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Abstract 

Within the realm of contemporary medicinal chemistry, bioisosteres are empirically used to enhance potency 
and selectivity, improve adsorption, distribution, metabolism, excretion and toxicity profiles of drug candidates. It 
is believed that bioisosteric know-how may help bypass granted patents or generate novel intellectual property 
for commercialization. Beside the synthetic expertise, the drug discovery process also depends on efficient in silico 
tools. We hereby present BioisoIdentifier (BII), a web server aiming to uncover bioisosteric information for specific 
fragment. Using the Protein Data Bank as source, and specific substructures that the user attempt to surrogate 
as input, BII tries to find suitable fragments that fit well within the local protein active site. BII is a powerful computa-
tional tool that offers the ligand design ideas for bioisosteric replacing. For the validation of BII, catechol is conceived 
as model fragment attempted to be replaced, and many ideas are successfully offered. These outputs are hierarchi-
cally grouped according to structural similarity, and clustered based on unsupervised machine learning algorithms. 
In summary, we constructed a user-friendly interface to enable the viewing of top-ranking molecules for further 
experimental exploration. This makes BII a highly valuable tool for drug discovery. The BII web server is freely available 
to researchers and can be accessed at http:// www. aifor drugs. cn/ index/. Scientific Contribution: By designing a more 
optimal computational process for mining bioisosteric replacements from the publicly accessible PDB database, 
then deployed on a web server for throughly free access for researchers. Additionally, machine learning methods are 
applied to cluster the bioisosteric replacements searched by the platform, making a scientific contribution to facilitate 
chemists’ selection of appropriate bioisosteric replacements. The number of bioisosteric replacements obtained using 
BII is significantly larger than the currently available platforms, which expanding the search space for effective local 
structural replacements.
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Graphical Abstract

Introduction
It is essential to view databases not only as repositories 
of experimental results but also as valuable resources 
for data exploration and exploitation, particularly when 
mining data from publicly accessible databases. Among 
these, the Protein Data Bank (PDB), Cambridge Struc-
tural Database (CSD), and ChEMBL all contain rich 
implicit information that can be leveraged for drug 
discovery. ChEMBL, which aggregates chemical, bio-
activity, and genomic data, is a meticulously curated 
database of bioactive molecules with drug-like proper-
ties [1]. EMBL-EBI recently released ChEMBL 30, which 
includes approximately 2.2 million compounds, 1.5 mil-
lion assays, and 43,000 indications, all deposited and 
well-archived. Both CSD and PDB consist of ASCII files 
containing three-dimensional (3D) atomic coordinates of 
molecules, although they differ in terms of molecule size. 
Established in 1965, CSD serves as the global repository 
for organic crystal structures of small molecules, man-
aged by the Cambridge Crystallographic Data Centre and 
updated thrice annually. As part of this commercialized 
project, several tools, including the CSD System, DASH, 
Mercury Menu, GOLD, and SuperStar, have been devel-
oped to provide comprehensive knowledge derived from 
CSD, making it widely utilized by the research and indus-
trial communities.

Established in 1971 by the structural biology commu-
nity as a central repository for macromolecular struc-
ture data, the PDB has consistently upheld a culture of 
open access and is now widely employed in fundamen-
tal biology, with millions of users leveraging its data to 
advance biomedical research [2]. Structural biology and 
structural bioinformatics have profoundly influenced 

our understanding of the mechanisms and functions of 
biological macromolecules. The PDB serves as a custo-
dian for all this data, representing the repository for the 
vast majority of accomplishments and milestones in the 
structural biology community. It also offers numerous 
additional sequence and structural annotations, along 
with tools for pairwise and multiple structure compari-
sons, including those for the analysis of ligands and their 
interactions. Therefore, PDB has the potential to be fur-
ther utilized for specific applications. The cheminfor-
matics and bioinformatics knowledge within PDB can 
be extracted through in-silico parsing of textual files. For 
instance Borrel et  al. characterized the frequency, type, 
and density of the salt bridges during the ligand-receptor 
recognition [3], which can greatly benefit drug design. 
However, the development of tools and applications 
based on PDB data has fallen short of expectations, not 
to mention commercialized products.

