
may disagree on the identity of the tallest peak, resulting 
in large ppm values.

Running time
Experiments were run using an Intel Core i5-8250U 
CPU and 8GB RAM. When calculating the objective, 
the total time taken for the AdductHunter analysis of a 
recorded spectrum was dominated by the generation of 
hyperfine isotopic mass distributions. In contrast, the 
choice of objective function had a negligible effect on 
the total analysis time. Across all datasets, generating the 
hyperfine isotope distribution took approximately 135.5 s 
on average. The time required to identify peaks and 

(12)ppm(x, p) =

∣

∣

∣

∣

T (x)− p

T (x)

∣

∣

∣

∣

× 106,

Table 6 Mean accuracy across all datasets using the hyperfine isotope generator for tested metrics at different weights on the 
intensity

The Partial Curve Matching measure normalizes both mass and intensity inputs to the same scale, meaning different non-zero weights on the intensity have the same 
effect. Dynamic Time Warping-E and Dynamic Time Warping-CB refer to the Dynamic Time Warping with Euclidean and City Block (Manhattan) distance measures, 
respectively

The best value for each metric is in italics and the overall best is in bold

Metric Weight (on intensity)

0 0.1 1 10 100 1000

Area between Curves 0.600 0.713 0.707 0.697 0.697 0.697

Discrete Fréchet Distance 0.600 0.701 0.740 0.725 0.722 0.722

Partial Curve Matching 0.600 0.699 – – – –

Dynamic Time Warping‑E 0.600 0.842 0.772 0.739 0.737 0.737

Dynamic Time Warping‑CB 0.600 0.837 0.775 0.747 0.739 0.740
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generate the set of feasible species pales in comparison, 
taking approximately 0.41 s on average. Additionally, an 
approximate, coarse method for generating isotopic mass 
distributions exists in pyOpenMS that is significantly 
faster ( ∼ 85 times) than generating the hyperfine peaks, 
which took approximately 1.68 s on average. However, the 
mass values calculated using the coarse method will not 
accurately reflect the most abundant isotopologue peak 
as a simplified formula is used to find isotope peaks with 
greater mass [17]. This imprecision leads to decreased 
accuracy and high error values  for almost all metrics at 
an intensity weight of  10-1, although some improvements 
can be seen for larger intensity weights across all metrics 
(see Table  7). The best performance (mean accuracy of 
0.787) was achieved with  the Dynamic Time Warping 
with City Block (Manhattan)  distance measures at an 
intensity weight of   100. However, it is worse than than 
the one achieved with the hyperfine method (mean 
accuracy of 0.842, see Table  6). Hence, we recommend 
to use the hyperfine method, although the coarse 
method may be used for rapid preliminary testing. As 
species and peaks generated are independent of each 
other, further improvement on the analysis time would 
involve parallelizing the generation of isotope patterns, 
constraint integer optimization formulations, and 
objective function calculations.

Conclusion
AdductHunter was created to identify protein-metal 
complex adducts in deconvoluted mass spectrometry 
data by formulating a constraint integer optimization 
problem at each experimental mass peak and using 
dynamic time warping to find the best fit species based 
on its theoretical isotopic distribution. The results 
presented herein provide comprehensive evidence that 
AdductHunter effectively detects peaks within mass 
spectrometry data and accurately determines  their 
speciation much faster than interpreting the spectra 

manually. Efforts are currently underway to address 
AdductHunter’s limitations, specifically by introducing 
the deconvolution of experimental mass spectra as well 
as ensuring that it can appropriately handle samples with 
more than one metal complex in the incubation mixture.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 023‑ 00797‑7.

Additional file 1. Species description and constraints input CSV file for 
cytochrome c incubated with cisplatin.

Additional file 2. Standard adducts’ descriptions and constraints input 
CSV file.

Additional file 3. Accuracies for each dataset using the hyperfine isotope 
generator with different similarity measures and weights. Metrics from 
left to right: area between curves, Partial Curve Matching, discrete Fréchet 
distance, and Dynamic Time Warping with Euclidean and City Block 
(Manhattan) distance measures, respectively. Datasets are grouped by 
metal complexes and proteins (see Table 5 for more detail).
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