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Abstract 

The drug discovery of G protein‑coupled receptors (GPCRs) superfamily using computational models is often lim‑
ited by the availability of protein three‑dimensional (3D) structures and chemicals with experimentally measured 
bioactivities. Orphan GPCRs without known ligands further complicate the process. To enable drug discovery 
for human orphan GPCRs, multitask models were proposed for predicting half maximal effective concentrations  (EC50) 
of the pairs of chemicals and GPCRs. Protein multiple sequence alignment features, and physicochemical properties 
and fingerprints of chemicals were utilized to encode the protein and chemical information, respectively. The protein 
features enabled the transfer of data‑rich GPCRs to orphan receptors and the transferability based on the similarity 
of protein features. The final model was trained using both agonist and antagonist data from 200 GPCRs and showed 
an excellent mean squared error (MSE) of 0.24 in the validation dataset. An independent test using the orphan dataset 
consisting of 16 receptors associated with less than 8 bioactivities showed a reasonably good MSE of 1.51 that can 
be further improved to 0.53 by considering the transferability based on protein features. The informative features 
were identified and mapped to corresponding 3D structures to gain insights into the mechanism of GPCR‑ligand 
interactions across the GPCR family. The proposed method provides a novel perspective on learning ligand bioactiv‑
ity within the diverse human GPCR superfamily and can potentially accelerate the discovery of therapeutic agents 
for orphan GPCRs.

Keywords Multitask learning, G protein‑coupled receptors, GPCR, Feature selection, Ligand‑based virtual screening

Introduction
In eukaryotes, the G protein-coupled receptors (GPCRs) 
superfamily is one of the largest and most diverse families 
of transmembrane receptor proteins. The heterotrimeric 
G proteins composed of Gα, Gβ, and Gγ subunits inter-
act with the C-terminus of GPCRs to stimulate many 
signaling functions [1]. When GPCRs are activated, Gα 
dissociates from Gβ and Gγ, allowing the two subunits to 
exert their respective downstream signaling roles. While 
GPCRs have been recognized as the cellular membrane 

receptors for multiple ligands such as biological amines, 
amino acids, ions, lipids, peptides/proteins, light, odor-
ants, pheromones, nucleotides, and opiates, the precise 
roles and pathways of GPCRs as receptors for animal 
steroid hormones, including those of insects, remain 
incompletely determined [2]. The human genome has 
identified more than 800 GPCRs, which can produce var-
ious biological responses through specific ligand inter-
actions [3]. The human GPCRs are divided into classes 
based on sequence homology and functional similar-
ity using the GRAFS system acronym (Glutamate, Rho-
dopsin, Adhesion, Frizzled/Taste2, Secretin); that is for 
class A (Rhodopsin receptors), class B (in that two sub-
families: secretin receptors (B1) and adhesion receptors 
(B2)), class C (metabotropic Glutamate receptors), class 
F (Frizzled/smoothened receptors), and class T (taste 
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2 receptors) [4, 5]. Despite the lack of sequence homol-
ogy between classes and the high variability in length of 
GPCRs, all GPCRs share a typical barrel-shaped architec-
ture with seven transmembrane α-helices, which consist 
of three intracellular loops and three extracellular loops, 
and the C-terminus intracellular for the interaction of 
downstream effectors. This barrel-shaped structure 
forms a cavity in the plasma membrane, and functions 
as the ligand-binding region of the receptor, and large 
ligands, such as proteins and peptides, may also bind to 
extracellular loops [6, 7].