A key challenge for medicinal chemists is to modulate 
the potency and selectivity of small therapeutics toward 
their biological targets and some believe that bioisos-
teric replacement is an effective strategy to expedite the 
process of identifying analogues with improved potency, 
intending to bypass existing patents [4]. Bioisoster-
ism, described as functional group exchanges to achieve 
similar biological outcomes, has garnered significant 
attention among practitioners. Bioisosteric replaceabil-
ity relies on broader structural similarities to elicit the 
desired biological effects, rather than adhering strictly 
to physical or electronic mimicry. Typically, in medici-
nal chemistry, one modifies a promising pharmacophore 
by replacing specific functional groups with the aim of 
achieving the same biological response. Examples have 
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demonstrated that bioisosterism is a powerful tool for 
guiding successful drug development projects [5]. The 
replacement of the amide moiety and benzene ring of 
the phase II clinical candidate GSK’772 led to the dis-
covery of more potent compounds with  EC50 values of 
2.8 nM toward the target [6]. The surrogation of l-pro-
line in melanostatin with 3-furoic acid has afforded two 
potent analogues with 2- and 4.3-fold improved  EC50 
to dopamine  D2 receptors, respectively [7]. Instead of 
improving the potency of parent ligands by using local 
structural replacement approach, a brand-new molecule 
can also be created. Starting with a kinase inhibitor, Gri-
gorii et  al. searched for commercially available replace-
ments of the individual building blocks that constitute 
the parent ligand, then determined which fragments 
were suitable for merging into new compounds with a 
high binding affinity [8]. Referring to bioisosteric replace-
ments strategy, Yang et al. developed DrugSpaceX data-
base which dramatically diversified the modifications of 
the molecular framework thereby extended drug space 
[9]. Bioisosteric replacement as a tool for either anti-HIV 
drug design [10] or specific chemical moieties, including 
amide [11], phenyl [12] has been reviewed.

From a molecular perspective, bioisosteric replacement 
enable the conservative interactions between a ligand 
and a target protein [13] and this mutual recognition can 
be depicted in silicon. Nowadays, computational tools 
have become indispensable in drug discovery process 
and have emerged to accelerate the acquisition of bio-
isosteric information from bio- or/and cheminformatic 
database. Analysing data from the PDB, the investiga-
tion into tetrazole-carboxylic acid bioisosterism revealed 
that protein binding site needs to be flexible enough to 
establish robust hydrogen bonds with tetrazolate ligands, 
especially when compared to carboxylate counterparts 
[14]. In a computational lead optimization process using 
bioisosterism, structural data of the target protein–ligand 
complex are leveraged [15] to modify the parent scaffold, 
following the principle of ensuring a suitable fit and inter-
action compatibility within the specific subpocket of the 
target protein [16]. Other than the extraction of bioisos-
teric information through computational tools, the iden-
tification of appropriate bioisosteres heavily relies on the 
experience of individual practitioners, making it subjec-
tive and potentially influenced by personal biases. While 
these semiempirical methods have been praised for offer-
ing alternatives, they frequently fall short in elucidating 
the underlying interaction mechanisms, particularly in 
how the bioisostere in question consistently interacts 
with the receptor in comparison to the reference moiety. 
Furthermore, having an excessive number of bioisosteres 
to choose from without proper organization and cat-
egorization could lead to the pitfalls of trial-and-error 

screening, frustrating researchers who prefer a clear 
ranking of top candidates. As drug development costs 
rise, there is a growing need for a user-friendly, readily 
applicable system for bioisosteric information. However, 
it is currently lacking in this regard.

Due to the discrepancy between the vast, but under-
used data repository and the increasing demand of 
medicinal chemists for valuable bioisosteres, especially 
those with implicit characteristics that are difficult to 
imagine or have not been previously experienced, there 
is a pressing need for computational methods that can 
efficiently traverse the database for such information. 
SwissBioisostere, hosted by the Swiss Institute of Bio-
informatics and being accessible via a web interface 
[17], uses the ChEMBL database as a primary data 
source to identify matched molecular pairs by applying 
the Hussain and Rea algorithm after data curation. sc-
PDB-Frag [18], differentiating from ligand based scaf-
fold hopping, searches bioisosteric replacements from 
the protein–ligand interaction pattern. In contrast, 
KRIPO [19], quantifies the similarities of binding site 
subpockets not only intra- but also interprotein fam-
ily, broadening the application spectrum of bioisoster-
ism. Seddon et  al. fragmented the ligands for a given 
target using the BRICS scheme, then considered a pair 
of extracted moieties to be bioisosteric if they occupy a 
similar volume of the protein binding site [20].

A web tool to automate bioisosteric functional groups 
identification was developed by Novartis through the 
calculation of electronic, hydrophobic, steric, and 
hydrogen bonding properties as well as by the drug-
likeness index of about 8.5 million unique organic sub-
stituents [21]. The web server MolOpt assists in drug 
design using bioisosteric transformations, with rules 
derived from data mining, deep generative machine 
learning, and similarity comparisons [22]. After the 
input of a protein and a ligand structure and users’ 
selection of specific substructures which intended to 
replace, computational tool FragRep [23] tried to find 
suitable fragments that simultaneously match the geo-
metric requirements of the remaining part of the ligand 
and well complementary with local protein environ-
ments. One crucial aspect of structure-based drug 
design is the use of GRID software to identify poten-
tial chemical modifications that can be made to known 
ligands. Recently Cross et  al. proposed FragExplorer 
approach aiming to show users which fragments would 
best match the GRID molecular interaction fields in a 
protein binding pocket [24]. Craig Plot 2.0 fragmented 
ChEMBL database bioactive molecules, determined 
Hammett σ and Hansch-Fujita π values for their sub-
stituents, and grouped them by root or atom type, aid-
ing in the selection of bioisosteric analogs [25].
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Successful application of bioisosteric transformation 
hinges upon a thorough understanding of the physico-
chemical attributes of frequently encountered substitu-
ents, which can be accurately represented. For example, 
R-group descriptors encoding the distribution of atomic 
properties at increasing distances from a substituent’s 
point-of-attachment to a central ring scaffold for iden-
tifying structurally similar pairs of substituents were 
reported by Holliday et  al. [26] 3D descriptors Flexsim-
R were calculated based on docking of small building 
blocks drug-like molecules into a reference panel of pro-
tein binding sites for bioisosteric functional groups [27]. 
So far, the acquisition of the bioisosteric information 
depending on (1) the experience of medicinal chemists 
working many years in the field; (2) mining the medicinal 
chemistry literature and extracting information by que-
rying an internal library containing bioisosteric families 
[28]; (3) similarity in molecular physicochemical prop-
erties, including size, hydrophobicity, 3D substituents 
[29] or electron-donating profiles and (4) deep neural 
network trained on experimentally validated analogues 
extracted from medicinal chemistry literature [30].

