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Abstract 

In the field of chemical synthesis planning, the accurate recommendation of reaction conditions is essential 
for achieving successful outcomes. This work introduces an innovative deep learning approach designed to address 
the complex task of predicting appropriate reagents, solvents, and reaction temperatures for chemical reactions. Our 
proposed methodology combines a multi‑label classification model with a ranking model to offer tailored reaction 
condition recommendations based on relevance scores derived from anticipated product yields. To tackle the chal‑
lenge of limited data for unfavorable reaction contexts, we employed the technique of hard negative sampling 
to generate reaction conditions that might be mistakenly classified as suitable, forcing the model to refine its decision 
boundaries, especially in challenging cases. Our developed model excels in proposing conditions where an exact 
match to the recorded solvents and reagents is found within the top‑10 predictions 73% of the time. It also predicts 
temperatures within ± 20 ◦C of the recorded temperature in 89% of test cases. Notably, the model demonstrates its 
capacity to recommend multiple viable reaction conditions, with accuracy varying based on the availability of con‑
dition records associated with each reaction. What sets this model apart is its ability to suggest alternative reaction 
conditions beyond the constraints of the dataset. This underscores its potential to inspire innovative approaches 
in chemical research, presenting a compelling opportunity for advancing chemical synthesis planning and elevating 
the field of reaction engineering.

Scientific contribution 
The combination of multi‑label classification and ranking models provides tailored recommendations for reaction 
conditions based on the reaction yields. A novel approach is presented to address the issue of data scarcity in nega‑
tive reaction conditions through data augmentation.

Keywords Reaction condition, Recommendation system, Multi‑task modeling, Multi‑label classification

Introduction
In recent years, computer-aided synthesis planning 
(CASP) [1–4] has emerged as an automatic approach for 
designing synthesis routes of new chemicals [5, 6]. This 
development has been facilitated by extensive research on 
predicting retrosynthesis steps [7–10] and the algorithms 
that guide machines in finding the most suitable synthetic 
pathways [11–13]. However, an important consideration 
when carrying out actual synthesis in the laboratory is the 
selection of proper reaction conditions to maximize yields 
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for each reaction. This consideration is crucial for reduc-
ing the cost of purification and maximizing the overall 
yield of the synthesis route leading to the final product 
[14–16]. By suggesting suitable reaction conditions such 
as reagent, solvent, and catalyst, CASP can help research-
ers save time and resources in their quest for more effi-
cient and effective reactions. This capacity opens up new 
possibilities for accelerating the discovery and develop-
ment of chemical compounds, ultimately contributing to 
advancements in various fields such as pharmaceuticals, 
materials science, and sustainable chemistry.

Nevertheless, predicting reaction conditions is a chal-
lenging task due to the complicated interactions between 
the chemicals involved. The compatibility between the 
reagent and solvent is crucial for a successful reaction, 
as they should not react and generate unwanted byprod-
ucts that impede the desired outcome. Furthermore, the 
existence of multiple combinations of reaction conditions 
that can achieve the desired result further complicates 
the task of recommending precise reaction contexts. As a 
result, researchers traditionally rely on empirical knowl-
edge, experience, and heuristic approaches to identify a 
suitable set of conditions [17, 18].

Over the past few years, the field of chemistry has wit-
nessed the widespread application of machine learning in 
various areas, including molecular property prediction 
[19–22], drug and material design [23–26], and chemi-
cal biology [27–30]. Additionally, machine learning has 
proven valuable in navigating the vast parameter space 
of chemical reactions and proposing promising reaction 
conditions [31]. For example, Gao et al. [32] introduced 
a neural network architecture with features resembling 
a recurrent neural network. This model achieved high 
accuracy by sequentially predicting catalysts, solvents, 
reagents, and temperatures, taking into account their 
interdependence across a broad spectrum of organic 
reactions. Maser et  al. [33] focused on elucidating the 
roles of different species involved in reactions, such as 
metals, ligands, bases, solvents, and additives. They tack-
led the prediction of reaction conditions by developing 
multi-label classification models specifically tailored for 
Suzuki, Negishi, C-N couplings, and Pauson-Khand reac-
tions. Recently, Kwon et  al. [34] pointed out that previ-
ous techniques provided only a single prediction per 
reaction, lacking a comprehensive list of possible reac-
tion conditions. To overcome this issue, they developed 
a generative variational autoencoder that predicted mul-
tiple reaction conditions through repeated sampling from 
the output distribution. The resulting list of sampled 
conditions could then be evaluated by human experts or 
another model to rank their feasibility.

