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Abstract 

The majority of tandem mass spectrometry (MS/MS) spectra in untargeted metabolomics and exposomics stud-
ies lack any annotation. Our deep learning framework, Integrated Data Science Laboratory for Metabolomics 
and Exposomics—Mass INTerpreter (IDSL_MINT) can translate MS/MS spectra into molecular fingerprint descrip-
tors. IDSL_MINT allows users to leverage the power of the transformer model for mass spectrometry data, similar 
to the large language models. Models are trained on user-provided reference MS/MS libraries via any customiz-
able molecular fingerprint descriptors. IDSL_MINT was benchmarked using the LipidMaps database and improved 
the annotation rate of a test study for MS/MS spectra that were not originally annotated using existing mass spectral 
libraries. IDSL_MINT may improve the overall annotation rates in untargeted metabolomics and exposomics studies. 
The IDSL_MINT framework and tutorials are available in the GitHub repository at https:// github. com/ idslme/ IDSL_ 
MINT.

Scientific contribution  
Structural annotation of MS/MS spectra from untargeted metabolomics and exposomics datasets is a major bot-
tleneck in gaining new biological insights. Machine learning models to convert spectra into molecular fingerprints 
can help in the annotation process. Here, we present IDSL_MINT, a new, easy-to-use and customizable deep-learning 
framework to train and utilize new models to predict molecular fingerprints from spectra for the compound annota-
tion workflows.

Keywords Mass spectrometry, Metabolomics, Lipidomics, LipidMaps, Transformer, Molecular fingerprint descriptor, 
Deep learning, PyTorch

Introduction
Metabolomics and exposomics fields deal with large 
volume datasets on the detection and measurement of 
expected and novel chemical compounds in biological 
samples [1]. These datasets are mostly generated using 

untargeted assays employing a gas or liquid chromatog-
raphy connected to a high-resolution mass spectrometry 
(HRMS). These instruments can be instructed to frag-
ment chemical compounds in the biospecimens, and 
the mass to charge ratio and the  intensity of those frag-
ments can be recorded in a tandem MS/MS spectrum. 
In a typical study (n = 100), 2000–3000 unique MS/MS 
spectra can be collected. These spectra need to be anno-
tated with chemical information such as structure, sub-
structure or molecular formula in order to interpret their 
biological relevance. However, lack of annotations for a 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

*Correspondence:
Dinesh Kumar Barupal
dinesh.barupal@mssm.edu
1 Department of Environmental Medicine and Public Health, Icahn School 
of Medicine at Mount Sinai, CAM Building, 3rd Floor, 17 E 102 St, New 
York, NY 10029, USA

https://github.com/idslme/IDSL_MINT
https://github.com/idslme/IDSL_MINT
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00804-5&domain=pdf


Page 2 of 8Baygi and Barupal  Journal of Cheminformatics  (2024) 16:8

majority of the collected MS/MS spectra remains to be a 
major challenge.

Traditionally, mass spectral libraries available from 
commercial providers such as NIST or Wiley, in-house, 
and public resources such as MoNA or GNPS are 
utilized to annotate the experimental MS/MS spectra 
with a chemical structure. While this approach 
is straightforward to use due to the availability of 
thoroughly benchmarked software such as MS-DIAL, 
NIST MS Search, Compound Discoverer,and  Mass 
Hunter, a large proportion (> 80%) of MS/MS spectra do 
not have any hit in these libraries [2, 3].