Among currently available drugs, GPCRs are impor-
tant drug targets, accounting for approximately 35% of 
all drugs approved by the Food and Drug Administra-
tion (FDA) against this membrane protein family [7]. In 
particular, it was estimated that about half of the current 
market drug targets are GPCRs, mainly because of their 
involvement in signaling pathways related to many dis-
eases, such as psychiatry, metabolism (including endo-
crine diseases), immunology (including viral infection), 
cardiovascular, inflammation, sensory disturbances, and 
cancer. There are more than 200 human GPCRs identified 
with their physiological ligands. Still, about 120 GPCRs 
have not yet been identified as endogenous ligands. 
These so-called orphan GPCRs represent an unexplored 
area of GPCR drug discovery [8]. In new drug develop-
ment, compound-protein interaction is the main method 
used. Recent deep-learning non-homology-based struc-
tural prediction tools were utilized in many cases with 
promising results, such as AlphaFold2 and RoseTTAFold 
[9–11]. However, the average root-mean-square devia-
tion of atomic positions (RMSD) of the predicted target 
GPCR protein structures from the neural network-based 
methods against known structures were significantly dif-
ferent, with RMSD greater than 5 angstroms for both 
predictors [10]. While traditional protein–ligand docking 
algorithms provide powerful tools for identifying ligands, 
they were even hampered without the known structure of 
the less than 50% protein sequence similarity for orphan 
GPCR proteins. Consequently, traditional compound-
protein interaction methods are unsuitable for drug dis-
covery of orphan G proteins.

Machine learning models for GPCR have been devel-
oped rapidly in three streams. One direction was to dis-
criminate between agonists and antagonists for GPCRs 
[12]; however, some ligands were found to play partial 
agonist and partial antagonist roles, which do not induce 
a 100% full activation state [13]. Consequentially, another 
direction was regression models of GPCR-ligand pair 
activity by using ligand-based and structural docking-
based machine learning algorithms [14–16], and the 
stereo-based training methods using reported protein 
data bank (PDB) structures and molecular structures, 

such as pdCSM-GPCR [17], and neural network models 
using voxelization of GPCR and ligand structures [15]. 
The third direction was the protein–protein interac-
tion models of higher-order GPCR molecular complexes 
with the other GPCR protein pairs [18, 19]. The develop-
ment of orphan GPCR-targeted drugs is challenging due 
to the complex and diverse nature of the GPCR family. 
Because of the absence of protein–ligand activities for 
the orphan GPCRs, they were limited using structure-
based approaches [15, 20]. Considering some conserved 
motifs observed from previous GPCR-ligand interaction 
studies [21], it is therefore interesting to identify interac-
tion patterns from existing data and transfer the knowl-
edge of these patterns for ligand recognition of orphan 
GPCRs. This study presents a novel method for develop-
ing multitask models to predict GPCR-ligand activities 
of orphan receptors using features of protein sequence, 
physicochemical properties, and chemical fingerprints. 
The proposed method utilizing multitask learning to 
extract common ligand recognition patterns from known 
ligand-target pairs showed promising performance for 
predicting half maximal effective concentration  (EC50) 
of ligands for validation and test orphan datasets with 
MSE of 0.24 and 1.51, respectively. By integrating protein 
and chemical features, the developed prediction model 
offers a novel approach to decrypt the hidden messages 
of pair bioactivities between ligand and orphan GPCRs. 
In addition to prediction models, the protein features 
were analyzed, and the N-terminal region showed out-
standing significance, providing insights into the mecha-
nism of GPCR-ligand recognition beyond the structural 
knowledge. The identified residues and chemical proper-
ties provided a deeper understanding of the mechanisms 
underlying GPCR-ligand interactions for discovering 
therapeutics targeting GPCRs (Fig. 1).

Methods/experimental
Programs were developed in the Ubuntu 20.04.3 operat-
ing system using Python programming language version 
3.7.11. The study used several Python packages, including 
numpy, pandas, matplotlib, beautifulsoup4, scikit-learn, 
bitarray, rdkit-pypi, torch, and AutoGluon v0.5.2. These 
packages were used for various tasks of data manipula-
tion, visualization, machine learning, web scraping, and 
deep learning, respectively.

Datasets
GPCRdb database [22] includes bioactivity information 
from ChEMBL [23] on multiple-species GPCRs and their 
paired ligands. As of 2021, it contains 471,355 GPCR-
ligand pair bioactivities (Access date: 2021.11), which 
includes 369,843 human GPCR-ligand pair bioactivi-
ties. In this study, we consider only human GPCR-ligand 
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interactions. By excluding the records without infor-
mation on agonist, antagonist, and  EC50, the remain-
ing 126,357 records of 66,165 GPCR-agonist and 60,192 
GPCR-antagonist pair bioactivities of  EC50 values in 
nanomolar were utilized in this study. The dataset com-
prised 216 unique human GPCR receptors and 49,022 
unique chemical ligands. Among the 216 GPCRs, 181 
GPCRs are associated with agonist data, and 177 GPCRs 
are associated with antagonist data. In order to simu-
late the prediction on orphan GPCRs, 16 GPCR recep-
tors containing less than 8 bioactivities were employed as 
orphan GPCR datasets for further testing of the models. 
The remaining 200 GPCRs were utilized for model train-
ing and validation. For each GPCR and agonist/antago-
nist activity, the corresponding  EC50 records were split 
into a training set and a validation set with a ratio of 0.8 
and 0.2. The training sets and validation sets were then 
merged into a final training dataset and validation data-
set, respectively, for the multitask model development.

