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Abstract 

Evaluation of chemical drug-likeness is essential for the discovery of high-quality drug candidates while avoiding 
unwarranted biological and clinical trial costs. A high-quality drug candidate should have promising drug-like proper-
ties, including pharmacological activity, suitable physicochemical and ADMET properties. Hence, in silico prediction 
of chemical drug-likeness has been proposed while being a challenging task. Although several prediction models 
have been developed to assess chemical drug-likeness, they have such drawbacks as sample dependence and poor 
interpretability. In this study, we developed a novel strategy, named DBPP-Predictor, to predict chemical drug-likeness 
based on property profile representation by integrating physicochemical and ADMET properties. The results dem-
onstrated that DBPP-Predictor exhibited considerable generalization capability with AUC (area under the curve) 
values from 0.817 to 0.913 on external validation sets. In terms of application feasibility analysis, the results indicated 
that DBPP-Predictor not only demonstrated consistent and reasonable scoring performance on different data sets, 
but also was able to guide structural optimization. Moreover, it offered a new drug-likeness assessment perspective, 
without significant linear correlation with existing methods. We also developed a free standalone software for users 
to make drug-likeness prediction and property profile visualization for their compounds of interest. In summary, our 
DBPP-Predictor provided a valuable tool for the prediction of chemical drug-likeness, helping to identify appropriate 
drug candidates for further development.

Introduction
Chemical drug-likeness means the possibility of a com-
pound to become a real drug. An ideal drug-likeness of 
a compound should be a balance among safety, efficacy, 
and pharmacokinetic properties (Fig. 1A) [1–3]. Despite 
significant advances in drug discovery and development 
technology in recent years, poor pharmacokinetic prop-
erties or safety are still the major causes of drug failures 

[4–6]. Therefore, it is a good idea to evaluate the drug-
likeness of a compound at the very early stage of drug 
discovery, in order to reduce the attrition rate.

However, it is usually a challenging task to evaluate 
the drug-likeness of a drug candidate [7]. Traditionally, 
drug-like molecules are determined by experiments, 
which are costly, time-consuming and laborious. There-
fore, computational methods have been developed to 
identify drug-like molecules [8–10]. The earliest efforts 
could be back to the 1990s, when the rule-of-five (Ro5) 
[11] was presented by Lipinski et  al. based on statisti-
cal analysis of 2245 drugs from the World Drug Index 
(WDI). Later, Muegge et al. proposed a method to define 
drug-like molecules in terms of functional groups [12]. 
Though these rules of thumb were questioned recently 
[13–15], they paved the way for the development of more 
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comprehensive drug-like indicators. A representative 
work, the quantitative estimate of drug-likeness (QED) 
[16], was proposed by Bickerton et  al. in 2012, which 
assessed drug-likeness of a compound as a quantita-
tive score by fitting the distribution of eight properties. 
In 2019, we defined a scoring function namely ADMET-
score [17] for drug-like assessment by integrating 18 
properties of compounds. Nevertheless, these methods 
only relied on drugs rather than non-drugs, hence it was 

hard to differentiate drug-like molecules from non-drug-
like ones [18, 19].

More recently, machine learning (ML) models were 
developed to discriminate drugs from non-drugs. 
The combination of extended connectivity finger-
prints (ECFPs) and support vector machine (SVM) was 
reported to significantly improve the accuracy in predic-
tion of drug-like molecules [20]. Considering that hand-
crafted features could be limited by large-scale screening, 

Fig. 1 A The critical factors affecting drug-likeness. Chemical drug-likeness is the desirable characteristics to become a drug, including appropriate 
physicochemical, biochemical and pharmacokinetic properties, as well as safety. B Diagram of drug-likeness prediction based on property profiles 
(DBPP-Predictor). The property profile of a molecule consists of its physicochemical property profile and ADMET property profile
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deep learning (DL) methods were utilized. Sun et al. [21] 
introduced a graph convolutional attention network 
(D-GCAN) to aid in screening potential inhibitors of the 
SARS-CoV-2 3C-like protease. In a separate study, Cai 
et al. [22] employed an active ensemble learning strategy 
to investigate drug-likeness prediction at a more subdivi-
sional level. Beker et al. [23] evaluated different drug-like-
ness models with uncertain quantification from Bayesian 
neural networks. These binary methods were reported to 
rely on modeling data and had poor generalization abili-
ties in real-world samples. Recently, a recurrent neural 
network-based language model [24] was designed for 
drug-like scoring in an unsupervised scenario, which 
was independent of negative samples and provided a new 
perspective on drug-like scoring design. However, it is 
worth highlighting that to improve filter efficiency while 
to enhance model interpretability is also critical for the 
prediction of drug-likeness. More than just drug-likeness 
prediction, it is meaningful to provide optimization guid-
ance for molecules with poor drug-likeness.

In this study, we developed a property profile-based 
prediction strategy, namely DBPP-Predictor, for efficient 
assessment of chemical drug-likeness. DBPP-Predictor 
incorporated ML framework with important physico-
chemical and ADMET (absorption, distribution, metabo-
lism, excretion, and toxicity) properties closely related to 
drug-likeness. It extracted feasible molecular representa-
tions in a data-driven manner. Compared with classical 
molecular representations, the property profile-based 
strategy has enhanced robustness and generalizability. 
In addition, it demonstrated mild sample dependence. 
DBPP-Predictor displayed promising identification 
potential across different data sets and was expected 
to provide a plausible and valuable drug-likeness scor-
ing tool for virtual screening. The development of user-
friendly stand-alone software facilitated support for 
drug-likeness prediction and visualization of property 
profiles.

Materials and methods
Data collection and preparation
The known small molecular drugs were considered as 
positive data. Drugs approved by the U.S. Food and Drug 
Administration (FDA_drug) and the other approved 
drugs (Worlddrug) were collected, respectively. Beker 
et  al. [23] evaluated ZINC [25] as the "most likely non-
drug data set" and recommended it as an efficient nega-
tive sample set. In addition to ZINC, non-drug sets were 
prepared from diverse databases, including ChEMBL [26] 
and GDB17 [27], for assessing the generalization ability. 
The positive unlabeled learning (PU learning) approach 
proposed by Liu et al. [28] was used to explore the effect 
of data noise. Meanwhile, the down-sampling strategy 

was employed to avoid the data imbalance problem. To 
alleviate the effects of data dependence, random down-
sampling was performed three times in parallel.

For further assessing the feasibility, the drug-likeness 
of the three data sets was explored: the withdrawn drug 
set (WITHDRAWN) [29], the investigation group of 
DrugBank database [30] (Investigation), and the natural 
product set from TCMSP database [31] (TCMSP). Data 
preparation process was as follows: (1) Salts were con-
verted to the corresponding acids or bases. (2) Mixtures 
and inorganic substances were removed. (3) Standardized 
SMILES strings and duplicate molecules were removed.