Machine learning (ML) models can boost the 
annotation rates. ML models that are trained using 
curated MS/MS spectra can predict the structure directly 
from a MS/MS spectrum without the need for searching 
against mass spectral libraries. For example, CSI:FingerID 
[4] can predict molecular fingerprint, Spec2Vec [5] 
can create spectral embeddings, Mass2SMILES [6] 
can predict SMILES strings, and MSNovelist [7] can 
predict new structures for a MS/MS spectra. Recently, 
the large-language models (LLMs) created using the 
transformer deep learning approach have shown to 
outperform classical machine learning approaches 
for the language related tasks such as translation or 
generating new text. The transformer model uses 
encoder-decoder structure to map a sequence of tokens 
from one domain into a different domain, for example 
translating sentences in English to German. Converting 
a MS/MS spectrum to molecular descriptor is in a way, 
a language translation problem, in which token A (m/z 
and intensity) are translated into token B (descriptors). 
This idea of token translation has been explored by 
Spec2Vec [5] to create intermediate embedding, 
which can be used to search mass spectral or chemical 
structure libraries (MS2DeepScore [8] and MS2Query 
[9]). Other individual models such as MS2Mol [10], 
MS2Prop [11], Mass2SMILES [6] and MSNovelist [7] use 
the transformer or Long Short-Term Memory (LSTM) 
architecture to predict chemical descriptors, two-
dimensional structure or SMILES notations.

There are two ways to use deep learning in 
computational mass spectrometry. First to use these 
individual models. But they have been trained on 
different training datasets and these models may not 
be available for a local deployment. They may also 
not have included specific chemical classes that a 
user might be interested in. The second approach is 
to provide an easy-to-use deep learning framework 
in which a user can train their own models using the 
MS/MS data that they may have generated for in-house 
standards or they have access to. For routine chem-
informatics tasks, Chemprop [12] is a key example of 

this second approach to democratize the deep learning 
methods so anyone who has access to training data 
and computing power can train different models by 
optimizing hyperparameters for customized training 
sets. For example, using Chemprop as a backbone, 
deep neural network model to predict antibacterial 
activity properties of > 107 million molecules from 
the ZINC15 database have led to the discovery of new 
candidate compounds with antibiotic properties [13]. 
Similarly, Chemprop [12] has been used in several 
other contexts to predict pharmacokinetics [14] and 
molecular properties [15], making it a central resource 
for mapping chemical-to-function relationships.

Inspired by Chemprop [16], to democratize the deep 
learning in computational mass spectrometry, we have 
developed IDSL_MINT (https:// github. com/ idslme/ 
IDSL_ MINT), a deep learning mass spectrometry 
framework, designed to create data-centric models for 
mass spectrometry applications using transformer 
models developed by Vaswani et  al. [17]. IDSL_MINT 
encompasses modules designed to predict molecu-
lar fingerprint descriptors (Fig.  1). We expect that the 
IDSL_MINT framework will be used to train a diversity 
of models to predict molecular descriptors from MS/
MS spectra.

Fig. 1 Schematic of MS2Fingerprint model

https://github.com/idslme/IDSL_MINT
https://github.com/idslme/IDSL_MINT
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Methods
Modeling framework
IDSL_MINT was developed upon the transformer 
model architecture originally proposed by Vaswani et al. 
[17] and is implemented within the python PyTorch 
framework (https:// pytor ch. org). The IDSL_MINT 
transformer model architecture for predicting molecular 
fingerprint is displayed in Figs. 1. IDSL_MINT only takes 
MS/MS spectra accompanied with precursor m/z values 
in the.msp text format. First, m/z fragments are tokenized 
using constant m/z interval steps, and intensity values are 
sorted by the maximum intensity after normalization to 
the unit sum of the total intensities. Similarly, precursor 
m/z values are tokenized and coupled with spectral 
entropy values [18] as their pseudo-intensity values when 
spectral entropy is allowed in the MSP deconvolution 
step; otherwise, pseudo-intensity values of ’2’ are utilized. 
Tokenized precursor m/z and its pseudo-intensity are 
concatenated to the tokenized vectors of m/z fragments 
and fragment intensity values, respectively to create 
tokenized m/z and intensity tensors. Next, tokenized 
m/z tensors are embedded into the transformer model 
dimension. We hypothesized the intensity of ions in a 
mass spectrum indicates the abundance of the ions and 
consequently the importance of the related sub-structure. 
Therefore, we used a sinusoidal positional encoding 
similar to Vaswani et  al. [17] to account for the effects 
of intensity on the tokenized embedded m/z tokens, as 
presented in Eqs. (1) and (2).