This study introduces a model capable of predicting 
various combinations of reaction conditions suitable for 

a given reaction and ranking them based on the expected 
product yield. The model design is inspired by the two-
stage recommendation systems commonly used in online 
shopping [35, 36], and video recommendation [37, 38]. 
For example, Covington et  al. [37] employed a simi-
lar strategy by using a candidate generation model with 
user features as inputs to identify relevant videos in the 
corpus, followed by a ranking model in the second stage 
to assign scores exclusively to those relevant items. This 
approach is particularly effective when dealing with large 
search spaces. By efficiently identifying relevant items, 
the candidate generation model significantly reduces the 
search space, thereby reducing computation time during 
the ranking stage. Considering the immense number of 
possible combinations of reaction conditions, we devel-
oped a similar two-stage model to recommend and rank 
feasible reaction conditions based on their respective 
yields. The first part of the model generates a variety of 
potential reagents and solvents for a reaction, while the 
second part predicts temperatures and ranks the condi-
tions using relevance scores calculated from the antici-
pated product yield. The model was trained on a diverse 
dataset encompassing ten reaction types, including Buch-
wald-Hartwig cross coupling, Chan-Lam coupling, Diels-
Alder, Fischer indole synthesis, Friedel-Crafts acylation, 
Friedel-Crafts alkylation, Grignard reaction, Kumada 
coupling, Negishi coupling, and reductive amination. 
Overall, this work contributes to the advancement of 
CASP by addressing the prediction of multiple combina-
tions of reaction conditions, providing a more compre-
hensive and systematic approach to optimizing reactions.

Method
Data preparation and preprocessing
The reaction datasets used in this study were obtained 
from Reaxys [39], and their distribution across vari-
ous reaction types is shown in Fig. 1. In Reaxys, chemi-
cals that facilitate reactions are categorized as solvents, 
reagents, or catalysts. However, the obtained datasets 
contained a limited number of records (1.57%) that 
specifically mentioned catalysts, as most metal cata-
lysts were primarily categorized as reagents. To elimi-
nate ambiguity arising from chemical categorization, we 
merged the reagent and catalyst categories, collectively 
designating these chemicals as reagents. Additionally, we 
observed instances where certain chemicals appeared in 
both the reagent and solvent categories in Reaxys. For 
example, while methanol is predominantly considered 
a solvent in most reaction entries, there are a few cases 
where it is categorized as a reagent. To address this issue, 
we redefined the role of each chemical based on the cate-
gory in which it appeared most frequently. This approach 
reduces the likelihood of the model predicting the same 
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chemicals for both solvent and reagent tasks, leading to 
more accurate predictions.

Inconsistencies in naming the same chemical species 
posed another challenge in the dataset. To address this, 
we used OPSIN [40], PubChem [41], and ChemSpider 
[42] to obtain canonicalized SMILES representations 
of the chemical names and merged them if they shared 
identical SMILES representations. We note that this 
work used the anhydrous form of SMILES to represent 
chemicals. For instance, sodium carbonate monohydrate 
and sodium carbonate were considered the same reagent. 
Furthermore, some reactions in the dataset involved 
an unusually high number of solvents and reagents. To 
maintain focus and simplify the analysis, such rare cases, 
which exceeded two solvents and three reagents per 
reaction entry, were excluded from the study. This con-
straint led to the removal of approximately 5.33% of the 
data from the analysis. The completed data preprocessing 
workflow is outlined below: 

1. Removal of data with reaction SMILES that cannot 
be parsed by RDKit [43].

2. Removal of data without solvent and yield records.

3. Removal of data with reaction conditions that involve 
more than two solvents or three reagents.

4. Reassignment of the category label of a chemical to 
either solvent or reagent based on the category in 
which the chemical appeared most frequently.

5. Removal of entries with rare reagents and solvents 
whose frequency in the dataset is less than 10.

6. Standardization of labels by using OPSIN [40], 
PubChem [41], ChemSpider [42] to obtain the 
SMILES representation of chemical names. 
Labels with identical SMILES were merged, while 
labels without corresponding SMILES were kept 
unchanged.