Molecular representation
Molecular descriptors
In this study, each molecule was assigned a vector con-
taining 200 molecular descriptors derived from the 
DescriptaStorus package (https:// github. com/ bp- kelley/ 
descr iptas torus). Normalized and non-normalized forms 
of descriptor representations were set up. The effect 
of feature scaling on the descriptor representation was 
explored.

Molecular fingerprints
A total of five molecular fingerprints were used to repre-
sent the compounds in this study. They were generated 
by RDKit package (Version 2021.03.4), including MACCS 
fingerprint (MACCS, 166 bits), Morgan fingerprint 
(Morgan, 2048 bits), AtomPairs fingerprint (AtomPairs, 
2048 bits), RDK fingerprint (RDKFingerprint, 2048 bits), 
TopoTorsion fingerprint (TopoTorsion, 2048 bits).

Molecular graphs
In graph representation, the input compound was con-
sidered as a molecular graph, with atoms being the nodes 
and chemical bonds being the edges. The smiles_to_
bigraph module of Deep Graph Library [32] was used to 
generate molecular graphs from the SMILES strings. The 
node and edge features of the compounds were extracted 
by the RDKit package. The initial atomic and bond fea-
tures were shown in the Additional file 1: Tables S1–S4.

Property profiles
ADMET and physicochemical properties play key roles 
in drug-likeness evaluation. In this study, property pro-
file-based drug-likeness was introduced to characterize 
the compounds. The property profile of each compound 
was a 26-bit property description vector obtained from 
the drug-likeness related property endpoints. Figure  1B 
depicted the overall scheme of DBPP-Predictor for the 
prediction of chemical drug-likeness.

Properties closely related to the drug-likeness were 
hybridized to obtain a property profile representation. A 

https://github.com/bp-kelley/descriptastorus
https://github.com/bp-kelley/descriptastorus
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weighting parameter γ was introduced to adjust the com-
bination weights, taking values from 0 to 1. The formula 
is as follows:

where PC stands for physicochemical properties and 
ADMET means ADMET properties.

Machine learning approaches
Three machine learning algorithms were adopted to con-
struct prediction models, including logistic regression 
(LR), support vector machine (SVM) and LightGBM. LR 
is a generalized linear model with the features of simplic-
ity, parallelizability and interpretability [33]. It is a clas-
sical algorithm for binary classification. SVM finds an 
optimal hyperplane to distinguish samples and constructs 
a discriminative classifier. It solves the linear indivisibil-
ity problem by introducing different kernel functions to 
achieve a high-dimensional mapping of the input vectors 
[34]. The regularization parameter C is one of the impor-
tant parameters to be optimized by the SVM. Both LR 
and SVM were performed via the scikit-learn package. 
LightGBM is a faster, less memory-consuming and more 
accurate gradient enhancement framework [35]. The 
max_depth and num_leaves parameters are optimized. 
LightGBM models were supported by the LightGBM 
package (https:// github. com/ micro soft/ Light GBM). The 
GridSearchCV tool in the scikit-learn package was used 
to find the proper parameters for each model.

Graph neural network approaches
In addition to conventional machine learning algorithms, 
four graph neural network (GNN) architectures were 
employed for drug-likeness assessment, including graph 
convolutional network (GCN), graph attention network 
(GAT), graph sample and aggregate (GraphSAGE) [36], 
and AttentiveFP network. GCN was proposed in 2017 
[37], using convolution for graph data feature extraction. 
Message passing and readout are two phases present in 
the forward propagation process. For graph classifica-
tion tasks, the central atom aggregates the information of 
neighboring nodes through iterative updates of the state. 
In the readout phase, atomic representations are aggre-
gated for property prediction. GAT is an extension of 
GCN that introduces an attention mechanism for updat-
ing node representations [38], while GraphSAGE updates 
the embedding of nodes by subgraphs. Attention mecha-
nisms are incorporated at the atomic and molecular lev-
els to aid in the learning of local and global features [39], 
respectively. It effectively captures the non-local features 
of the graph and the interactions of distant nodes.

(1)
Property Profile = Concat((2− 2γ)PC, 2γADMET)

All GNN models were built with the Deep Graph 
Library (DGL) [32] package (version 0.7.0) and PyTorch 
[40] framework (version 1.8.1). The model parameters 
were using the Adam [41] optimizer for gradient descent 
optimization. BCEWithLogitsLoss was set as the loss 
function for the binary classification tasks. Bayesian opti-
mization [42] was used to obtain the proper hyperparam-
eters for the GNN models, such as learning rate, weight 
decay, batch size, and so on. To avoid overfitting and save 
training resources, the early stopping strategy was used 
during the training process.

Performance evaluation
Ten-fold cross-validation and external validation were 
utilized for model evaluation. We used the area under the 
receiver operating characteristic (ROC) curve to analy-
sis, which was plotted by the true prediction rate (TPR) 
against the false positive rate (FPR). The area under the 
ROC curve (AUC) was calculated for each model to 
exhibit the performance of the classification models. 
In addition, to further evaluate the performance of the 
model, four statistical metrics were used, including accu-
racy, recall, specificity (SP), and precision, which were 
defined as follows:

where TP: true positive; TN: true negative; FP: false posi-
tive; FN: false negative.

Development of standalone software
A standalone software called DBPP-Predictor was devel-
oped via Tkinter [43]. The optimal DBPP-Predictor 
model was encapsulated in the software. The software 
includes two major functional modules, drug-likeness 
assessment and property profile visualization. The drug-
likeness assessment module supports single molecule 
and batch molecule predictions. The DBPP-Predictor 
standalone software is free and user-friendly including a 
convenient operator interface and an easy-to-understand 
result output for nonexperts in computer-aided drug 
design.

(2)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(3)Recall =
TP

TP+ FN

(4)SP =
TN

TN+ FP

(5)Precision =
TP

TP+ FP

https://github.com/microsoft/LightGBM
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Results and discussion
Data set analysis
The approved drugs and non-drug compounds sampled 
from three databases (ZINC, ChEMBL and GDB17) were 
used for model training and testing. Table 1 summarized 
the number and composition of compounds in each data 
set. After the data preprocessing procedures, 5147 drugs 
were obtained, containing 2679 and 2468 compounds 
for the FDA-approved and the other region-approved, 
respectively. 10,000 molecules were sampled from each of 
the three databases as negative samples. The PU learning 
strategy was used for data noise analysis of negative sets. 
Additional file 1: Table S5 described the analysis results 
of the non-drug samples. The results indicated that the 
ChEMBL molecules had higher drug similarity compared 
to the other two databases. Meanwhile, three extra real-
world sample sets (Investigation, WITHDRAWN and 
TCMSP) were prepared for model evaluation, consisting 
of 1751, 266 and 6574 molecules, separately. They were 
expected to bring valuable information for drug-likeness 

scoring evaluation. More details were available in the 
Additional file.