where, PE, pos, int, and dmodel represent positional 
encoding tensor, intensity rank order, intensity and 
model dimension, respectively. The intensity-weighted 
positional encoding tensor is summed up with the 
embedded m/z tokens followed by a dropout layer to 
control potential overfittings. This positional encoding 
method enabled the utilization of both the precursor 
m/z as molecular mass [11] and the fragment ions. The 
embedded m/z space is converted into the encoder 
structure of the transformer model. In case, customized 
binary fingerprint bit locations are not provided within 
the MSP blocks for training, IDSL_MINT can generate 
molecular fingerprint descriptors using SMILES or 
InChI strings for extended connectivity fingerprint 
(ECFP) using an adjustable radius [19] or MACCS Keys 
[20] fingerprint types which are widely recognized in 

(1)PE(pos,2i) = sin

(

int.
pos

10000
2i

dmodel

)

(2)PE(pos,2i+1) = cos

(

int.
pos

10000
2i+1

dmodel

)

the field of cheminformatics [21]. The fingerprint bit 
locations are submitted to the transformer decoder in an 
ascending order, but no positional adjustment was used 
on fingerprint bit locations. The output of the decoder 
structure of the transformer was fed into a linear layer 
followed by a SoftMax layer to calculate the probability 
of the fingerprint bit locations (Fig. 1). The cross-entropy 
LOSS function is used with adjustable label smoothing 
followed by an Adam optimizer. A beam search inference 
is used to ensure detection of the most probable neural 
network trajectory and to prevent autoregressive 
shortcuts in transformers. Tanimoto coefficient is 
calculated to find similarity between predicted and the 
true positive fingerprints in the accuracy plots.

Model training setup
IDSL_MINT code is publicly available at https:// github. 
com/ idslme/ IDSL_ MINT. IDSL_MINT was developed 
using Python 3.10 and implemented with PyTorch 2.0. 
IDSL_MINT can be executed via a simple and easy 
to modify YAML configuration files using a simple 
command “MINT_workflow –yaml path/to/yaml/file” 
in a Linux terminal. Typically, users should specify the 
criteria for MS/MS spectra input, molecular fingerprint 
type, transformer model settings, parameters for the 
cross-entropy LOSS function, and configurations for 
the Adam optimization strategy. The framework works 
only in the Linux environment. The model weights are 
exported at the directory outlined in the configuration 
file (.yaml), for the minimal LOSS value achieved during 
the training phase. To ensure model reproducibility, we 
suggest preserving training YAML files as configuration 
log entries to utilize consistent model parameters in the 
predictive stage.

Spectral file for the test model training
IDSL.CSA [2] provided fragmentation spectra databases 
(FSDBs) for publicly available spectral databases (https:// 
zenodo. org/ record/ 75303 97) in positive and negative 
modes [2]. A subset of LipidMaps spectra from these 
FSDBs originated from MassBank of North America 
(MoNA) and Global Natural Product Social Molecular 
Networking (GNPS) libraries was converted into 
standard.msp files after excluding in-silico predicted MSP 
blocks using LipidBlast method [23]. Classes of lipids 
were derived from LipidMaps database [24] via matching 
corresponding InChIKey14 values.

Test data set
To benchmark the IDSL_MINT framework, we have used 
a publicly available untargeted metabolomics study from 
the Metabolomics WorkBench (accession: ST002044) 
[25]. IDSL.IPA [26] was used for peak-picking and peak 

https://pytorch.org
https://github.com/idslme/IDSL_MINT
https://github.com/idslme/IDSL_MINT
https://zenodo.org/record/7530397
https://zenodo.org/record/7530397
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alignment followed by MS/MS peak detection using 
IDSL.CSA [2]. Unique spectra across the entire study 
were collected in separate MS/MS spectra files in the.
msp text format for electrospray ionization (ESI) positive 
and negative modes..msp text files and parameter spread-
sheet used to annotate the unique spectra are provided 
at ( https:// zenodo. org/ recor ds/ 83396 14) [27] (file#CSA_
spreadsheet.zip) for positive and negative modes.