Feature encoding
For the multitask learning, each GPCR-ligand pair data 
was encoded as a 5023-dimensional feature vector con-
sisting of GPCR protein sequence alignment, physico-
chemical properties, and fingerprints of paired ligands. 
The GPCR protein sequences were obtained from the 
Universal Protein Resource (UniProt) [24] and aligned 
using MUSCLE 3.8.31 [25]. The gap positions in the 
alignment sequence were padded with dashes, and 
the multiple sequence alignment results were further 
encoded according to amino acid properties. That is 0 
for padding; 1 for amino acid with special side chains, 

C, G, P, and A; 2 for amino acid with hydrophobic side 
chains, V, I, L, M, F, Y, and W; 3 for amino acid with polar 
uncharged side chains, S, T, N, and Q; and 4 for amino 
acid with electrically charged side chains, D, E, R, H, and 
K. A 2,554-dimensional vector was obtained for each 
GPCR protein. The simplified molecular input line entry 
specification (SMILES) [26] representing ligand struc-
tures were obtained from GPCRdb and encoded using 
PaDEL-descriptor to calculate 1,444 features of physico-
chemical features [27] and using RDkit to calculate 1,024 
binary representations of extended-connectivity fin-
gerprints with a maximum diameter of 6 atoms (ECFP) 
[28, 29] and one binary feature indicating an agonist and 
antagonist interaction. The logarithm of the correspond-
ing  EC50 activities was used as a label for the models’ 
development.

Multitask model development
For comparison, the single-task learning models for 
GPCRs and the multitask learning models were imple-
mented. The single-task learning models for agonist 
activity of individual GPCRs (STL-AG) and single-task 
learning models for antagonist activity of individual 
GPCRs (STL-ATG) were developed and validated using 
the corresponding training and validation sets. For the 
multitask learning model, the training and validation 
sets were merged and utilized to develop the multitask 
models for agonist activity (MTL-AG), antagonist activ-
ity (MTL-ATG), and a merged of agonist and antagonist 
activity (MTL-AG-ATG).

Five algorithms were utilized to develop prediction 
models, which include neural networks, LightGBM 

Fig. 1 Flowchart of the stacked ensemble multitask learning models for the GPCR bioactivities. The human GPCR‑ligand pair activities database 
was extracted from GPCRdb. The models were generated from the individual or integrated receptors training datasets. The validation datasets 
and test orphan datasets validated the models independently
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boosted trees [30], CatBoost boosted trees [31], random 
forests [32], and extremely randomized trees [33]. To 
improve the training performance, the models trained 
based on these algorithms were further ensembled and 
stacked [34] using the AutoGluon-Tabular framework 
[35], with a maximum 7-h training time. The mean 
squared error (MSE) was utilized as the objective func-
tion for model training. The MSE is calculated as the fol-
lowing Eq. 1,

where Yi and yi are the experimental and predicted values 
of the instance. The i and n are the number of instances.

For performance evaluation, MSE and Pearson’s corre-
lation coefficient (CC) were utilized. The equation of CC 
was given in the following Eq. 2,

where Y  is the mean of the experimental values of the 
variable being predicted, and y is the mean of the pre-
dicted values. The i is the number of instances.

Feature selection
To identify the most relevant features for predicting 
GPCR-ligand pair activities, the minimum redundancy-
maximum relevance (mRMR) feature selection algorithm 
[36] was utilized to identify top-ranked m features from 
datasets. The model training datasets were refined by 
selecting the most relevant protein and chemical prop-
erty features in combination with the 1024 bits of ECFP 
and one binary agonist and antagonist. The datasets 
with selected features were divided into training and 
validation datasets with a ratio of 8:2. The training time 
was restricted by implementing a linear increase in the 
number of features, which was multiplied by 5 s, with a 
maximum limit of 7 h. The optimization model for fea-
ture selection was selected with less than a 5% significant 
improvement in the validation performance of MSE.