To further explore the chemical space, we performed 
the principal component analysis (PCA), Tanimoto simi-
larity analysis, and Murcko scaffold analysis on the com-
prehensive data set. It was obvious from PCA that the 
data had a wide distribution in space (Additional file  1: 
Fig. S1). Since the data sets overlapped relatively well, 
the reasonableness of the divided data should be rec-
ognized. The Tanimoto similarity index was calculated 
using MACCS and implemented with the RDKit pack-
age. As shown in Fig.  2A, the overall color of the Tani-
moto similarity heat map was light green with an average 
similarity of 0.358, indicating that the structural diver-
sity of the data set was clear. In addition, 3337 Murcko 
scaffolds were detected, with an average of 1.6 mol-
ecules contributing one new scaffold. More than 90% of 
Murcko scaffolds shared no more than 2 molecules, also 
demonstrating the high chemical diversity of the data 
set. We visualized the frequency of 150 scaffolds using 

Table 1 Compound information in each data set

Type Name Composition

Training set FDA_ZINC 2679 FDA + 2679 ZINC molecules

Test set Worlddrug_ZINC 2468 Worlddrug + 7321 ZINC molecules

External validation sets Worddrug_ChEMBL 2468 Worlddrug + 10,000 ChEMBL molecules

Worddrug_GDB17 2468 Worlddrug + 10,000 GDB17 molecules

Others Investigation 1751 Investigation group molecules

WITHDRAWN 266 Withdrawn drugs

TCMSP 6574 molecules from TCMSP database

Fig. 2 A Heat map of Tanimoto similarity of the total data set with MACCS fingerprint. B Molecular Cloud displayed the 150 most frequently 
occurring molecular scaffolds in the data set



Page 6 of 15Gu et al. Journal of Cheminformatics            (2024) 16:4 

a molecular cloud (Fig.  2B), where the scaffolds with a 
higher frequency of occurrence occupied a larger area.

Analysis of property profiles
Property profiles and drug‑likeness
The strategy for the prediction of chemical drug-likeness, 
namely DBPP-Predictor, was proposed on the basis of 
property profiles, which contained six physicochemi-
cal and 20 ADMET property endpoints. The ADMET 
property endpoints are binary classification models. The 
modeling data and model performance were shown in 
Additional file  1: Table  S6. All models were built from 
over 500 high quality endpoint data. 70% of the mod-
els have a prediction accuracy of over 0.8. High-quality 
models are guaranteed for the property profiles. In addi-
tion, the correlation between the endpoints and the drug-
likeness was analyzed, using the equation in Additional 
file 1: Text S1. As shown in Additional file 1: Fig. S2, the 
ADMET endpoints were ranked more highly. It indi-
cated that the toxicity endpoints, like mutagenicity, oral 
acute toxicity, and genotoxicity, as well as transporter 
endpoints of the compound have a significant effect on 
drug-likeness.

Physicochemical property profile
The six physicochemical properties of Drugs, ZINC, 
ChEMBL, and GDB17 molecules were visualized. Fig-
ure  3A showed MW, logP and topological polar sur-
face area (TPSA) probability density distributions of the 
compounds, which overlapped and prevented a clearcut 
separation. The distribution of the numbers of hydrogen 

bond acceptors (HBA), hydrogen bond acceptors (HBD) 
and rotatable bonds (nROT) were plotted in Additional 
file  1: Fig. S3. To discriminate drug-like compounds by 
one single property was considered too simple, and the 
quantitative assessment of drug-likeness using multiple 
parameters was a feasible approach. For example, based 
on seven physicochemical properties, the QED score was 
widely used in the assessment of generating drug-like 
molecules [16].

ADMET property profile
Efficacy and safety are two key characteristics for a com-
pound to become a drug. Appropriate pharmacokinetic 
properties influence the drug efficacy. Therefore, ADMET 
properties are also used as property profile in DBPP-Pre-
dictor. Additional file  1: Fig. S4 presented the visualiza-
tion result of the ADME property profile for drug and 
non-drug molecules. Among that, HIA and Caco-2 end-
points were utilized to assess the absorption properties. 
The absorption rate and extent of a compound affect its 
bioavailability. The transporters played significant roles 
in many processes of compound effects in  vivo. Inhibi-
tion of transporter proteins may lead to accumulation of 
the drug and produce adverse effects. In the transporter-
related inhibitor assessment, non-drug molecules were 
considered to have significantly higher inhibitory poten-
tial than drug molecules at 83.3% (5/6) of the endpoints. 
From the clearance results, drug molecules may have a 
more sustained in  vivo effect. Concerning absorption 
properties, the two ones did not show significant differ-
ences. Compared to non-drug molecules, withdrawals 

Fig. 3 A Physicochemical property profiles of drugs and non-drugs (ZINC, ChEMBL and GDB17) correlation analysis, including MW, logP and TPSA. 
B Scatter matrix plot of the four toxicity endpoints analysis for drugs and withdrawals. Among them, Repro, Gene, Hepa, and ROA represent 
the property endpoints of respiratory toxicity, genotoxicity, hepatotoxicity and oral acute toxicity, respectively
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had plausible pharmacokinetic properties. Adverse reac-
tions and toxic effects were responsible for most of the 
withdrawals. The results of our analysis of drugs and 
withdrawals for toxicity corroborated this conclusion. 
Figure  3B demonstrated the correlation analysis of sev-
eral toxicity endpoints of drugs and withdrawals, which 
revealed that most of the withdrawals had a higher pro-
pensity for toxicity, such as respiratory toxicity, genotox-
icity, hepatotoxicity, and oral acute toxicity. Therefore, we 
believed that a comprehensive toxicity potential screen-
ing in the property profile was of great interest for drug-
likeness prediction. However, it was also evident from the 
results that not all drugs have low toxicity scores. Actu-
ally, a successfully marketed drug was not necessarily the 
molecular candidate with perfect properties, while the 
balance of multiple properties required more attention.