The structural replacement of phosphate [31] and 
ribose [32] group identification was executed using our 
previously developed computational workflow, yielding 
some intriguing results. This protocol can be streamlined 
and led to the development of a user-friendly web server, 
BioisoIdentifier (BII), equipped with fragment sketch-
ing tools. The process involves drawing the replacement 
fragment, converting it into Simplified Molecular Input 
Line Entry System (SMILES) code, and then process-
ing it through the main program (Python and R). The 
program interfaces with third-party software, includ-
ing Blastp, US-align, and RDKit, to organize individual 
PDB files. In this virtual system, spherical probes (2.5 Å 
radius) are created, targeting atoms within the reference 
ligand’s chemical moiety for replacement as centroids. 
The sensed atoms serve as structural replacements for 
the reference fragment. To enhance output visualization, 
potential bioisosteric moieties are clustered based on 
structural similarity or unsupervised machine learning.

Method
Workflow of BII
BII identifies bioisosteres in six steps, as illustrated in 
Fig.  1. Users sketch the target functional group using 
JSME in the Django frontend and obtain the SMILES 
code, which is transmitted to the backend. The backend 
searches the database for stored bioisosteres based on 
the provided SMILES code. If found, results are directly 
retrieved. If not, further processing occurs, with ligands 
containing the target functional group queried from the 
PDB using RDKit’s substructure search. These reference 

ligands undergo a sequential search to obtain and save 
bioisosteres. The notable benefit of this approach arises 
from its ability to be explained through a molecular 
interaction perspective, leveraging information derived 
from PDB data to uncover details about local structural 
replacements. Figure  1B illustrates the specific calcula-
tion process.

1. PDB download: RCSB PDB provides a shell script, 
named “batch_download.sh” (in S1), which can 
download multiple PDB archive files by providing a 
file containing a comma-separated list of PDB IDs. 
An essential prerequisite for running this script is 
to have the ‘curl’ tool installed. However, during our 
attempts to acquire the PDB archive, we encountered 
slow download speeds. Therefore, we developed a 
Python-based web crawler to swiftly retrieve the 
data.

2. Pretreatment of target protein: The small-molecule 
ligands with substructures intended to be bioisos-
terically replaced are selected from the PDB archive, 
with the macromolecular structures containing these 
ligands serving as reference proteins. We obtain the 
FASTA sequences of these proteins and input them 
into Blastp [33] to compare them with the sequences 
in the PDB, then output protein homologues with 
very close or identical structure.

3. Protein structure superimposition: Protein homo-
logues exhibiting remarkably similar or identical 
structures are meticulously superimposed onto the 
reference protein using TM-align [34]. Subsequently, 
these alignments are further refined through the 
application of US-align [35] to achieve a more pre-
cise protein structure alignment.

4. Local structure extraction: Upon the successful 
alignment of these protein homologues, the atomic 
coordinates of the reference fragment earmarked 
for replacement within the reference protein are 
extracted. Each atom of the fragment functions as 
the centroid of a sphere with a radius of 2.5 Å. These 
spheres are employed to explore target ligand frag-
ments, capturing atoms that come into contact, 
which are subsequently extracted and regarded as 
potential bioisosteric replacements for the reference 
substructure.

5. Fitness evaluation of extracted fragment with refer-
ence substructure: To assess the extent of overlap 
between the extracted fragments and the reference 
moiety, we utilized ShaEP [36], a tool designed for 
evaluating the similarity of ligand-sized molecules in 
terms of both shape and electrostatic potential. As 
per its definition, the fitness of a molecule pair based 
on ShaEP falls within the range of [0,1], with 1 signi-
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fying a perfect match. In this context, we established 
a threshold of 0.2 based on empirical rules and expe-
rience.

6. Output of extracted fragment with SMILES code: 
While computers are well-suited for processing tex-
tual strings, the human brain often finds graphical 
information more intuitive and comfortable to work 
with. To address both of these requirements, Open 
Babel [37], which enables the interconversion of 
more than 100 formats of chemical structures, was 
employed to specifically convert the SMILES string 
into an output fragment graph.