Protein sequence similarity
The pairwise protein sequence similarities were calcu-
lated using the Tanimoto similarity. The Tanimoto simi-
larity used the ratio of the number of intersecting sets to 
the number of union sets as the similarity measurements, 
excluding the intersecting missing sequence positions for 
the numerator (Eq.  3). X and Y are the aligned protein 
sequence features.

(1)MSE =

∑n
i=1 (Yi − yi)

2

n

(2)CC =

∑
(

Yi − Y
)(

yi − y
)

√

∑
(

Yi − Y
)2

·
∑

(

yi − y
)2

Statistical analysis
The statistical differences between the models were ana-
lyzed with the Mann–Whitney U test by Prism (Graph-
Pad Software Inc., USA). A p-value < 0.05 was recognized 
as statistical significance.

Results and discussion
Model development
To develop prediction models for orphan GPCRs, a large 
dataset of 66,165 agonist and 60,192 antagonist activities 
 (EC50) for 216 GPCRs was extracted from GPCRdb. The 
development of prediction models considered only 200 
GPCRs with more than or equal to 8 activities. The other 
16 GPCRs were utilized as orphan GPCR datasets to sim-
ulate the performance of discovering ligands for orphan 
GPCRs. Each sample was encoded as a high-dimensional 
feature vector consisting of multiple sequence alignments 
of GPCR, and physicochemical properties and finger-
prints of the corresponding chemical. Datasets were ran-
domly split into training and validation datasets in a ratio 
of 8:2, respectively.

The multitask and single-task learning models were 
developed using five algorithms and their ensembles 
based on the AutoGluon-Tabular framework. Compari-
son of validation performances for the multitask and 
single-task models were shown in Fig.  2. The multitask 
model for agonists (MTL-AG) outperformed corre-
sponding single-task models (STL-AG) with a 3.3-fold 
improvement on MSE, for which there were fewer data 
located beyond 1.5 of MSE (Fig. 2). Similarly, the multi-
task model for antagonists (MTL-ATG) exhibited supe-
rior performance over corresponding single-task models 
(STL-ATG) with a 1.85-fold improvement on MSE. Both 
the MTL-AG and MTL-ATG significantly improved 
performance in comparison to the single-task models 
of STL-AG and STL-ATG (p < 0.05), respectively. The 
MSE and CC values are 0.29 and 0.80 for MTL-AG, and 
0.27 and 0.83 for MTL-ATG, respectively. The multitask 
model based on all agonist and antagonist data for 200 
GPCRs (MTL-AG-ATG) presented an MSE of 0.24 and 
a CC of 0.85, of which the merged agonist and antagonist 
model presented a better performance than MTL-AG or 
MTL-ATG. The merged multitask model of MTL-AG-
ATG not only improved performance by 10–20% of MSE 
but also spontaneously integrated receptors and merged 
ligand types provided a versatile and innovative approach 
to investigating the mechanisms of agonistic and antago-
nistic ligand interactions. Please refer to Additional file 1: 
Table S1 for detailed performance measurements.

(3)Tanimoto similarity(X ,Y ) =

(

X
⋂

Y
)

(

X + Y − X
⋂

Y
)
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To explore the possibilities of enhancing the multi-
task model, the chemical features were replaced by a 
300-dimensional vector generated from a pre-trained 
model of Mol2vec [37]. The resulting models of MTL-
AG-ATG-M2V showed an average MSE of 0.27 and an 
average CC of 0.85, representing an 11% performance 
decrease in MSE when compared to the MTL-AG-ATG 
model (Additional file  1: Table  S1). The same perfor-
mance decrease was obtained for MTL-AG-ATG-M2V-
FS using Mol2vec.