Furthermore, the importance of each ADMET end-
point was analyzed with SHapley Additive exPlanations 
(SHAP) [44] to provide guidance for understanding 
DBPP-Predictor. SHAP was utilized for model interpre-
tation through feature attribution. Additional file 1: Fig. 
S5 depicted the ADMET features important to all the 
investigation observations. The importance of a feature 
was obtained from the mean of absolute SHAP attribu-
tions. Details of the SHAP values were available in Addi-
tional file  1: Table  S7. As seen in Additional file  1: Fig. 
S5, toxicity features drove the drug-likeness prediction 
down, including hepatotoxicity, mutagenicity, oral acute 
toxicity, genotoxicity, and carcinogenicity. It implied that 
the higher is the toxicity risk of a compound, the lower its 
drug-likeness is. The opposite was observed for oral bio-
availability, which had a positive contribution. The mito-
chondrial membrane potential got the largest feature 
contribution in absolute SHAP value, without a signifi-
cant linear relationship for drug-likeness contribution. 
66.7% of the efflux transporter inhibitors had negative 
SHAP values, while OATP1B3 and OATP1B1 inhibitors 
had higher drug-likeness contributions.

Performance of models
We utilized three traditional ML methods and four 
GNNs to build models for prediction of drug-likeness. 

Six different types of molecular representations were 
employed to evaluate the models. Grid search and 
Bayesian search were used for parameter optimization 
of traditional ML and GNN, respectively. The optimal 
parameters of the models were available in Additional 
file 1: Tables S8, S9. Feature normalization brought ben-
eficial effects to the models, as shown in Additional file 1: 
Table S10.

Performance of ten‑fold cross‑validation
In this study, the hyperparameter γ was introduced to 
regulate the combined weight between the physicochem-
ical property and the ADMET property profiles to opti-
mize the DBPP-Predictor performance. From the results 
shown in Additional file  1: Fig. S6, it was apparent that 
the DBPP-Predictor benefited from the hybrid represen-
tation strategy. According to the AUC and F1 values, γ = 
0.6 was selected as the optimal parameter. To assess the 
model performance, we conducted a comparative study 
with six different representations, involving classical ML 
and DL algorithms. Table  2 depicted the performance 
of the models coupled with different representations on 
the ten-fold cross-validation. Optimal models based on 
different representations were selected for further test-
ing. The ten-fold validation results for all models were 
available in Additional file  1: Table  S11. By comparing 
the molecular representations, it could be found that all 
models had considerable abilities to distinguish drugs 
from non-drugs in the training sets, excluding the single 
QED-based one. The model based on QED representa-
tion performed from 59.1% to 68.4% for the five indica-
tors in ten-fold cross-validation. The cross-validation 
accuracy, recall and SP values of the other four models 
ranged from 0.901 to 0.984, 0.899 to 0.984, and 0.818 to 
0.992, respectively. The AUC values were typically evalu-
ated for the performance of binary classification. The 
ADMET property-based model got the best AUC value, 
yielding AUC 0.996 in internal validation.

Evaluation of the test set and external validation sets
Although the models achieved satisfactory prediction 
performance in cross-validation, it was necessary to 

Table 2 Ten-fold cross-validation results for models based on different representation

Representation Accuracy Precision Recall AUC SP

Descriptors 0.968 ± 0.001 0.965 ± 0.003 0.972 ± 0.001 0.994 ± 0.000 0.964 ± 0.003

FP 0.972 ± 0.002 0.976 ± 0.002 0.967 ± 0.002 0.994 ± 0.000 0.976 ± 0.002

GCN 0.901 ± 0.045 0.849 ± 0.074 0.984 ± 0.016 0.988 ± 0.002 0.818 ± 0.104

QED 0.627 ± 0.004 0.637 ± 0.005 0.591 ± 0.001 0.684 ± 0.002 0.663 ± 0.007

ADMET Property 0.984 ± 0.000 0.992 ± 0.000 0.975 ± 0.000 0.996 ± 0.000 0.992 ± 0.000

Property Profiles 0.903 ± 0.001 0.905 ± 0.002 0.899 ± 0.003 0.961 ± 0.001 0.906 ± 0.002
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further explore the generalization performance of the 
models. Therefore, we evaluated the models using test 
set and external validation sets. For the test set (World-
drug_ZINC), the results showed that each model still 
achieved good performance, consistent with ten-fold 
cross-validation (Additional file  1: Table  S12). Compar-
ing the AUC values (Fig.  4), the descriptor-based and 
fingerprint-based approaches outperformed the DBPP-
Predictor model. The reason for that might be related to 
molecular similarity. In addition, the GCN model showed 
an AUC of 0.991, which was promising. For the World-
drug_ChEMBL and Worlddrug_GDB17 external valida-
tion sets, all models performed worse, decreasing from 
13.0% to 35.5%. The GCN model performed the worst, 
with AUC 0.637 in the Worlddrug_GDB17 set. The gen-
eralization ability of the DL models was strongly affected 
by the size of the training data. Certainly, considering 
the performance of the combination of the three exter-
nal validation sets, the DBPP-Predictor model demon-
strated stronger robustness and better generalization. 
It yielded an average AUC value of 0.902, which was 
14.0% improved compared to the GCN model (average 
AUC = 0.791). The results indicated that the ability of 
QED to discriminate between drug and non-drug-like 
compounds was indeed overestimated. The models based 
on QED representation displayed performance with AUC 
values below 0.5.

Analysis of sample dependence
The decreased model performance was found in exter-
nal validation sets with independent negative samples 
from ChEMBL and GDB17, hence different models were 
explored for sample dependence. Figure  5 depicted the 
generalization ability of the models in different negative 
samples, where QED was used for comparison. The QED 

values failed to discriminate drugs from non-drugs, as 
shown in Fig. 5A. The possible reason of high QED values 
on ZINC samples might be because they were made to 
obey Ro5. The QED values were reported to have a poor 
ability to distinguish between drugs and non-drugs [18, 
19]. The GCN model was unsatisfactory with poor gen-
eralization ability, as reflected in Fig. 5B. Without enough 
data, the deep neural networks did not learn task-relevant 
knowledge well. Adequate data support was required for 
complex network parameters. Introduction of transfer 
learning and data augmentation strategies would be ben-
eficial. The performance of the models based on molec-
ular fingerprints and descriptors were shown in Fig.  5C 
and D. It was apparent that the two types of representa-
tion were overly dependent on training data. The features 
from training data, FDA drug set and ZINC non-drug 
set, were learned for discriminating between positive and 
negative samples. However, these models had unsatisfac-
tory generalization performance. It was debatable that 
most compounds in ChEMBL and GDB17 were scored 
with high drug-likeness. The results indicated that struc-
ture-based representations (fingerprints and descriptors) 
were not good enough for drug-likeness prediction. The 
scoring of DBPP-Predictor (DBPP score) was shown in 
Fig. 5E. It could be seen that the DBPP-Predictor models 
distinguished the training data very well, while sensible 
for data from ChEMBL and GDB17. The mean scores 
for the ChEMBL and GDB17 sets were 0.276 and 0.105, 
respectively. Therefore, it was believed that the DBPP 
score would have good generalization ability and promis-
ing applications.