To classify the structural isosteres of the 3-substituted 
catechol, a clustering post-processing step was employed, 

utilizing unsupervised machine learning. In this regard, 
several algorithms were experimented with and under-
went parameter adjustments to optimize each one indi-
vidually. The detailed process is illustrated in Fig. 1C and 
is described as follows:

1. Search result format conversion: To calculate molec-
ular similarity for the subsequent calculations, the 
format of all search results was converted from 
SMILES to SDF format using custom-written code. 
Converting from SMILES to SDF format can result 
in potential loss of information. As a precaution, it is 
necessary to clean the data, which involves removing 
entries with missing content and eliminating dupli-
cates.

Fig. 1 The workflow of BioisoIdentifier (BII) to identify the local structural replacements (LSR). A The complete workflow of BII; B the calculation 
process of obtaining LSR; C the process of LSR clustering with unsupervised algorithms; D calculation of molecular fingerprint, molecular similarity, 
and conduct unsupervised clustering
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2. Molecular fingerprint and molecular similarity cal-
culation: The molecular Morgan fingerprints were 
calculated at first, and then the RDKit tool was used 
to calculate the molecular similarity matrix through 
Tanimoto distance, as depicted in the zoomed-in 
view in Fig. 1D1

3. Data classification by using machine learning unsu-
pervised clustering algorithms: we explored the 
application of various unsupervised clustering algo-
rithms, as illustrated in Fig.  1D2. These algorithms 
can be broadly categorized into two groups. The 
first category comprises algorithms like K-means 
and Dbscan, which necessitate specifying the hyper-
parameter for the number of clusters. In contrast, 
the second category includes algorithms such as 
AgglomerativeClustering and AffinityPropagation, 
which do not require specifying the number of clus-
ters.

4. Optimization of algorithms parameters: For algo-
rithms that necessitate the specification of additional 
hyperparameters, including the number of clusters, 
we employed techniques like the elbow method, sil-
houette coefficient method, and hyperparameter 
random search to optimize the clustering results by 
searching for the best parameters.

5. Dimension reduction of clustering results for visu-
alization: As previously mentioned, data points are 
stored in the form of 2048-bit MFF, which makes 
it challenging to effectively visualize clustering 
results in such high-dimensional space. Therefore, 
we employ principal component analysis (PCA) to 
reduce the data dimension from 2048 dimensions to 
2D or 3D. We utilize the matplotlib tool to create vis-
ual representations and display the clustering results 
graphically.

Web server
Interface features and usage
Figure 2 displays a screenshot of the BII homepage, fea-
turing a concise introduction and a web server input 
interface. Users can draw the chemical structure of the 
target functional groups in the molecular editor JSME. 
The ‘R’ denotes the vertex where the target functional 
group bifurcates, indicating that only the sketched core 
substructure requires replacement. The input fragment is 
always assumed to be complete. Once the structural con-
struction is complete, users can obtain the SMILES code 
corresponding to the target functional group by click-
ing the “Get Smiles” button on the page. Subsequently, 
they can initiate the LSR search by clicking the “search” 
button.

Implementation
The Django web framework and Python code are employed 
to develop the interface functionality of the web server and 
execute MySQL database queries for ligand substructure 
replacement. RDKit [38] is utilzied to facilitate fragment 
database construction, calculate molecular descriptors, and 
depict 2D molecular structures.

Case study
Catechol, an unsaturated six-carbon ring (phenolic group) 
with two hydroxyl groups attached to adjacent carbons 
(dihydroxyphenol), is a widely observed group in neuro-
transmitters such as dopamine and noradrenaline. The 
nitrocatechol based compounds tolcapone and entacapone 
are successfully used as adjuncts to treat Parkinson’s Dis-
ease. Meanwhile, bisubstrate and non-nitro hydroxypyri-
done catechol O-methyltransferase (COMT) inhibitors 
have also been reported for the same disease. However, 
tolcapone and entacapone mainly act peripherally and 
poorly penetrate brain as centrally acting drugs. Besides, 
phenolic compounds are prone to high metabolic clearance 
due to their acidity and polarity. Therefore, next generation 
COMT inhibitor prefer replace catechol with correspond-
ing bioisostere [39]. This need has drawn our attention to 
explore catechol bioisosteres, which we present as a case 
study. Apart from the two contact points of the hydroxyl 
group in the benzene ring, four other positions are avail-
able for ligand extension, representing three types (Fig. 3) 
of possible catechol containing ligands.

Results and discussion
The LSR of catechol
When inputting a 3-substituted catechol encoded as 
Oc1cccc([R])c1O into the server, it suggests over 496 
replacement ideas, all of which are displayed in a table, 

Fig. 2 The interface of BII
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paginated for convenience. Figure 4 provides a snapshot 
of the first page, showcasing the clustering results repre-
sented in both two-dimensional and three-dimensional 
structures. The remaining replacements are documented 
in Additional file  1: Figure S2. Each entry in the table 
includes valuable information such as SMILE codes, 2D 
and 3D representations, a similarity index, as well as the 
associated reference protein complex and its correspond-
ing ligand PDB ID, along with details of the target protein 
complex and its related ligand PDB ID.