Protein feature truncation and permutation test
To reveal the mechanisms underlying agonistic and 
antagonistic ligand interactions in the multitask models 
of the integrated receptors with a merged agonist and 
antagonist (MTL-AG-ATG), 49 individual GPCR data-
sets with their validation performance of CC (correlation 
coefficient) greater than 0.95 against the MTL-AG-ATG 
model were selected for the tests. Considering the nature 
of the seven transmembrane helixes of GPCR, the full-
length protein sequences of these datasets were divided 
equally into seven parts. Each part of the protein-coding 
was replaced with 0 for the truncation test datasets. The 

individual truncated datasets were tested against the 
multitask MTL-AG-ATG model. The test results showed 
that the higher error represented a higher impact of the 
protein sequence on the protein–ligand pair bioactivi-
ties. In other words, some of the protein sequences were 
must-have features. According to the test result, the mid-
dle parts of the GPCR protein were having a high impact 
on the truncation test, especially the 3rd part truncation 
test showed a significantly high error (Fig. 3A).

To further investigate the contribution of the protein 
parts to the  EC50 prediction, seven permuted datasets 
obtained by applying randomized encoding for each of 
the seven parts of the protein sequence were utilized for 
the following permutation test. The permuted part with 
the largest performance decrement possesses the highest 
information of the protein–ligand pair’s bioactivities. The 
permutation of 1st and 3rd parts of the protein features 
gave the highest perturbation of the MSE performance, 
where the MSE values were 0.9 and 0.7, respectively. 
Compared to the original MSE value of 0.19 for the 
selected 49 datasets, the MSE errors were perturbed by 
4.5 and 3.5 folds, respectively. It suggested that the 1st 
and 3rd parts of the protein sequence features were more 

Fig. 2 The box plotting of validation performance for the single task models and multitask models. STL‑AG and STL‑ATG presented 
the performances of single‑task models trained using the individual receptor with agonist or antagonist datasets; MTL‑AG and MTL‑ATG 
for the performances of the multitask models trained using integrated receptors with agonist or antagonist datasets, the MTL‑AG + MTL‑ATG 
represented to the merged validation results of both models, and the MTL‑AG‑ATG for the integrated receptors with a merged of agonist 
and antagonist model using agonist datasets or antagonist datasets validation. The y‑axis is the validation performance of the mean MSE for each 
GPCR
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sensitive than the other parts, i.e., the 2nd, 4th, and 5th 
parts. The results of the protein feature permutation test 
indicated that the N-terminal part of the protein has a 
greater impact on the model’s performance compared to 
the other parts (Fig. 3B).

The truncation test indicated the ‘must have’ region of 
the protein–ligand interaction, which was observed with 
much GPCR-ligand structural biology evidence [38–41]. 
However, beyond structural information, the function 
of N-terminal GPCR remains unsettled with its ligand 
bioactivities. Consequently, the permutation test results 
highlighted the importance of N-terminal regions in 
GPCR proteins and introduced the possibility of optimiz-
ing the multitask model using a feature selection algo-
rithm, in which some parts of GPCR protein sequences 
could be more important for predicting  EC50 of paired 
ligands.

Feature selection for the multitask model
The minimum redundancy and maximum relevance 
(mRMR) algorithm was applied to select important 
features and optimize the model of MTL-AG-ATG. 
The multitask model with the top-ranked 200 features 
(MTL-AG-ATG-FS) was selected where the inclusion 
of additional features gave no significant improve-
ment on the MSE performance (Fig.  4A; please refer 
to Additional file  1: Table  S2). Please note that ECFP 
features do not undergo the feature selection process, 
the number of features in Fig. 4A represents the sum-
mation of 1,024 ECFP features and mRMR-selected 
features. A total of 1,224 features consisting of 162 pro-
tein alignment features, 38 physicochemical features, 
and 1,024 ECFP features were utilized for the following 

analysis (Additional file 1: Table S3). The feature selec-
tion approach was beneficial in terms of enhancement 
of model performance and reduction of the model 
training time (Additional file  1: Table  S2). The MTL-
AG-ATG-FS model integrated receptors and merged 
agonistic and antagonistic ligands showed an average 
MSE of 0.24, and an average CC of 0.85 with a quarter 
of the training time of 102 min than the all-feature mul-
titask model of 420  min (MTL-AG-ATG) (Additional 
file 1: Table S1).

The majority of the selected protein features were 
located in the N-terminal region of the protein 
sequence (Fig. 4B). It is noteworthy that the results are 
consistent with previous studies that the N-terminus of 
the GPCR protein has been widely acknowledged for its 
importance in receptor translation and trafficking [42]. 
Moreover, it also aligns with the findings from the pro-
tein feature permutation test.