DBPP‑Predictor scoring feasibility
The DBPP-Predictor framework has several advantages 
over previous method. Compared with experimental 

Fig. 4 Model performance on external validation sets with different representations
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methods, DBPP-Predictor was rapid and efficient for 
drug-likeness assessment and provided guidance for 
drug development. Meanwhile, it was packaged as a stan-
dalone software, facilitating user-friendly drug-likeness 
prediction and information protection of compounds. 
DBPP-Predictor showed good predictive performance 
and better generalizability on test sets and external vali-
dation sets compared with others. It also demonstrated 
considerable plausibility and feasibility in evaluation of 
various data sets.

Plausible evaluation of real‑world samples
Here, 266 withdrawn drugs and 1751 compounds from 
the DrugBank investigation group were used separately. 
They were used to test the feasibility of models in assess-
ment of real-world samples. The output of the classifi-
cation models was interpreted as the probability that a 
query compound had the desired drug-likeness. The QED 
value corresponding to the query compound was treated 
as the baseline. The QED values, fingerprint-based 
model scoring (FP score) and DBPP-Predictor scoring 

Fig. 5 Drug-likeness scoring violin plots for five data sets and analysis of sample dependence. A QED scores. B GCN scores. C FP scores. D 
Descriptor scores. E DBPP scores
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(DBPP score) for these data sets were shown in Fig.  6. 
The QED values for the Drugs, ZINC, Investigation and 
WITHDRAWN sets were 0.499, 0.673, 0.419 and 0.576, 
respectively. It was obvious that QED value could not dis-
tinguish the four data sets (Fig. 6A). As shown in Fig. 6B, 
the scores of the fingerprint-based model could discrimi-
nate the four data sets, from the ZINC set with the lowest 
score to Drugs set with the highest score. However, the 
FP scores still failed to discriminate the drugs from the 
investigation compounds and withdrawn drugs. In com-
parison, DBPP-Predictor gave a more reasonable scoring 
distribution for these data sets as shown in Fig. 6C. The 
DBPP score can clearly distinguish between the Drugs set 
and the ZINC set. DBPP-predictor scored the drug can-
didates realistically, with a score of 0.428. Approximately 
90% of drug candidates were reported to fail in clini-
cal testing [45], while only a few compounds would be 
approved for marketing. For the withdrawn drugs, DBPP-
Predictor still tended to give them high drug-likeness 
scores like the drugs on sale. It meant that DBPP-Predic-
tor was unable to make a satisfactory distinction between 

the two sets. The outcome was intelligible. Drug-likeness 
is not an intrinsic property of a compound [46]. The mar-
keting or withdrawal of a drug will be influenced by a 
complex consideration of numerous factors [47–49].

Screening assessment of databases
To test the feasibility of DBPP-Predictor scoring, the 
average DBPP scores of the five data sets were calculated. 
As shown in Table  3, the drug and non-drug data sets 
were scored from high to low. Meanwhile, the Mann–
Whitney U test was applied to calculate the differences 
in DBPP scores between the data sets. The results sug-
gested that DBPP score could significantly distinguish 

Fig. 6 Comparison of A QED value, B FP score and C DBPP score on real-world sets

Table 3 DBPP scores on various data sets

Name Worlddrug TCMSP ZINC ChEMBL GDB17

Number 2468 6574 7321 9954 10,000

DBPP Score 0.736 0.801 0.018 0.277 0.101
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among data sets (Additional file  1: Table  S13) and be 
considered as a good indicator for drug-likeness assess-
ment. The DBPP score of the Worlddrug set (0.736) was 
adopted as the threshold for drug-likeness. A compound 
with a DBPP score greater than the threshold was rec-
ommended as druggable. For the 6574 natural products 
in the TCMSP set, DBPP-Predictor gave a higher score 
(0.801) compared to ZINC, ChEMBL and GDB17. It 
was plausible because natural products were important 
sources of drugs. In addition, natural-product-inspired 
synthetic compounds also provided viable and innova-
tive solutions to drug discovery. Meanwhile, the property 
profile visualization was available in DBPP-Predictor. 
Researchers can conveniently obtain the drug-likeness 
score of a query molecule while obtaining its visual prop-
erty information. Drug-likeness scoring and image-based 
property information could be easily obtained from 
DBPP-Predictor. Researchers can modify and optimize 
unsatisfactory properties to get the ideal molecules.

Comparison with other scores
We further compared DBPP score with QED value and 
ADMET-score [17] by a comprehensive data set con-
sisting of data from different sources. The details of this 
data set were presented in Additional file 1: Table S14. As 
shown in Fig.  7, a low linear correlation coefficient was 
found between all three scores. From the scoring distri-
bution, it could be noticed that the DBPP score had dif-
ferent concerns from QED value and ADMET-score. 
The DBPP score was designed to provide a judgment 

reference for the drug-likeness of the compounds. By 
combining the drug-likeness threshold (0.736), we found 
that 286 compounds out of the 800 compounds to be 
tested had good drug-likeness, notably containing 200 
known drugs. We considered that the druggable assess-
ment of the DBPP score was efficient and reasonable. It 
captured known drugs efficiently and was able to explore 
potential druggable molecules in chemical space. The 
QED value and ADMET-score, on the other hand, relied 
on oral drug data at the time of the study to explore 
drug-like compounds in terms of physicochemical and 
ADMET properties, respectively. The scoring results 
demonstrated that known drug and non-drug molecules 
received QED scores of 0.539 and 0.622, respectively. The 
ADMET-score yielded mean scores of 0.548 and 0.519 for 
drugs and non-drugs, separately. Neither of them per-
formed well in advising whether a query molecule would 
be a drug or not, but their values for molecular property 
assessment were undeniable. There might be a tendency 
to give more attention to compounds with higher QED 
values because they may have better physicochemical 
properties.

Case study
1,4-benzodiazepine-2,5-dione (BZD) derivatives were 
found to exhibit multiple antitumor cell growth activities 
in vitro [50]. The initial hit compound (11a) was further 
modified. After systematic optimization and SAR studies, 
a new class of BZD derivatives represented by compound 
52b, was reported. They all exhibited efficient anticancer 

Fig. 7 Correlation of drug-likeness evaluation between A ADMET-score and DBPP score, B QED and DBPP score
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activities in vitro and were promising as efficient poten-
tial inhibitors of protein synthesis. We performed DBPP-
Predictor on each of the 52 molecules synthesized in this 
study. Details of DBPP scores were available in Addi-
tional file  1: Table  S15 and Additional file  2: Table  S16. 
The drug-likeness predictive values of the molecules were 
mapped to the  GI50 experimental values. Figure  8 illus-
trated some representative examples. The results showed 
that our DBPP-Predictor successfully predicted the trend 
of optimization in the study, consistent with the experi-
mental results. Details were shown as follows.