7. Random splitting of the dataset into training, vali-
dation, and testing sets with an 8:1:1 ratio. Reaction 
entries with the same reaction SMILES but with dif-
ferent reaction conditions were assigned to the same 
subset, ensuring that no learned reaction appears 
during validation and testing.

Following the preprocessing steps, the remaining 
dataset consists of 74,683 reaction entries and 93,081 

Fig. 1 Data distribution across different reaction types. Translucent and solid bars represent the number of data points before and after 
preprocessing, respectively
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reaction conditions. There are 1320 labels for the rea-
gent class and 87 labels for the solvent class.

Model setup
As shown in Fig. 2, the reaction context recommendation 
system proposed in this study comprises two consecu-
tive prediction stages: candidate generation and candi-
date ranking. The model predicts a subset of potential 
reagents and solvents in the initial candidate generation 
stage based on the given reaction query. This particular 
subset is then utilized in the subsequent stage to enhance 
the accuracy of the ranking model by excluding irrever-
ent reagents and solvents.

The candidate generation model was implemented 
using a multi-task neural network designed for multi-
label classification, which includes a shared hidden layer 
followed by two task-specific output layers, as shown in 
Fig. 2A. To effectively capture relevant chemical informa-
tion from the provided reaction query, a reaction finger-
print was employed as input. This reaction fingerprint 
[32, 44] was generated by concatenating two distinct 
components: the Morgan circular [45] fingerprint (with 
a radius of 2 and a length of 4096) of the product, and 
the disparity between the fingerprints of the reactant 
and the product. As shown in Fig. 2A, the candidate gen-
eration model has two separate output layers, which are 

responsible for predicting solvent labels (with a length 
of 87) and reagent labels (with a length of 1320), respec-
tively. The prediction losses for reagent and solvent out-
puts were calculated using a focal loss function [46]

where γ ≥ 0 is a modulating factor that concentrates 
training on misclassified hard examples, p ∈ [0, 1] is the 
predicted probability from the model, and y ∈ {0, 1} is 
the binary indicator if the reagent or solvent label is the 
correct classification for the reaction. The selection of the 
focal loss function stems from its efficacy in addressing 
class imbalance issues (as shown in Additional file 1: Fig-
ure S1) and giving more weight to misclassified instances 
[47, 48]. The modulating factor γ is a hyperparameter 
that was manually adjusted for better performance of the 
model (see Additional file 1: Table S1). In the candidate 
generation model, the losses for the reagent ( Lr ) and 
solvent ( Ls ) prediction tasks were combined using the 
homoscedastic uncertainty approach [49]

(1)

Focal Loss(p, y) =

{

−(1− p)γ log(p), if y = 1;
−pγ log(1− p), otherwise.

(2)L =

1

2σ r
Lr +

1

2σ s
Ls + logσrσs

Fig. 2 The architecture of the reaction context recommendation model. A The initial component is the candidate generation model, comprising 
a feedforward neural network. This model encodes reaction fingerprints and predicts the probabilities of the solvents and reagents that might be 
relevant to the reaction as a multi‑label classification problem. The predicted relevant solvents and reagents are then enumerated combinatorically 
to generate a list of possible reaction contexts for the reaction. B Subsequently, the ranking model predicts the temperature and relevance score 
for each generated reaction context from the first model
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where L is the cumulative loss, and σr and σs are the 
homoscedastic uncertainties of the reagent and solvent 
prediction tasks learned by the model during train-
ing. These uncertainties can be viewed as automatically 
adjusted weights between the losses of the two prediction 
tasks. To identify potential candidates for solvents and 
reagents in the given reaction, we considered predicted 
probabilities of labels exceeding a certain threshold. In 
this work, a threshold of 0.3 was selected due to its opti-
mal performance in validation, as will be discussed in the 
subsection below. The shortlisted candidates for solvents 
and reagents were then subjected to a combinatorial enu-
meration process, generating all possible combinations of 
reaction conditions derived from these solvent and rea-
gent candidates. The total count of generated reaction 
contexts can be computed as

where Nr and Ns are the numbers of reagents and sol-
vents with probabilities higher than the threshold, and 
(

.

.

)

 is the binomial coefficient.