The LSR of 3-substituented catechol are first sorted 
according to their ShaEP index and subsequently 

recorded in a table. Based on their structural similar-
ity, they are then hierarchically classified into 32 distinct 
groups. Users can easily visualize this classification by 
clicking on the “Classification” tab. For a more detailed 
view, specific LSR included in the “C+O+N” group are 
exemplified in Fig.  5, accessible by clicking the corre-
sponding group name. Moreover, unsupervised learning 
algorithms have been employed to further refine and nar-
row down the number of subgroups.

Figure 6 illustrates the categorization of LSR for 3-sub-
stitued catechol recognized using BII. They are sorted 
into 24 categories based on the SMILES code. Among 
these, 240 bioisosteres, although belonging to cyclic 
structures, do not fall into any predefined category; 
therefore, they are grouped under [cycle other], making 
it the largest family. This is followed by 215 members 
categorized under [cycle C+N], and there is only one 
bioisostere in the [F] category. For further insights, bio-
isosteres of 4-substituted and 3,4-substituted catechol 
are also presented individually in Additional file  1: Fig-
ure S3 and S4. Notably, the primary focus of this work is 

OH

OH

OH

OH

OH

OH

3-substituent 4-substituent 3,4-substituent
Fig. 3 Three possible catechol containing ligands

Fig. 4 The LSR list of 3-substituent catechol
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on the conservativity of interactions between the parent 
ligand moiety and the protein, without explicitly discrim-
inating between the replacement of the moiety and the 
generation of entirely new molecules. While BII may sug-
gest local structural replacements for specific moieties 

in the catechol example, our goal is to identify bioisos-
teric replacements with greater stringency. Our approach 
involves superimposing proteins with identical groups 
but accommodating different ligands. We then concen-
trate on the space where the intended moiety is to be 
replaced. The docking of replacement moieties into the 
original catechol’s position may induce a shape change in 
the binding pocket due to its flexibility. Importantly, our 
approach can be applied to scaffold hopping and the gen-
eration of combinatorial libraries to a certain extent.

Unsupervised clustering methods are employed to 
categorize structural replacements of 3-substituent cat-
echol into fewer categories, utilizing the SMILES encod-
ing approach. This unsupervised clustering unveils latent 
similarities among these structural replacements, thereby 
simplifying data complexity and enhancing comprehen-
sibility and visualization. This simplification stream-
lines the selection of representative samples from each 
cluster, facilitating in-depth research and, consequently, 
enhancing screening efficiency. In Fig. 7, you can observe 
the results obtained from the application of various 

Fig. 5 The LSR subgroup of 3-substituent catechol categorized as cycle C+O+N

Fig. 6 Distribution of the data set into categories assigned based 
on the SMILES codes of the structural isosteres of 3-substituent 
catechol
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algorithms and their respective optimization techniques. 
The algorithms are divided into two categories based on 
the necessity of pre-specifying the number of clusters, 
each category employing unique hyperparameter opti-
mization strategies. For algorithms where pre-specifying 
the cluster number is unnecessary, as exemplified by the 
MeanShift algorithm, we construct an optimization curve 
that correlates the “bandwidth” hyperparameter with the 
silhouette coefficient to determine the optimal “band-
width” value of 446. This corresponds to a cluster count 
of 47 with an average silhouette coefficient of 0.561. The 

Birch clustering algorithm employs a similar approach 
to ascertain the optimal “n_neighbors” hyperparameter 
value, achieving the highest silhouette coefficient of 0.519 
when “n_neighbors” equals 3. In the case of algorithms 
requiring a predefined number of cluster groups, a more 
intricate method is employed to determine the optimal 
cluster count.

Figure  8 illustrates the process of determining the 
optimal number of clusters for the K-Means algorithm. 
The optimal number of clusters was determined using 
the elbow rule and the silhouette coefficient method, 

Fig. 7 Results using algorithms without hyperparameters and algorithms requiring hyperparameters. A Agglomerative Hierarchical Clustering; 
B K-Means Clustering; C spectral clustering; D MeanShift algorithm and hyperparameter “bandwidth” optimisation curves; E Birch algorithm 
and hyperparameter “n_neighbors " optimisation curves; F OPTICS algorithm and hyperparameter “min_samples” optimisation curves
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individually for rational segregation of the structural 
replacements in the chemical space. The elbow method 
and silhouette coefficient method are used to determine 
the optimal number of clusters. Figure 8A shows that the 
elbow of the sum of squares due to error (SSE) sharply 
drops when the number of classes is less than 15. It can 
be observed that the largest value of k for the contour 
coefficient is 2. However, the elbow diagram of k and 
SSE reveals that the SSE is still relatively large when k 
is taken as 2. This is due to that the contour coefficient 
takes into account the degree of separation, and so it is 
an irrational number of clusters for k = 2. Therefore, 
retreating to the second largest value of k for the contour 
coefficient, we consider the second largest value of k for 
the contour coefficient. Further analysis of the relation-
ship between the silhouette coefficient and the number 
of clusters (Fig. 8B) reveals that the best cluster number 
(the number of clusters with the maximum silhouette 
coefficient) is 5. To verify this conclusion, silhouette coef-
ficient diagrams for each class were plotted separately for 
clustering with 5 and 6 classes, and the average silhouette 
coefficients of the clustering results are indicated by the 
red dashed line. As shown in Figs. 8C and D, each class 