Modification of 11a at C8-position. Furan-2 carbonyl 
(11b) or 4-fluorobenzoyl (11c) were found to not show 
anticancer activity. While 3,4,5-trimethoxybenzamide 
(11d) was more potent than the hit compound 11a. From 
the DBPP-Predictor, the drug-likeness scores of 11a, 11b, 
11c, and 11d were 0.2998, 0.0118, 0.2074, and 0.3880, 
respectively. DBPP-Predictor successfully predicted the 
directionality of changes in anticancer activity, consistent 
with experimental reports.

Optimization with 11d as Hit. Carried out with the 
potential metabolic instability problem present in 11d, 
optimizing its pharmacokinetic properties. Impressively, 

21d, substituted with diethyl amide at the R3 position, 
displayed two-fold higher cellular potency than 11d. 
Compound 21c also showed decent improvement. Their 
average  GI50 values were 0.03 μM and 0.06 μM, respec-
tively. The scores given by DBPP-Predictor were 0.5770 
for 21c and 0.6775 for 21d with significant improvements 
compared to 11d. The DBPP scores also reflected the 
experimental results that 21d had better cellular potency 
than 21c. To reduce the polar surface area and improve 
lipophilicity, the three polar amide groups were methyl-
ated, yielding compounds 36, 37, and 34a. The experi-
mental results showed a decrease of compounds 36 and 
37 and an increase of compound 34a in cellular potency. 
The DBPP scores corroborated the experimental results, 
giving scores of 0.5633, 0.4947 and 0.8598 for compounds 
36, 37, and 34a, respectively.

The optimization trend from 11a to 52b. Drug-like-
ness scores of 0.1864 and 0.8512 were obtained for the 
series 11 (11a-11r) and series 52 (52a-52i) compounds, 
respectively. The series 52 compounds were a new class 
of BZD with different halogenated substituents, repre-
sented by 52b (DBPP score = 0.8877). The introduction 
of halogenated substituents improved the hydrophobicity 

Fig. 8 The average 50% growth inhibitory concentration (Avg.  GI50) and DBPP scores of the designed compounds (11a, 11d and 52b). Avg.  GI50 
represents the average  GI50 value against 60 human cancer cell lines
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and transmembrane permeability of the compounds. 
They had better pharmacokinetic properties, such as 
hydrophobicity and transmembrane permeability.

Generalizability and interpretability of DBPP‑Predictor
DBPP-Predictor demonstrates robustness across vari-
ous scales and characteristics in external validation. It 
provides reasonable drug-likeness scores for individual 
compounds and databases. The discriminative ability of 
DBPP-Predictor between drug-like and non-drug-like 
compounds, along with its feasibility for real-world sam-
ple assessment, is noteworthy. Moreover, the interpret-
able representation enhances the credibility and value of 
drug-likeness assessment. Within DBPP-Predictor, com-
pounds are characterized by 26 attributable properties 
closely related to drug-likeness. Researchers can utilize 
these accessible property profiles to strategically optimize 
and modify target compounds, thereby improving their 
drug-likeness. Despite the aforementioned advantages, 
there is still room to improve our method. DBPP-Predic-
tor, based on binary classification data, acknowledges the 
inherent potential bias in the training data. Furthermore, 
understanding the limitations of the 26 selected proper-
ties as molecular representation in this study is crucial 
for leveraging DBPP-Predictor in drug-likeness assess-
ment and method refinement.

Interface and functions of the standalone software
The interface and functions of the standalone software 
DBPP-Predictor was displayed in Fig.  9. Two types of 
prediction, namely Single Molecule and Batch Mol-
ecules, are available to support drug-likeness predic-
tion for single molecule and batch molecules. The query 
molecule should be represented as a canonical SMILES 
string, with input checks before prediction. Then, users 
can select the output path of the prediction results and 
click Launch DBPP-Predictor to start the prediction. 
The prediction results will be stored in CSV format in 
the selected output path. To facilitate understanding, 
the result interpretation file is conveniently available. In 
addition, DBPP-Predictor provides a visualization mod-
ule for property profiles. If users are unsatisfied with the 
drug-likeness score of the molecule and would like to 
conduct optimization study, we recommend to use the 
visualization module. The property profile information of 
the target molecule will provide the user with optimiza-
tion guidance.

Conclusions
We developed a novel scoring function, namely DBPP-
Predictor, for the prediction of chemical drug-likeness 
based on hybrid property profile representation, integrat-
ing physicochemical and ADMET properties. Compared 

Fig. 9 The interface of the standalone software DBPP-Predictor. Two options are available for users to predict drug-likeness assessment of single 
molecule or batch molecules. Visualization function provides easy-to-understand interpretation of the property profiles
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with other representations, the property profile-based 
models achieved better performance on the test sets and 
external validation sets, which demonstrated its potential 
for drug-likeness assessment. Moreover, relatively low 
sample dependence was observed in DBPP-Predictor. 
With the evaluation of various data sets and the case 
study in compound optimization, DBPP-Predictor dem-
onstrated the feasibility of application in drug screening 
and optimization. In addition, a free user-friendly stan-
dalone software was developed to facilitate drug-likeness 
assessment and property visualization. We believe that 
DBPP-Predictor would become a valuable tool for the 
prediction of chemical drug-likeness in drug discovery 
and development.

Abbreviations
ADMET  Absorption, distribution, metabolism, excretion and toxicity
AUC   Area under the curve
AtomPairs  AtomPairs fingerprint
AttentiveFP  AttentiveFP network
BZD  1,4-Benzodiazepine-2,5-dione
DL  Deep learning
ECFPs  Extended connectivity fingerprints
FPR  False positive rate
GNN  Graph neural network
GCN  Graph convolutional network
GAT   Graph attention network
GraphSAGE  Graph sample and aggregate network
HBA  Number of hydrogen bond acceptors
HBD  Number of hydrogen bond acceptors
LR  Logistic regression
ML  Machine learning
MACCS  MACCS fingerprint
Morgan  Morgan fingerprint
MW  Molecular weight
nROT  Number of rotatable bonds
PU learning  Positive unlabeled learning
PCA  Principal component analysis
QED  Quantitative estimate of drug-likeness
Ro5  Rule-of-five
RDKFingerprint  RDK fingerprint
ROC  Receiver operating characteristic
ROA  Oral acute toxicity
SVM  Support vector machine
SP  Specificity
SHAP  SHapley Additive exPlanations
TopoTorsion  TopoTorsion fingerprint
TPR  True prediction rate
TPSA  Topological polar surface area
WDI  World Drug Index

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 024- 00800-9.