Since a protein target dissimilar to the training data-
set may have different properties, it is important to 
investigate the relationship between the similarity 
of protein features and model performance. First, a 
pairwise similarity matrix for the GPCR protein fea-
tures was calculated using Tanimoto similarity (Eq. 3) 
based on the top-ranked 200 features. Subsequently, 
the maximum Tanimoto similarity (Ts) was calculated 
for each of the GPCRs. The Ts and the corresponding 
performance were shown in Fig. 4C. A lower MSE was 
observed for highly similar protein features in the 1st 
part, 2nd part, and the full length of aligned protein 
sequences. When applying the model to orphan recep-
tors with dissimilar protein features, the Ts similar-
ity may provide an important clue to the reliability of 
prediction.

Fig. 3 Truncation and permutation test for determining the informative protein alignment features. A Boxplot of the protein feature truncation test 
for the MTL‑AG‑ATG model. B Boxplot of the protein feature permutation test for the MTL‑AG‑ATG model
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Application domain using protein sequence similarity
Although the GPCRs belong to the same superfamily and 
share similar structural scaffolds, the similarities among 
protein sequences can be highly divergent. Since the 
transferability of the developed multitask model is largely 
based on protein sequence alignment, the investigation 
of the applicability domain of the model is therefore of 
interest. To provide better insights into the transfer-
ability of shared knowledge to orphan receptors, for each 
GPCR, its maximum Tanimoto similarity (Ts) to the 
other GPCRs was first determined using the top-ranked 
200 features. By excluding the GPCRs with a Ts less than 
or equal to a specific threshold, the performances of the 
models on the orphan datasets were less divergent, and 
better overall performance were obtained (Figure S1). 
The feature-selected model (MTL-AG-ATG-FS) achieved 
a better MSE performance of 1.5 compared to the all-
feature model (MTL-AG-ATG), which yielded an MSE of 
1.7, for the orphan datasets (Additional file 1: Table S1). 
When a similarity threshold of 5% was applied to the 
independent test dataset, the performances to the inde-
pendent test datasets of both models remained 1.5 and 
1.7 for the MTL-AG-ATG-FS model and MTL-AG-ATG 
model, respectively (Fig. 5). Moreover, when the feature-
selected model was subjected to a stricter similarity 

threshold of 9%, it demonstrated improved performance 
with an MSE of 0.5, whereas the all-feature model yielded 
an MSE of 0.6.

During the review process of the manuscript, two 
agonistic ligands of 7-fluorotryptamine and tryptamine 
were reported for the orphan GPRC5A [43]. With a 
Ts of 6.2%, a good MSE of 1.46 was obtained using the 
MTL-AG-ATG-FS model. Detailed prediction is listed in 
Additional file 1: Table S5. For the promising agonist of 
7-fluorotryptamine, its predicted  EC50 is 2.4  μM, which 
is close to the experimental value of 7.2  μM [43]. This 
provides a successful example for predicting ligands of an 
orphan receptor.

Interpretation of the top‑ranked protein features 
at the ligand–protein interaction level
The permutation test (Fig.  3A) and the distribution of 
the top-ranked protein features of the MTL-AG-ATG-
FS model (Fig.  4B) coherently revealed the importance 
of the N-terminal region of the GPCRs. In order to cor-
relate the relationship of protein structures and bioac-
tivities of the GPCR, the 162 selected protein features 
from the feature-selected model (MTL-AG-ATG-FS) 
were highlighted in four selected structures represent-
ing four major classes of the GPCRs (A, B1, C, and F) 

Fig. 4 The mRMR‑based feature selection. A The validation performance for top‑ranked feature selection model sets. B Distribution analysis of 162 
aligned protein features of top‑ranked 200 features from the feature‑selected model (MTL‑AG‑ATG‑FS). C The scatter plot of pairwise Tanimoto 
similarity (Ts) based on selected protein features calculated as individual parts or full‑length sequence plotting against validation performance 
on the MTL‑AG‑ATG‑FS model
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for visualization and interpretation (Additional file  1: 
Table  S4). The structure of the mu-type opioid recep-
tor (OPRM_HUMAN) belonging to class A was adapted 
from PDB 8EF6 [44]; the structure of the secretin recep-
tor (SCTR_HUMAN) belonging to class B1 was adapted 
from PDB 6WZG [45]; the structure of metabotropic glu-
tamate receptor 1 (GRM1_HUMAN) belonging to class 
C was adapted from PDB 7DGD [46]; the structure of the 
human smoothened homolog (SMO_HUMAN) belong-
ing to class F was adapted from PDB 6XBM [47].