The candidate generation model serves as an initial fil-
ter, identifying potential reagents and solvents, and gen-
erating various reaction contexts based on the selected 
reagents and solvents for a reaction. As shown in Fig. 2B, 
a separate model evaluates and ranks these reaction 
contexts. In this study, we employed a listwise approach 
similar to ListNet [50] for the purpose of ranking the 
reaction contexts. To implement this approach, we began 
by assigning a relevance score (s) to each set of reaction 
conditions. These relevance scores are arbitrary numeri-
cal values where larger values indicate better suitability 
of the conditions for the given reaction. The definition of 
these relevance scores can take into account factors such 
as reagent and solvent costs, reaction temperature, and 
separation feasibility, depending on user objectives. For 
simplicity, we calculated relevance scores using the prod-
uct yield (s = 2× yield + 2) to prioritize reaction condi-
tions that promote the formation of the target product. 
If a reaction context involves a reagent or solvent that is 
absent from the actual reaction data, a relevance score of 
0 is assigned. For a collection of n reaction contexts, the 
probability of a particular context being ranked as the top 
one can be computed using the following formula [50]

where si is the relevance score of the i-th condition com-
bination. Figure  2B illustrates the architecture of the 
ranking model, which takes the reaction fingerprint and 

(3)

(

3
∑

i=1

(

Nr

i

)

)

×

(

2
∑

i=1

(

Ns

i

)

)

(4)Ps(i) =
esi

∑n
i=1 e

si

one-hot encoded vectors for the solvent and reagent as 
inputs. These inputs pass through separate dense layers 
and then combine to form a concatenated representation, 
which proceeds through two specialized layers: one for 
ranking reaction conditions and the other for tempera-
ture prediction. In this work, the loss for temperature 
prediction was computed using the mean square error, 
whereas the ranking loss was calculated using the Kull-
back–Leibler divergence between the predicted probabil-
ity and the probability calculated using relevance scores 
derived from yield. The losses from both tasks were 
merged and weighted using the same homoscedastic 
uncertainty method described in Eq. 2.

Data augmentation by hard negative sampling
In data-driven chemistry, the inclusion of negative data, 
such as non-reactive and non-active molecular struc-
tures, is crucial for effective model learning [51]. A prev-
alent issue in chemical reaction databases derived from 
literature is the scarcity of low-yield reaction samples. 
This gap significantly hinders the development of accu-
rate and comprehensive predictive models. Previous 
work has demonstrated the necessity for documenta-
tion of all data pertaining to new chemical reactions [52]. 
Such detailed record-keeping is key to enhancing the 
quality of reaction databases, which, in turn, improves 
the models trained on these databases. Furthermore, 
Tripp et al. highlighted a critical challenge in training ret-
rosynthesis models [53]. They note that models trained 
solely on positive data may erroneously generate unreal-
istic reaction pathways. To address this issue, Tripp et al. 
proposed the development of a reaction synthesis prob-
ability assessment model. This model aims to mitigate the 
risk of incorrect outcomes by factoring in the likelihood 
of a reaction’s success.

Similarly, the challenge of needing both positive and 
negative data is observed in the training of ranking 
models [54]. This further emphasizes the need for a bal-
anced approach to data collection and model training 
in the field of data-driven chemistry. To overcome this 
limitation, the technique of negative sampling [55–58] 
was employed. As illustrated in Fig.  3, this approach 
involved generating additional negative data by identify-
ing reagents and solvents that were not present in actual 
reaction data but were predicted by the candidate gen-
eration model to have a probability exceeding 0.1. These 
instances, referred to as “hard negative labels,” repre-
sented irrelevant reagent or solvent candidates that the 
model might mistakenly consider as suitable.

To enrich the training process, both positive labels 
and hard negative labels were combined and subjected 
to combinatorial enumeration, resulting in a wide 
range of both suitable and unsuitable combinations 
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of reaction conditions as illustrated in Fig.  4. Com-
binations with hard negative labels were assigned a 
relevance score of 0. This approach, known as hard 
negative sampling [59, 60], enhanced the training of 

the ranking model by exposing it to a more diverse 
set of reaction contexts. This, in turn, improved the 
model’s ability to differentiate between suitable and 

Fig. 3 An illustration of negative sampling. The numbers in the blue and red squares represent the predicted probabilities assigned to each 
solvent and reagent label, respectively. Chemicals recorded in the reaction conditions in Reaxys are marked as positive labels (shown in orange). On 
the other hand, reagents and solvents not utilized in the actual reaction data but having predicted probabilities surpassing 0.1 are classified as hard 
negative labels (depicted in gray). This indicates that these chemicals are not actually pertinent to the reaction, yet the model might mistakenly 
consider them as feasible solvents or reagents

Fig. 4 An illustration of the ranking of recorded reaction conditions (orange) and sampled hard negative reaction conditions (gray)
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unsuitable reaction conditions, particularly in chal-
lenging cases.