Additional file 1: Table S1. The definition of initial canonical atom fea-
ture. Table S2. The definition of initial canonical bond feature. Table S3. 
The definition of initial AttentiveFP atom feature. Table S4. The definition 
of initial AttentiveFP bond feature. Table S5. The PU learning analysis 
results of non-drug samples. Table S6. Data details and model perfor-
mance of the ADMET endpoints. Table S7. The SHAP value analysis for the 
ADMET endpoints. Table S8. Traditional machine learning model param-
eters. Table S9. Graph neural network model parameters. Table S10. 

Impact of feature normalization on the model. Table S11. The ten-fold 
cross-validation results for all models. Table S12. The test set results for 
all models. Table S13. P values of DBPP predictor on various data sets. 
Table S14. Data set information of 800 data for score analysis. Table S15. 
DBPP scores of the 52 molecules in case study. Text S1. The equation of 
correlation analysis. Figure S1. Three-Dimensional principal component 
analysis on the training, test and validation set. Figure S2. Heat map of 
property profiles endpoints and drug-likeness correlation analysis. Figure 
S3. PC property profiles distplot figure of drugs and nondrugs correlation 
analysis. Figure S4. ADME property profiles barplot figure of drugs and 
nondrugs correlation analysis. Figure S5. Analysis of the SHAP values 
for ADMET endpoints. Figure S6. The performance of DBPP model cor-
responding to different values of γ.

Additional file 2: Table S16. Details of the case study results.

Acknowledgements
Not applicable.

Author contributions
YG designed and performed the research and drafted the manuscript. YG, 
YW and KZ were involved in executing the experiments, WL and GL provided 
technical support, TY supervised the study. All authors read and approved the 
final manuscript.

Funding
This work was supported by the National Key Research and Development 
Program of China (Grant 2023YFF1204904), the National Natural Science Foun-
dation of China (Grants U23A20530 and 82173746) and Shanghai Frontiers 
Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai 
Municipal Education Commission).

Availability of data and materials
The DBPP-Predictor standalone software, source code and data sets and used 
in this article can be found at https:// github. com/ yxgu2 353/ DBPP- Predi ctor. 
The software tools, including RDKit (http:// www. rdkit. org), Scikit-learn (https:// 
scikit- learn. org/), DGL (https:// www. dgl. ai/), LightGBM (https:// github. com/ 
micro soft/ Light GBM), DescriptaStorus (https:// github. com/ bp- kelley/ descr 
iptas torus) and PyTorch (https:// pytor ch. org/) are freely available at their 
websites.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
There are no conflicts to declare.

Received: 27 July 2023   Accepted: 3 January 2024

References
 1. Abi Hussein H, Geneix C, Petitjean M, Borrel A, Flatters D, Camproux AC 

(2017) Global vision of druggability issues: applications and perspectives. 
Drug Discov Today 22:404–415

 2. Floris M, Olla S, Schlessinger D, Cucca F (2018) Genetic-driven druggable 
target identification and validation. Trends Genet 34:558–570

 3. Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 
17:97–113

 4. Ferreira LLG, Andricopulo AD (2019) ADMET modeling approaches in 
drug discovery. Drug Discov Today 24:1157–1165

 5. Datta S (2021) Learnings from past failures: future routes of antimicrobial 
drug discovery. Drug Discov Today 26:2105–2107

 6. De Martini D (2020) Empowering phase II clinical trials to reduce phase III 
failures. Pharm Stat 19:178–186

https://doi.org/10.1186/s13321-024-00800-9
https://doi.org/10.1186/s13321-024-00800-9
https://github.com/yxgu2353/DBPP-Predictor
http://www.rdkit.org
https://scikit-learn.org/
https://scikit-learn.org/
https://www.dgl.ai/
https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM
https://github.com/bp-kelley/descriptastorus
https://github.com/bp-kelley/descriptastorus
https://pytorch.org/


Page 15 of 15Gu et al. Journal of Cheminformatics            (2024) 16:4  

 7. De Rycker M, Baragaña B, Duce SL, Gilbert IH (2018) Challenges 
and recent progress in drug discovery for tropical diseases. Nature 
559:498–506

 8. Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, 
Chimusa ER (2020) Computational/in silico methods in drug target and 
lead prediction. Brief Bioinform 21:1663–1675

 9. Jia C, Li J, Hao G, Yang G (2020) A drug-likeness toolbox facilitates ADMET 
study in drug discovery. Drug Discov Today 25:248–258

 10. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK (2021) Artificial 
intelligence in drug discovery and development. Drug Discov Today 
26:80

 11. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and 
computational approaches to estimate solubility and permeability in 
drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

 12. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like 
chemical matter. J Med Chem 44:1841–1846

 13. Agarwal P, Huckle J, Newman J, Reid DL (2022) Trends in small molecule 
drug properties: a developability molecule assessment perspective. Drug 
Discov Today 27:103366

 14. Shultz MD (2019) Two decades under the influence of the rule of five 
and the changing properties of approved oral drugs. J Med Chem 
62:1701–1714

 15. Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space 
beyond the rule of 5: insights from drugs and clinical candidates. Chem 
Biol 21:1115–1142

 16. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quanti-
fying the chemical beauty of drugs. Nat Chem 4:90–98

 17. Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y (2019) ADMET-score–
a comprehensive scoring function for evaluation of chemical drug-
likeness. Medchemcomm 10:148–157

 18. Yusof I, Segall MD (2013) Considering the impact drug-like properties 
have on the chance of success. Drug Discov Today 18:659–666

 19. Mignani S, Rodrigues J, Tomas H, Jalal R, Singh PP, Majoral J-P, Vishwa-
karma RA (2018) Present drug-likeness filters in medicinal chemistry dur-
ing the hit and lead optimization process: how far can they be simplified? 
Drug Discov Today 23:605–615

 20. Li Q, Bender A, Pei J, Lai L (2007) A large descriptor set and a probabilistic 
kernel-based classifier significantly improve druglikeness classification. J 
Chem Inf Model 47:1776–1786

 21. Sun J, Wen M, Wang H, Ruan Y, Yang Q, Kang X, Zhang H, Zhang Z, Lu 
H, Wren J (2022) Prediction of drug-likeness using graph convolutional 
attention network. Bioinformatics 38:5262–5269

 22. Cai C, Lin H, Wang H, Xu Y, Ouyang Q, Lai L, Pei J (2022) miDruglikeness: 
subdivisional drug-likeness prediction models using active ensemble 
learning strategies. Biomolecules 13:29