Model parameters for the test study
In the training step for the test study, only MS/MS 
spectra were used that had 90% of m/z fragments within 
a range of 50–1000 using 0.01 Da intervals. The extended 
connectivity fingerprint with a radius of 2 (ECFP2) was 
utilized to transform MS/MS mass spectrometry data. 
The MS2Fingerprint models include 4 hidden encoder 
and decoder layers and 2 attention heads (80 ×  106 
parameters including parameters of the embedding 
layer). A Google Colab notebook showing the training 
and prediction parameters are provided at https:// drive. 
google. com/ file/d/ 1IFWT eeZ_ I4tbQ- y6MEv SkQ0h b6vqi 
ted/ view? usp= shari ng. Model training curves are shown 
in Additional file 1: Figure S1.

Results
We have developed IDSL_MINT, a cheminformatics 
deep learning framework, to predict molecular finger-
print descriptors from MS/MS fragmentation spectra. 
The framework enabled easy and straightforward training 
of predictive models from different mass spectral librar-
ies, in a similar fashion to the widely accepted Chemp-
rop approach [16] which can create different models for 
predicting physical–chemical properties from chemical 
structures. The framework utilizes a transformer archi-
tecture [17] in PyTorch to translate m/z values into a 
fingerprint bit vector. The required input for training 
the model is only a reference spectra library in the NIST 
standard.msp text format with or without fingerprint 
data and a model configuration text file (.yaml). Figure 2 
illustrates the overview of the input and output data in 
the framework.

As an alternative to interact with complex python 
scripts, we have provided well documented yaml 
configuration files for selecting model parameters. 
Similar to Chemprop [16], IDSL_MINT is directly run in 
a Linux terminal using a simple command (See method). 
We provided a Google Colaboratory notebook (https:// 
colab. resea rch. google. com/ drive/ 16A- Hw6S_ 04nxl opp7y 
efZkV B5Aak codu) to demonstrate the application of the 
IDSL_MINT framework without any local installation. 
Users can train a new model on these notebooks using the 
test data or they can use their own input data for creating 
customized models. GPUs and CPUs are both supported 

by IDSL_MINT. The codebase and the documentation 
are provided at https:// github. com/ idslme/ IDSL_ MINT 
to install IDSL_MINT in a local Linux server.

We showcase the application of IDSL_MINT for 
a publicly available untargeted metabolomics study 
(ST002044) from the Metabolomics WorkBench 
database. First, we processed the raw data for this study 
to extract MS/MS spectra in the NIST.msp format that 
can be used as the model evaluation set. The IDSL.CSA 
R package [2] was used to extract 3,386 and 1,901 unique 
MS/MS spectra in  ESI+ and  ESI− for this study [27] (file#1 
csa_spreadsheet.zip). Next, we obtained the coverage of 
spectra annotation by mass spectral similarity searches. 
IDSL.CSA can annotate 638 (out of 3386) and 299 (out 
of 1901) MS/MS peaks in positive and negative modes by 
matching the spectra against NIST 20 and LipidBlast [23] 
libraries [27] (file#1 csa_spreadsheet.zip).

Next, we carefully compiled the training dataset for 
the case study (ST002044) to ensure a high validity of 
the resulting model (Fig.  3). Spectra from MoNA and 
GNPS public libraries in positive and negative modes 
were used separately to create training sets. We excluded 

Fig. 2 Flowchart of the IDSL_MINT workflow

Fig. 3 Careful compilation of the training set for the case study. 
Unique InChIKey14 was used to compute set overlaps. Source data 
file is provided at Zenodo entry [27] (file#3 venn.zip)