Evaluation metrics
The candidate generation model in this study pre-
dicts potential reagents and solvents using a multi-
label prediction framework, which can result in fully 
correct, partially correct, or fully incorrect predic-
tions. Suppose x ∈ R

d denotes the d-dimensional 
instance space, and Y ∈ 2q denotes the label space 
with q defined labels in the class. Given the test set 
S = {(xi,Yi))|1 ≤ i ≤ Ntest} , to evaluate the perfor-
mance of the multi-label predictions Z ∈ 2q derived 
from the candidate generation model, we adopted the 
hamming loss and the example-based evaluation met-
rics specific to multi-label learning, which are defined 
as [61]

where � stands for the quantity of differences between 
the predicted label and the true label. Hamming loss is 
commonly used to measure differences between pre-
dicted and true labels. However, this metric itself may 
not be adequate for evaluating the candidate generation 
model because many reactions involve only a few sol-
vents and reagents. Even a model that always predicts 
zero probability for all labels can achieve a low hamming 
loss in such cases. To provide a more meaningful evalua-
tion, precision assesses the reliability of positive predic-
tions, while recall evaluates the model’s ability to capture 
positive labels. The F1-score, a balanced metric that 
combines precision and recall, offers a comprehensive 
assessment of the candidate generation model’s perfor-
mance, particularly in scenarios where reactions involve 
a limited number of solvents and reagents. These met-
rics are essential for evaluating the model’s effectiveness 
accurately.

(5)Hamming Loss =
1

Ntest

Ntest
∑

i=1

1

q
|Zi�Yi|

(6)Precision =

1

Ntest

Ntest
∑

i=1

|Yi ∩ Zi|

|Zi|

(7)Recall =
1

Ntest

Ntest
∑

i=1

|Yi ∩ Zi|

|Yi|

(8)

F1-score =
1

Ntest

Ntest
∑

i=1

2|Yi ∩ Zi|

|Yi| + |Zi|
= 2×

Precision× Recall

Precision+ Recall

Results and discussion
Threshold optimization for candidate generation model
In the candidate generation model, labels with pre-
dicted probabilities surpassing a designated threshold 
were considered as potential solvents and reagents for a 
given reaction. The threshold value for this selection was 
determined using the highest F1-scores observed dur-
ing the validation process. Figure  5 illustrates the grad-
ual increase and eventual plateau of the F1-score on the 
validation set as the training epochs progress. Notably, a 
threshold of 0.3 yielded the highest F1-score during the 
last several epochs in validation. As a result, chemicals 
with predicted probabilities exceeding 0.3 were chosen as 
candidate solvents or reagents for the specified reaction 
in this study.

The hamming loss, precision, recall, and F1-score at the 
threshold of 0.3 are shown in Figs. 5C and D. As previ-
ously discussed, because a significant number of reaction 
instances involve only a small subset of the solvents and 
reagents in the list, the candidate generation model can 
achieve low hamming loss by assigning low probabilities 
to all solvent and reagent labels. Therefore, relying solely 
on hamming loss for evaluating the effectiveness of the 
candidate generation model is insufficient.

It is important to note that increasing the threshold 
reduces the number of predicted feasible reagents and 
solvents, resulting in a more limited list of recommended 
reaction conditions. Conversely, decreasing the cutoff 
enhances the recall score by encompassing more labels 
with slightly lower probabilities as positive classifications. 
Nevertheless, setting the cutoff too low extends the list 
of recommended reaction contexts, posing challenges 
for the subsequent ranking model when sorting predic-
tions. Therefore, selecting an appropriate threshold value 
is crucial to ensure that the candidate generation model 
functions effectively as an initial filter for identifying 
potential reagents and solvents.