was more uniformly distributed when the cluster num-
ber was 5, supporting the empirical division of the LSR 
of 3-substituent catechol into 5 groups accordingly. It 
should be noted that the presented computational results 
are illustrative of our computational process using 3-sub-
stited catechol as an example, which is why some algo-
rithms may have lower silhouette scores.

To provide a detailed view of the clustering results of 
3-substituted catechol LSR, principal component anal-
ysis (PCA) was employed to reduce the dimensionality 
of the 2048-dimensional data to 2D or 3D, as demon-
strated in Fig.  9A for 2D visualization and Fig.  9B for 
additional perspectives on the 2D and 3D visualization, 
which are summarized in Additional file  1: Figure S5. 
In Fig.  9, dots of the same color represent a category, 
and two categories are chosen as examples to present 
a list of classified molecules. The acidity dissociation 
constants for catechol are pKa1 of 9.25 and pKa2 of 13.0 
[40], suggested that the catechol is slightly acidic at bio-
logical environment of pH 7.4, it is therefore thought 
acidic groups are intrinsic biosisosteres of catechol to 
conserve molecular interactions where possible. How-
ever, we envision it is likely that basic groups might be 

Fig. 8 The strategy for determining the optimal number of clusters for the K-Means algorithm. A The optimal cluster number determination using 
elbow rule; B the optimal cluster number determination using contour coefficient; C, D determine the optimal number of clusters by comparing 
the contour coefficients of different clusters
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suggested by our BII tool. It is not surprise since our 
previous investigation revealed that basic –CH2NH3

+ 
replaced acidic phosphate group and a  Mg2+ concur-
rently [31]. The metal cations hence may play an impor-
tant role during local structure replacement of catechol 
since they can readily coordinate.

Three optional LSRs of catechol are displayed in 
Fig. 10, where it can be observed that these newly iden-
tified substructures exhibit similarities in shape to cat-
echol. To elucidate structure–activity relationship of 
catechol and corresponding replacements, the struc-
tural and biological data are compiled from reference 
publications. In addition, we leveraged the structure 
diversification of identified new chemicals with activ-
ity change toward a selected target, discussed how sub-
stitutes deletion or protrusion impacts the biological 
activity of resulting molecules. The therapeutic impact 
of catechol in lung cancer treatment was achieved by 
inhibiting the activity of extracellular signal-regulated 
kinase 2 (ERK2), and its direct binding to the active 
site of ERK2 (PDB code: 4ZXT) was confirmed through 
X-ray crystallography [41]. Catechol was anchored to 
the hinge loop of the ATP-binding site of ERK2, with 
its hydroxyl groups interacting with the main chain 
of Asp106, Met108, and the side chain of Gln105, all 
located on the hinge loop. The azaindole ligand (com-
pound 3 in Ref. [42] PDB code: 42A) occupied the same 
binding site where catechol was positioned in ERK2. In 
detail, the pyrrole NH of 7-azaindole formed a strong 
hydrogen bond (d = 2.8 Å) with the backbone carboxyl 
oxygen of Asp104, and the pyridine nitrogen served as 
a hydrogen bond acceptor (d = 3.0  Å) for the Met106 

backbone NH. The ligand (compound 46 in Ref. [43] 
PDB code: 9N8) binds in the ATP-binding site of ERK5.

The pyrrole NH and amide carbonyl formed hydrogen 
bonds (d = 2.8 Å, d = 2.7 Å) with the backbone carbonyl 
of Asp138 and amide of Met140 in the ERK5 hinge-
region, respectively. Noticeably, the pyrrole-2-carboxam-
ide took the position of catechol. The chloro-substituted 
aminopyrimidine moiety of ER8 (compound 15 in Ref. 
[44]) took the space of catechol as so that halogen bond 
(d = 2.7 Å) between the the chloro atom and amide resi-
due oxygen of gatekeeper Gln105. Hydrogen bonds 
(d = 3.1 Å, d = 2.9 Å) were observed between the ligand’s 
pyrimidine N, amino NH and the backbone NH, C=O of 
hinge residue Met108 respectively. C=O of hinge resi-
due Met108 respectively. The p38αMAPK inhibitor hit 
(compound 3 in Ref. [45] PDB code: MWL) occupied the 
active site space of p38αMAPK.