https://zenodo.org/records/8339614
https://drive.google.com/file/d/1IFWTeeZ_I4tbQ-y6MEvSkQ0hb6vqited/view?usp=sharing
https://drive.google.com/file/d/1IFWTeeZ_I4tbQ-y6MEvSkQ0hb6vqited/view?usp=sharing
https://drive.google.com/file/d/1IFWTeeZ_I4tbQ-y6MEvSkQ0hb6vqited/view?usp=sharing
https://colab.research.google.com/drive/16A-Hw6S_04nxlopp7yefZkVB5Aakcodu
https://colab.research.google.com/drive/16A-Hw6S_04nxlopp7yefZkVB5Aakcodu
https://colab.research.google.com/drive/16A-Hw6S_04nxlopp7yefZkVB5Aakcodu
https://github.com/idslme/IDSL_MINT
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the spectra related to compounds that were covered 
in the LipidBlast (in-silico) [23] and NIST 20 librar-
ies because we used these two libraries for annotating 
the experimental MS/MS spectra in the case study. Our 
case study training set included 6.96% and 4.58% of all 
the compounds in the LipidMaps database in positive 
and negative modes, respectively because most of the 
lipid compounds did not have publicly available MS/MS 
spectra. Lipid classification ontology was not covered in 
the MS/MS databases, so we obtained it from the Lipid-
Maps structure SDF file in the PubChem database. Train-
ing data has 8 lipid classes and 6 classes having at least 
50 spectra (Table  1). The most over-represented lipid 
classes were Polyketides (PK) and Fatty Acyls (FA) and 
under-represented classes were Glycerolipids (GL) and 
Saccharolipids (SL). Extracted MS/MS LipidMaps spec-
tra in MoNA and GNPS public libraries, and lipid classes 

from PubChem database were provided in the.msp text 
format at Zenodo entry [27] (file#2 lipidmaps_msp.zip/). 
Despite the small size training set, we were able to train a 
useful model with practical prediction accuracies for an 
untargeted metabolomics experiment, as highlighted in 
the following sections.

Next, we trained two deep learning models  (ESI+ and 
 ESI−) using our newly created IDSL.MINT framework. 
The.yaml file and input.msp files are provided at Zenodo 
entry [27](file#4 ms2fp_yaml.zip). The training in  ESI+ 
and  ESI− took 70 and 45  h, respectively on 35 CPU 
processing threads.

Next, we evaluated the overall accuracy and the accu-
racy by lipid classes for the test study ST002044. Since 
not all lipid classes were equally represented in the train-
ing set, we expected that the model prediction accuracy 
would vary across the classes. Overall accuracy for the 
case study was 0.354 and 0.351 for positive and negative 
modes, respectively, where true positive being the top hit 
candidate when the predicted fingerprint was searched 
against the LipidMaps database. In terms of lipids classes, 
Glycerophospholipids (GP) showed an accuracy ≥ 0.50 
whereas Prenol Lipids (PR) showed a really low accu-
racy ≤ 0.20 in both positive and negative modes (Table 2 
and file#5 ms2fp_st002044_prediction.zip at [27]). These 
variations can be attributed to the coverage of these 
lipid classes in the training dataset. For the case study, 
IDSL.CSA yielded annotations for 536 lipid compounds 
for both ESI modes (Table  2). Subsequent matching of 
the predicted fingerprints using a Tanimoto similarity 

Table 1 Frequency of lipid in each class in the training data set

Lipid class Negative Positive

Polyketides (PK) 794 1019

Fatty Acyls (FA) 791 1294

Glycerophospholipids (GP) 339 202

Sterol Lipids (ST) 289 516

Prenol Lipids (PR) 141 438

Sphingolipids (SP) 80 54

Glycerolipids (GL) 5 64

Saccharolipids (SL) 2 1

Table 2 Tanimoto coefficients of ECFP2 fingerprints for the ST002044 study. Fingerprint matching assisted in adding more 
annotations

Mode Lipid categories LipidMaps (Entire top hits) Library match after spectral 
entropy ≥ 0.75)

IDSL_MINT new high-
confidence annotations 
(Tanimoto similarity ≥ 0.6)

Count Mean Median Count Mean Median Count Mean Median

Positive mode Fatty Acyls (FA) 592 0.254 ± 0.270 0.140 80 0.672 ± 0.330 0.772 24 0.831 ± 0.121 0.857

Prenol Lipids (PR) 182 0.181 ± 0.158 0.138 4 0.736 ± 0.008 0.731 3 1.000 ± 0.000 1.000