Performance of the two‑stage model
While the two-stage model can propose multiple reac-
tion conditions for each reaction, our initial assessment 
focused on its ability to accurately predict at least one 
reaction condition for each reaction within the test set. 
Success in this evaluation was defined strictly as achiev-
ing an exact match with the reaction conditions as they 
appear in the dataset, and the results can be found in 
Table  1. This criterion is stringent because there are 
cases where, for instance, a solvent could be replaced 
by another solvent with similar properties. In certain 
instances, publications might suggest possible solvent 
or reagent substitutions for a reaction. However, the 
database typically documents only a single condition, 
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often the one yielding the highest yield. As a result, 
assessing the validity of proposed conditions that par-
tially match the recorded ones becomes challenging 
due to the lack of comprehensive data. Therefore, our 
evaluation exclusively considered exact matches. None-
theless, the model successfully predicted reagent and 
solvent combinations in its top-1 recommendation for 
over half of the cases as listed in Table 1. Furthermore, 
if we expand our assessment to the top-10 recom-
mended reaction contexts, the success rate of identi-
fying at least one reaction condition for each reaction 
increases to about 73%, which highlights the capacity of 
the model to provide potentially relevant conditions for 
guiding experimentalists in chemical research.

The performance of the model in predicting multiple 
reaction conditions for a given reaction is summarized in 
Table  2. For this assessment, we categorized the testing 
reactions into subsets based on the available number of 
condition records. As listed in Table 2, given the top-20 
recommendations by the model, the success rate for pre-
dicting a single condition ranges from 67% to 90% across 
subsets. However, the model accuracy decreases when 

Fig. 5 Validation evaluation metrics for solvent (blue) and reagent (red) multi‑label classification. Panels A and B depict the evolution of F1‑scores 
across epochs using various cutoffs. A cutoff value of 0.3 yields the highest F1‑score in the concluding epochs, leading to the adoption 
of this threshold for categorizing labels as positive or negative in the candidate generation model. Panels C and D showcase hamming loss 
and example‑based precision, recall, and f1‑score, all calculated using a 0.3 cutoff

Table 1 Top‑k accuracy for identifying at least one ground truth 
reaction condition

Top‑1 (%) Top‑3 (%) Top‑10 (%) Top‑20 (%)

Exact matches 53.27 68.82 73.42 74.08

Table 2 Top‑20 accuracy in predicting multiple condition 
records for testing reactions

1 The number in the parentheses represents the number of testing reactions

No. of records No. of hit records

1 2 3 4 5

1 (6067)1 70.74% – – – –

2 (1097)1 89.88% 11.94% – – –

3 (134)1 80.60% 41.04% 4.48% – –

4 (73)1 90.41% 60.27% 21.92% 4.11% –

5 (28)1 67.86% 53.57% 39.29% 21.43% 0%
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predicting second, third, and subsequent conditions, 
making it challenging to predict all conditions correctly. 
It is important to note that the dataset utilized in this 
work comprises a relatively modest proportion of reac-
tions featuring multiple sets of conditions (8.8%). There-
fore, a more diverse and comprehensive dataset could 
potentially enhance the model performance. Addition-
ally, we observed instances where the contexts predicted 
by the model partially align with the recorded reaction 
conditions, introducing the possibility of valid substitu-
tions. Nevertheless, as discussed above, our evaluation 
methodology defines a correct prediction with a strict 
criterion of an exact match to the reaction conditions in 
the data. This lack of partial match consideration con-
tributes to diminished success rates, particularly as the 
number of condition records associated with a reaction 
increases. Further discussions on this point can be found 
in a subsection below.

The performance of the model in predicting tempera-
tures for reactions was evaluated using mean absolute 
error (MAE). The MAE for temperature prediction on 
the test set was 8.7◦C . Predictions within ±10◦C and 
±20◦C of the true values account for 71.1% and 88.6% 
of the test dataset, respectively. The mean (44.6◦C ) and 
median (20.0◦C ) of temperature distributions were used 
as baselines to assess prediction accuracy. Due to the 
wide range of reaction temperatures in the dataset (as 
shown in Additional file  1: Fig. S2), using the mean for 
prediction results in a MAE of 38.4◦C , while using the 
median results in a MAE of 34.4◦C . Therefore, relying 
solely on the average or median of the whole reaction 

dataset is not effective for synthesis planning. Conversely, 
the model temperature predictions offer chemists a rea-
sonable estimate for reference.