The pyridine ring nitrogen allowed for hydrogen bond-
ing (d = 2.8  Å) with the peptide backbone of Met109 
from the hinge region. In this context, the pyridine moi-
ety can be considered a structural replacement for the 
C=O of hinge residue Met108, effectively taking the place 
of catechol. The idea bioisosteres by definition, entails 
both steric and but electronic conservatism. However, 
achieving a perfect match for both criteria simultane-
ously can be challenging and may require some degree 
of compromise. It’s conceivable that an imperfect match 
in electronic conservativity could be compensated for 
by a precise steric fit, thereby maintaining overall bind-
ing affinity. It should be acknowledged that the inability 
of BII to distinguish between hydrogen bond donors and 
acceptors, as it primarily focuses on the conservativity of 
the interaction itself. For instance, the hydroxyl group in 
catechol serves as a hydrogen bond receptor in the ref-
erence, whereas the –C=O group of the carboxamide in 
ligand 9N8 can only function as a hydrogen bond (HD) 
acceptor due to its electron-rich nature. The same applies 
to the cationic –N(CH3)– group, which acts as a HD 
acceptor.

The human enzyme 17β-hydroxysteroid dehydrogenase 
14 (17β-HSD14), using  NAD+ as cofactor, oxidizes estra-
diol and 5-androstenediol. The human HSD17B14 gene is 
widely expressed in major organs, such as brain, liver and 
kidney. It has also been identified in breast cancer tissue, 
but the physiological function of this enzyme was poorly 
understood. The use of inhibitors can be important tools 
to study the physiological role of 17β-HSD14 in vivo. The 
methanone compound 1 (compound 12 in Ref. [46] PDB 
code: 5Q6) inhibits the activity of 17β-HSD14 with Ki of 
64 nM. The hydroxyl residue of Tyr154 forms two hydro-
gen bonds bifurcately (d = 2.5 Å, d = 3.1 Å) with hydroxyl 
groups of the catechol moiety. Besides, the 4-OH hydro-
gen bond (d = 2.5 Å) also extends toward Ser141 hydroxyl 

Fig. 9 K-Means algorithm clustering results visualised by PCA 
(principal component analysis) for dimensionality reduction. A 
Two-dimensional visualization clustering space; B 3D visualization 
clustering space; B1 front view; B2 left view; B3 vertical view
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Fig. 10 A Structure of Catechol. B Three active ERK2 inhibitors suggested from a BII search. C–F Interaction networks between 42A and 98N, ER8, 
MWL and ERK2/MAPK, respectively. In this figure, the ligands are named according to their PDB 3-lettercodes, and the proteins are named according 
to PDB4-lettercodes. Putative hydrogen bonds are shown as yellow dotted lines and the distance is labelled. The carbon atoms of structural 
replacements in the target ligand are highlighted in cyan, while others are shown in green, purple, yellow and brown, respectively
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residue (Fig. 11A). Four of 5Q6’s optional analogues are 
shown in Fig. 11B and suggested that 4-fluoro-3-phenol 
is the bioisostere of the 3-substituent catechol, offering 
a ligand (compound 9 in Ref. [46] PDB code: 6QO) with 
increased affinity (a Ki of 13  nM). The 3-OH groups at 
the C-ring of 9 and compound 12 in Ref. [46] interact 
through remarkably short H-bond interactions with the 
side chain of Tyr154 (9, d = 2.3 Å, 12, d = 2.5 Å) and the 
side chain of Ser141 (9, d = 2.5 Å, 12, d = 2.5 Å) from the 
catalytic triad. The 4-F group at the C-ring of 9 is pos-
sibly involved in forming a halogen bond (d = 2.8  Å) 
with Ser141 hydroxyl side reside. The 3-OH groups at 
the C-ring of 12 hydrogen bond toward the side chain of 
Tyr154 (d = 3.1 Å). The replacement of the ketone linker 
of compound 9 with ethenyl resulted in an eightfold more 
potent inhibitor (compound 5 in ref. PDB code: 9JW) 
with a Ki of 1.5 nM; while methylamine (compound 4 in 
ref. PDB code: 9JQ) and ether (compound 2 in reference 

PDB code: 9 MB) surrogate each individually deteriorated 
the binding affinity to a Ki of 42 and 58 nM. Keeping the B 
and C ring of 6QO unchanged, the equipotent quinoline 
base inhibitor (compound 9 in Ref. [47], PDB code: 9ME), 
and a two folds more active naphthalene derivative (com-
pound 10 in Ref. [47]) were obtained, but the quinoline 
analog was found to be four times more soluble than the 
naphthalene compound. Herein, we rather than concen-
trate on the structural replacement of catechol, where it 
is replaced by a 4-fluoro-3-hydroxyphenyl moiety, instead 
emphasize that the linker connecting replacements to 
other parts can vary. However, it’s crucial to acknowledge 
that the choice of linker may impact the physicochemical 
properties of the ligand.