Polyketides (PK) 233 0.205 ± 0.122 0.181 – – – 3 0.881 ± 0.068 0.836

Sphingolipids (SP) 56 0.326 ± 0.282 0.192 16 0.571 ± 0.381 0.798 – – –

Glycerophospholipids (GP) 724 0.543 ± 0.350 0.540 178 0.916 ± 0.154 1.000 85 0.838 ± 0.111 0.839

Glycerolipids (GL) 60 0.561 ± 0.368 0.556 35 0.772 ± 0.262 0.875 – – –

Sterol Lipids (ST) 295 0.302 ± 0.272 0.168 65 0.669 ± 0.232 0.673 12 0.805 ± 0.119 0.756

Negative mode Fatty Acyls (FA) 437 0.233 ± 0.198 0.175 8 0.556 ± 0.301 0.533 22 0.782 ± 0.106 0.757

Prenol Lipids (PR) 65 0.139 ± 0.029 0.145 – – – – – –

Polyketides (PK) 175 0.183 ± 0.118 0.166 – – – 3 0.783 ± 0.155 0.701

Sphingolipids (SP) 0 – – – – – – – –

Glycerophospholipids (GP) 371 0.671 ± 0.247 0.704 150 0.739 ± 0.182 0.714 85 0.837 ± 0.140 0.849

Glycerolipids (GL) 11 0.335 ± 0.046 0.339 – – – – – –

Sterol Lipids (ST) 121 0.165 ± 0.096 0.144 – – – 1 0.887 ± 0.000 0.886
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threshold of ≥ 0.6 resulted with additional 238 lipid 
annotations in both ESI modes. Furthermore, a spec-
tral entropy score of ≥ 0.75 was found to align with fin-
gerprint matches characterized by a Tanimoto similarity 
threshold of ≥ 0.7 shown in Table  2. Notably, within the 
Glycerophospholipids (GP) lipid class, the median Tani-
moto similarity stands a score of 1 across 178 annotations 
with a spectral entropy score of ≥ 0.75 in positive mode. 
We noted that 71  (ESI+) and 96  (ESI−) annotations were 
not part of the training set, suggesting the use of IDSL_
MINT for improving annotations beyond mass spectral 
libraries. The results of all annotated MS/MS spectra in 
ST002044 by fingerprint matches with Tanimoto similar-
ity ≥ 0.5 against LipidMaps and IDSL.CSA match is pro-
vided at Zenodo entry [27](file#6 ms2fp_lipidmaps.zip 
and file#7 ms2fp_idsl.csa.zip).

Discussions
We have developed a deep learning framework for 
computational mass spectrometry in metabolomics 
and exposomics to train user-defined models to predict 
structure and molecular fingerprints from tandem mass 
(MS/MS) spectra. An application of this framework is 
presented to annotate MS/MS spectra that did not have 
any hits in the existing reference mass spectral libraries. 
It can be suggested that a combined use of both mass 
spectral library searches and deep learning models can 
improve the annotation rate in lipidomics, metabolomics 
and exposomics fields. As we highlighted that our work is 
inspired by Chemprop [12], to democratize deep learning 
in computational mass spectrometry, in which users 
can train custom models by different training datasets. 
An example is shown as a lipid structure prediction 
model trained only on the lipid MS/MS spectra because 
a lipid extraction method was used using the sample 
preparation. This framework also enables open science 
where deep learning models created using publicly 
available MS/MS spectra can be made available without 
any restrictions.

Transformer models have revolutionized the field 
of natural language processing (NLP), particularly 
in transforming between two spaces of sequences of 
tokens similar to natural language structures [17]. The 
transformer model consists of encoder and decoder 
structures which include self-attention mechanisms, 
feed-forward neural networks, and normalization layers. 
The ability to tokenize raw mass spectrometry data (m/z 
values) and molecular fingerprint bit locations allow for 
the adoption of this well-developed model architecture in 
the field of computational mass spectrometry.