Assessment of recommended reaction conditions
Figure  6 depicts two reaction examples from the test-
ing set. The first example is an aza-Diels-Alder reaction 
(Fig.  6A), and the recorded and model-predicted reac-
tion conditions are detailed in Tables  3 and 4, respec-
tively. Table  4 shows that the recorded conditions were 
accurately predicted and ranked as the top recommenda-
tion. Interestingly, the second-ranked suggestion, involv-
ing Y(OTf)3 as a reagent and acetonitrile as a solvent, 
resulted in a similar yield (87%) as the top-ranked condi-
tion in a study by Bhargava et al [62]. They also explored 
various Lewis acid catalysts with slightly lower yields 
(79–92%), such as zinc(II) chloride, indium(III) chloride, 
and scandium triflate. However, these alternative condi-
tions were not included in the dataset because the Reaxys 
database typically retains only the highest yield condition 

Fig. 6 Reaction examples derived from the testing dataset: A aza‑Diels‑Alder reaction and B Friedel‑Crafts alkylation

Table 3 Recorded reaction conditions for the aza‑Diels‑Alder 
reaction illustrated in Fig. 6A

Yield (%) Reagent(s) Solvent(s) Temperature 
( ◦C)

Source

97 Magnesium 
bromide

Dichlorometh‑
ane

20.0 Ref. [62]
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from the literature, making it challenging to evaluate 
alternative conditions without reviewing the original 
publications individually.

In the second example reaction, a Friedel-Crafts alkyla-
tion (Fig.  6B), the model successfully predicted the two 
different reaction conditions in the dataset, as listed in 
Tables 5 and 6. Pin et  al. [63] reported that the catalyst 
bismuth(III) trifluoromethanesulfonate was found to be 
effective and worked well in various solvents, including 

chloroform, tetrahydrofuran, nitromethane, and dichlo-
romethane, with varying product yields. However, the 
dataset derived from Reaxys only had information on 
acetonitrile as the solvent, which limited the performance 
of the recommendation system. Nevertheless, the model 
accurately predicted dichloromethane as a viable alterna-
tive solvent, demonstrating its ability to provide valuable 
guidance to researchers beyond the dataset’s scope.

The two examples previously discussed highlight issues 
related to the format of documentation and the selec-
tion bias in choosing reaction conditions. Mercado et al. 
have emphasized the need to document detailed reaction 
information, such as the sequence of additives, concen-
trations of reactants, and reaction durations [64]. Moreo-
ver, it is important to note that yield information can be 
represented in various forms, including isolated yield, 
crude yield, conversion rates, and even as percentages of 
liquid chromatography area [52]. During data collection, 
it is essential that these yield metrics, along with detailed 
procedural information, are meticulously documented. 
In a notable development, the Open Reaction Database 

Table 4 Predicted reaction conditions for the aza‑Diels‑Alder reaction illustrated in Fig. 6A

Rank Reagent(s) Solvent(s) Temperature 
( ◦C)

1(�) Magnesium bromide Dichloromethane 19.3

2 Yttrium(III) trifluoromethanesulfonate Acetonitrile 21.9

3 Magnesium bromide Acetonitrile; dichloromethane 18.5

4 Yttrium(III) trifluoromethanesulfonate Dichloromethane 20.3

5 Magnesium bromide Dichloromethane 21.0

6 Magnesium bromide Acetonitrile 19.2

7 Magnesium bromide; yttrium(III) trifluoromethanesulfonate Acetonitrile 22.3

8 Yttrium(III) trifluoromethanesulfonate Acetonitrile; dichloromethane 20.4

9 Magnesium bromide; yttrium(III) trifluoromethanesulfonate Acetonitrile; dichloromethane 21.0

Table 5 Recorded reaction conditions for the Friedel‑Crafts 
alkylation illustrated in Fig. 6B

Yield (%) Reagent(s) Solvent(s) Temperature 
( ◦C)

Source

99 Bismuth(III) 
trifluorometh‑
anesulfonate

Acetonitrile 20.0 Ref. [63]

95 Silver trifluo‑
romethanesul‑
fonate

Acetonitrile 20.0 Ref. [66]

Table 6 Predicted reaction conditions for the Friedel‑Crafts alkylation illustrated in Fig. 6B

Rank Reagent(s) Solvent(s) Temperature 
( ◦C)