 23. Beker W, Wołos A, Szymkuć S, Grzybowski BA (2020) Minimal-uncertainty 
prediction of general drug-likeness based on Bayesian neural networks. 
Nat Mach Intell 2:457–465

 24. Lee K, Jang J, Seo S, Lim J, Kim WY (2022) Drug-likeness scoring based on 
unsupervised learning. Chem Sci 13:554–565

 25. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) 
ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 
52:1757–1768

 26. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños 
MP, Mosquera JF, Mutowo P, Nowotka M (2019) ChEMBL: towards direct 
deposition of bioassay data. Nucleic Acids Res 47:D930–D940

 27. Ruddigkeit L, Van Deursen R, Blum LC, Reymond J-L (2012) Enumeration 
of 166 billion organic small molecules in the chemical universe database 
GDB-17. J Chem Inf Model 52:2864–2875

 28. Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using posi-
tive and unlabeled examples. Paper presented at Proceeding of 3rd IEEE 
International Conference on Data Mining, NW Washington, DC, United 
States, 19–22 November 2003

 29. Siramshetty VB, Nickel J, Omieczynski C, Gohlke B-O, Drwal MN, Preissner 
R (2016) WITHDRAWN—a resource for withdrawn and discontinued 
drugs. Nucleic Acids Res 44:D1080–D1086

 30. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, 
Johnson D, Li C, Sayeeda Z (2018) DrugBank 5.0: a major update to the 
DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

 31. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y (2014) 
TCMSP: a database of systems pharmacology for drug discovery from 
herbal medicines. J Cheminform 6:1–6

 32. Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y 
(2019) Deep graph library: a graph-centric, highly-performant package 
for graph neural networks. arXiv preprint, arXiv: 1909. 01315.

 33. LaValley MP (2008) Logistic regression. Circulation 117:2395–2399
 34. Noble W (2006) What is a support vector machine? Nat Biotechnol 

24:1565–1567
 35. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Light-

gbm: A highly efficient gradient boosting decision tree. Paper presented 
at advances in neural information processing systems, Long Beach, CA, 
USA, 4–9 December 2017.

 36. Hamilton W, Ying R, Leskovec J (2017) Inductive representation learning 
on large graphs. Paper presented at advances in neural information 
processing systems, Long Beach, CA, USA, 4–9 December 2017.

 37. Kipf T, Welling M (2016) Semi-supervised classification with graph convo-
lutional networks. arXiv preprint, arXiv: 1609. 02907

 38. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) 
Graph attention networks. arXiv preprint, arXiv: 1710. 10903

 39. Xiong Z, Wang D, Liu X, Zhong F, Wan X, Li X, Li Z, Luo X, Chen K, Jiang 
H, Zheng M (2020) Pushing the boundaries of molecular representation 
for drug discovery with the graph attention mechanism. J Med Chem 
63:8749–8760

 40. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin 
Z, Gimelshein N, Antiga L (2019) Pytorch: an imperative style, high-per-
formance deep learning library. Paper presented at advances in neural 
information processing systems, Vancoucer, BC, Canada, 8–14 December 
2019

 41. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv 
preprint, arXiv: 1412. 6980

 42. Murugan P (2017) Hyperparameters optimization in deep convolutional 
neural network/bayesian approach with Gaussian process prior. arXiv 
preprint, arXiv: 1712. 07233

 43. Tkinter: Python interface to Tcl/Tk. https:// docs. python. org/3/ libra ry/ tkint 
er. html# module- tkint er. Accessed 1 Mar 2021

 44. Lundberg SM, Erion GG, Lee SI (2018) Consistent individualized feature 
attribution for tree ensembles. arXiv preprint, arXiv: 1802. 03888

 45. Schlander M, Hernandez-Villafuerte K, Cheng C-Y, Mestre-Ferrandiz J, 
Baumann M (2021) How much does it cost to research and develop a 
new drug? A systematic review and assessment. Pharmacoeconomics 
39:1243–1269

 46. Cohen P, Cross D, Janne PA (2021) Kinase drug discovery 20 years after 
imatinib: progress and future directions. Nat Rev Drug Discov 20:551–569

 47. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal 
of 462 medicinal products because of adverse drug reactions: a system-
atic review of the world literature. BMC Med 14:10

 48. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, 
Perez JL, Perez Marc G, Polack FP, Zerbini C, Bailey R, Swanson KA, Xu X, 
Roychoudhury S, Koury K, Bouguermouh S, Kalina WV, Cooper D, Frenck 
RW Jr, Hammitt LL, Tureci O, Nell H, Schaefer A, Unal S, Yang Q, Liberator 
P, Tresnan DB, Mather S, Dormitzer PR, Sahin U, Gruber WC, Jansen KU, 
Clinical Trial Group (2021) Safety and efficacy of the BNT162b2 mRNA 
Covid-19 vaccine through 6 months. N Engl J Med 385:1761–1773

 49. Ju Z, Li M, Xu J, Howell DC, Li Z, Chen FE (2022) Recent development 
on COX-2 inhibitors as promising anti-inflammatory agents: the past 10 
years. Acta Pharm Sin B 12:2790–2807

 50. Yu W, Xie X, Ma Y, Fang S, Dong Y, Liu G (2022) Identification of 1,4-Benzo-
diazepine-2,5-dione derivatives as potential protein synthesis inhibitors 
with highly potent anticancer activity. J Med Chem 65:14891–14915

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1712.07233
https://docs.python.org/3/library/tkinter.html#module-tkinter
https://docs.python.org/3/library/tkinter.html#module-tkinter
http://arxiv.org/abs/1802.03888

	DBPP-Predictor: a novel strategy for prediction of chemical drug-likeness based on property profiles
	Abstract 
	Introduction
	Materials and methods
	Data collection and preparation
	Molecular representation
	Molecular descriptors
	Molecular fingerprints
	Molecular graphs
	Property profiles

	Machine learning approaches
	Graph neural network approaches
	Performance evaluation
	Development of standalone software

	Results and discussion
	Data set analysis
	Analysis of property profiles
	Property profiles and drug-likeness
	Physicochemical property profile
	ADMET property profile

	Performance of models
	Performance of ten-fold cross-validation
	Evaluation of the test set and external validation sets
	Analysis of sample dependence

	DBPP-Predictor scoring feasibility
	Plausible evaluation of real-world samples
	Screening assessment of databases
	Comparison with other scores

	Case study
	Generalizability and interpretability of DBPP-Predictor
	Interface and functions of the standalone software

	Conclusions
	Anchor 33
	Acknowledgements
	References