The key objective in using deep learning models for 
mass spectrometry data processing is to transform 
mass spectrometry m/z values into a more applicable 

information space such as molecular fingerprint 
descriptors [28]. This conversion enables utilizing 
MS/MS spectra in several known cheminformatics 
approaches such as Quantitative Structure–Activity 
Relationship (QSAR) modeling. The predicted 
fingerprints can prioritize the annotated peaks for further 
structure elucidation workflows which are resource-
demanding in mass spectrometry-based projects. Only a 
limited number of high-quality mass spectral signatures 
should be prioritized for further in-silico analyses and 
laboratory experiments. QSAR models built by molecular 
fingerprint descriptors can be utilized to directly predict 
physical–chemical properties without fully knowing 
the two-dimensional structure. This was achieved by 
MS2Prop tool to predict quantitative assessment of drug-
likeness (QED) [29], and synthetic accessibility [30].

One of the key messages of our work is that the 
accuracy of these deep learning models varies by chemical 
classes. That can be explained by limited training data for 
them. If a class is not well-represented in the training 
set of an existing model, then we need to acquire the 
standards, collect the MS/MS spectra for them and train 
a new model. This situation is regularly observed by the 
untargeted metabolomics and exposomics community. It 
is also recognized in the cheminformatics field that not 
every class has training data [31–33], an issue known as 
the domain of applicability [34]. IDSL_MINT will enable 
straight-forward training of such new models, in a similar 
way Chemprop [16] supports the QASR modeling. 
Users should note that a model might perform well for 
one class, and thus can be used reliably for that specific 
class, for example the case study works for lipid classes 
Glycerophospholipids (GP). We have shown for the case 
study, the 238 additional spectra could be annotated by 
this new approach; however, the reliable annotations 
were for the classes with higher accuracies. Our results 
underscore the need to expand the training data for these 
under-represented classes in the public libraries such as 
MoNA and GNPS databases.

Putting together the training and prediction archi-
tecture requires setting up complex python scripts, 
but IDSL_MINT has minimized these efforts to almost 
no scripting by accepting all the parameters in well-
documented configuration files in a simple text format 
(.yaml). This idea of using a.yaml file was also adopted 
from the Chemprop framework [16], and it makes it 
very straightforward to train a deep learning model 
for MS/MS spectra. We also use the input spectra in.
msp text format which is a commonly used format in 
computational mass spectrometry, meaning that IDSL_
MINT can be easily integrated with other workflows 
which handle mass spectra in this format. For example, 
by using only IDSL.CSA [2] and IDSL_MINT, a user 
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can extract and annotate MS/MS spectra by mass spec-
tral similarity and the deep learning based predictive 
modeling.

Since there are many molecular fingerprints available 
in cheminformatics and new ones can be created 
for a collection of chemical structures, IDSL_MINT 
supports any type of user-provided fingerprint as long 
as it is in the binary vector format. This is different 
from existing tools SIRIUS 4 [35] and CSI:FingerID 
[4] which use a set of fixed molecular fingerprints. 
However, it should be noted that searching the 
predicted fingerprints against massive databases such 
as PubChem may require re-calculations of the custom 
fingerprints.

The main limitation of this work was that our 
training set was constrained to only the experimental 
LipidMaps library which was around < 10% of total 
LipidMaps compounds. However, we have achieved 
practical accuracies for a number of lipid classes. 
The transformer architecture can be expanded 
to include neutral losses from precursor and m/z 
differences, which may also improve the accuracy of 
the model. Several advanced formats of the transformer 
architecture have been developed to train large 
language models by NLP researchers. Those advances 
can be tested while translating m/z tokens into 
molecular fingerprints tokens.

The presented IDSL_MINT test model also has 
several limitations. First, the results of this model could 
not be compared against that of existing fingerprint 
prediction models such as CSI:FingerID [4]. Second, 
the model was created for a lipidomics dataset, so it 
cannot be generalized to other metabolomics datasets. 
Lastly, we did not test different molecular fingerprint 
types while building the model. However, it should be 
noted that the test model was created only to show the 
utility of the IDSL_MINT framework, and follow-up 
investigations are required to increase the impact in 
reference to these limitations. We also recommend that 
training datasets used as input for the IDSL_MINT 
framework are submitted to a public data repository 
such as Zenodo ( https:// zenodo. org/) with a proper 
version control and data provenance records so the 
results by different modelling frameworks or models 
can be logically compared.”
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