Comparison with other tools
The fundamental of isostere replacement lies match-
ing of protein moieties, but sometimes this concept of 

Fig. 11 A Structure of 5Q6. B Four active 17β-HSD14 inhibitors suggested from a BII search. C–G Interaction networks between 6QO, 9JW, 9JQ 
and 9 MB and 17β-HSD14, respectively. In this figure, the ligands are named according to their PDB 3-lettercodes, and the proteins are named 
according to PDB4-lettercodes. Putative hydrogen bonds are shown as yellow dotted lines and the distance is labelled. The carbon atoms 
of structural replacements in the target ligand are highlighted in cyan, while others are shown in green, white, yellow, bronze and blue respectively
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replacement not aligned with the intended objective of 
functional group/ring/core replacement for a ligand. 
Therefore, BII was compared with other bioisosteric 
search tools, such as the SwissBioisostere database and 
the MolOpt network server. The SwissBioisostere data-
base is a comprehensive resource containing information 
about molecular substitutions and their performance in 
biochemical analysis. This data is obtained by matching 
molecular pairs and mining biological activity data from 
the ChEMBL database. Notably, SwissBioisostere not 
only provides information about molecular substitutions 
but also offers interactive analysis capabilities. On the 
other hand, the MolOpt network server is constructed 
through a combination of data mining, chemoinformatics 
similarity comparison, and machine learning techniques. 
Users have the flexibility to query for bioisosteres of spe-
cific molecular substructures and even generate entirely 
new molecular alternatives.

To perform a comparative analysis, three distinct sub-
structures, namely the 3-substituent, 4-substituent, and 
3,4-substituent, were input into each of the three search 
tools. Consequently, users can access the correspond-
ing bioisosteric data for their chosen substructures. In 
Table  1, we have summarized the number of bioisos-
teres identified by SwissBioisostere, MolOpt, and BII. 
Additionally, it’s important to note that MolOpt offers 
four distinct bioisosteric replacement rules. MolOpt-1 
is based on data mining principles, MolOpt-2 utilizes 
similarity comparison, MolOpt-3 incorporates data min-
ing techniques, and MolOpt-4 is designed around a deep 
generative model. It becomes evident that when com-
pared to the SwissBioisostere database and the MolOpt 
web server, BII excels in providing a more extensive array 
of bioisosteric ideas, making it a valuable resource for 
medicinal chemistry research. The bioisosteres with the 
top-ten rankings from each tool are depicted in Fig. 12, 
illustrating consistent results. The chemical accessibil-
ity represents an important concern indeed for the novel 
structure generated based on this tool, but we want to 
emphasize that BII focus on local structural replace-
ments yet did not consider how to incorporate suggested 
moieties into new ligands, but definitely it will be put 

into consideration as a filter of replacement moieties in 
updated BII version. In addition, we recognized that a 
retrospective validation is not satisfactory to launch BII 
since experimental validation in any case is a benchmark 
of computational tool. In fact, we conducted both wet lab 
synthetic and bioassay experiments in-house. It has been 
demonstrated that a squaryldiamide or an amide group 
is the bioisosteric replacement of phosphate moiety [48], 
NH in the urea serves as isostere of carboxylic acid [49]. 
After previous computational investigation of phosphate 
[31], ribose [32] bioisosteric replacement, the bioisoster-
ism of these moieties have been verified. Consequently, 
we think it is necessitated to develop a generic tool to 
facilitate bioisostere identification of any chemical frag-
ment, which pillars the basement of our current attempt.

Conclusions
To optimize the efficiency of BII, we integrated the 
extended multiprocessing library of Python into the 
code. BII stands out as a user-friendly and robust tool for 
generating innovative ligand replacement ideas. The sub-
structure replacement identification process for a specific 
single task typically takes about two to eleven hours using 
a machine with a CPU of 24 processors. Notably, the web 
server is designed to be accessible without the need for 
computational or programming skills, a feature particu-
larly advantageous for medicinal chemists. These results 
affirm BII’s capability to identify suitable LSR where the 
chemical structure differs, yet the interaction patterns 
with the protein pocket remain conserved. Moreover, 
our application of BII has led to the rediscovery of scaf-
fold hopping ideas, underscoring the utility of our web 
server in providing valuable insights for ligand design. In 
essence, BII serves as a valuable tool to assist medicinal 
chemists during the hit/lead optimization process, aid-
ing in the search for appropriate molecular fragments. 
As part of our commitment to ongoing improvement, the 
BII server will receive regular updates as new data and 
advancements become available. We are pleased to offer 
this service freely to the public at http:// www. aifor drugs. 
cn/ index/.

Table 1 Comparison of query results of different search platforms

Target functional group The number of bioisosteres found by different search tools

SwissBioisostere MolOpt-1 MolOpt-2 MolOpt-3 MolOpt-4 BII

3-substituent 161 100 200 121 200 496

4-substituent 631 100 200 200 200 2559

3,4-substituent 56 9 200 9 200 3322

http://www.aifordrugs.cn/index/
http://www.aifordrugs.cn/index/
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