1(�) Silver trifluoromethanesulfonate Acetonitrile 16.6

2 Trimethylsilyl trifluoromethanesulfonate Dichloromethane 14.3

3 Silver trifluoromethanesulfonate Dichloromethane 11.2

4 Trimethylsilyl trifluoromethanesulfonate Acetonitrile 15.9

5(�) Bismuth(III) trifluoromethanesulfonate Acetonitrile 19.4

6 Bismuth(III) trifluoromethanesulfonate Dichloromethane 19.4

7 Trimethylsilyl trifluoromethanesulfonate Acetonitrile; dichloromethane 13.6

8 Silver trifluoromethanesulfonate Acetonitrile; dichloromethane 11.9

9 Bismuth(III) trifluoromethanesulfonate; trimethylsilyl 
trifluoromethanesulfonate

Dichloromethane 17.0

10 Bismuth(III) trifluoromethanesulfonate; silver trifluo‑
romethanesulfonate

Dichloromethane 14.2
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[65] has emerged as a leading data-sharing initiative, 
offering a repository of standardized chemical reactions. 
This open-source platform incorporates a review pro-
cess that ensures the accuracy and integrity of its data 
sources. Such initiatives are important in overcoming 
obstacles in acquiring high-quality data to develop effec-
tive downstream machine learning models.

Unsupervised learning reaction classification from reaction 
condition prediction
Despite neural networks often being considered as 
black-box models, efforts have been made to enhance 
their interpretability [67, 68]. In this study, the focus was 
on the shared layer, reagent task layer, and solvent task 
layer of the candidate generation model (Fig.  2A). Test-
ing data was passed through these layers, and the result-
ing embedding vectors were analyzed using t-SNE [69] 
for dimensionality reduction. As shown in Fig.  7, dis-
tinctive clustering patterns were observed in the shared 
layer embeddings, indicating the ability of the model to 
capture structural changes between reactants and prod-
ucts across different chemical reactions. In the reagent 
task layer, similar clustering patterns emerged, highlight-
ing differences in reagents and catalysts used in different 
reaction types. However, the solvent layer embeddings 

showed partial overlap among some reactions. For exam-
ple, reactions like Kumada coupling, Negishi coupling, 
and Grignard reaction were mixed together due to their 
common use of polar solvents such as diethyl ether and 
tetrahydrofuran [70–72]. Overall, the model’s predictions 
showed more overlapping tendencies in solvent selection 
compared to the reagent selection, which is consistent 
with established chemical intuition.

Conclusions
This work introduces a novel approach to recommend 
reaction contexts, addressing the challenges of predicting 
appropriate reagents, solvents, and reaction temperatures 
for chemical reactions. The methodology involves a com-
bination of a multi-label classification model and a rank-
ing model to predict reaction conditions. To tackle the 
scarcity of unfavorable reaction contexts in the database, 
a concept of generating fictitious reaction conditions 
from the outcomes of the trained multi-label classifica-
tion model was introduced. This augmentation strategy 
aids in refining the training process of the ranking model.

The proposed two-stage model was trained across 
ten reaction types, yielding an impressive 73% accu-
racy in exact top-10 matches for at least one condition 
set documented for each reaction in the test dataset. 

Fig. 7 Embeddings of the testing data processed by the candidate generation model, extracted from A the shared layer, B the reagent task layer, 
and C the solvent task layer. Data points are color‑coded based on their respective reaction types
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Additionally, the evaluation of the model demonstrates 
its ability to predict multiple suitable reaction condi-
tions, with accuracy rates varying based on the number 
of condition records associated with each reaction. The 
success in suggesting alternative reaction conditions 
beyond the scope of the dataset highlights its potential 
to inspire innovative approaches in chemical research. 
Furthermore, the exploration of unsupervised learning 
using t-SNE embeddings provides valuable insights into 
the ability of the model to capture underlying chemical 
patterns. Clustering patterns observed among the shared, 
reagent, and solvent task layers demonstrate the capabil-
ity of the model to differentiate between diverse chemical 
reactions and identify reagents and solvents specific to 
different reaction types.

We believe that this model can integrate with CASP. 
This model can adeptly suggest and prioritize diverse 
reaction conditions based on user-defined relevance 
scores. This functionality holds the potential to signifi-
cantly enhance synthesis planning by uncovering more 
valuable and efficient retrosynthetic pathways, thereby 
advancing the field of chemical synthesis.
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