The GPCR-ligand interaction patterns were further 
analyzed using the selected 162 protein features from 
the multitask MTL-AG-ATG-FS model and highlighted 
the associated residues on four adapted protein struc-
tures. Knowing that the high diversity of the GPCRs, a 
significant number of protein features can be associated 
with gap regions rather than residues. From the class A 
GPCR structure of the mu-type opioid receptor, 4 out of 
17 associated residues (please refer to Additional file  1: 
Table  S4), i.e. Ile73, Gly133, Arg213, and Glu231, dem-
onstrated direct ligand contact (Fig. 6A). From the class 
B1 GPCR structure of the secretin receptor, 19 residues 
were coherent with the feature-selected residues, and 
7 of them showed approaching to its peptide ligand, 
i.e. Pro119, Asn120, Leu121, Ala122, Phe351, Glu367, 
and Ile368 (Fig.  6B). The class C GPCR structure of 

metabotropic glutamate receptor 1 including a reported 
N-terminal extracellular domain showed that the seven 
transmembrane helices structural scaffolds of the GPCRs 
are analogous to other classes, and the reported struc-
ture additionally highlighted the four selected residues 
from the MTL-AG-ATG-FS situated in the GPCR-GPCR 
interaction interface (Fig.  6C). The highlighted residues 
demonstrated that the region from the N-terminal extra-
cellular domain, in this case, has a higher impact than 
the seven transmembrane helices in its bioactivities. Fur-
thermore, the class F GPCR structure of human smooth-
ened homolog presented 10 residues out of either direct 
contact or contributing to the electrostatic interaction, 
including 7 charging residues, Arg199, Asp201, Asp209, 
Glu211, Glu226, His227, and Tyr487 (Fig. 6D).

The GPCR crystal structures with ligand-bound form 
demonstrated the 162 selected protein features cov-
ered the protein–ligand interaction residues, and the 
protein features selected for class A, class B, and class 
F are predominantly situated on the N-terminal extra-
cellular region and the transmembrane α-helix 1 and 2 
(N-TM1-TM2). The features in the N-terminal extracel-
lular domain may involve a dynamic participant in GPCR 
signaling [42]. The class C GPCR without chemical 
ligand crystal structures but showing dimer conforma-
tion demonstrated that the large N-terminal domain was 

Fig. 5 The independent test results on the orphan datasets of the multitask models with and without the similarity thresholds
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also mediated in higher-order GPCR-GPCR interaction 
for its bioactivities [48, 49]. The highlighted residues of 
four classes were one of the first pieces of evidence that 
the ligand recognition through the N-terminal region 
including the extracellular region of the GPCR using 
the feature-selected multitask model (MTL-AG-ATG-
FS), which uptook the knowledge of cross-class protein 
receptors and learned the knowledge of agonistic and 
antagonistic ligand information. This method demon-
strated a new vision in learning the knowledge of how the 
enzyme-ligand pair activation within the highly diverse 
human GPCR superfamily.

Conclusions
The complexity and diversity of the GPCR family as well 
as the lack of protein–ligand activity for orphan GPCRs 
present a difficulty in the development of orphan GPCR-
targeted medicines. The present work created multitask 
models for predicting the  EC50 values of drug-human 
GPCR pairs with a special focus on addressing orphan 
target issues to enable drug development for orphan 
GPCR. The assessment of several multitask models, 
including agonist and antagonist models for every GPCR 
as well as integrated models leveraging all GPCRs, dem-
onstrated that the three integrated models (MTL-AG, 
MTL-ATG, and MTL-AG-ATG) performed better than 
the single GPCR models. The integration of agonists and 

antagonists (MTL-AG-ATG) further improved model 
performance compared with MTL-AG and MTL-ATG. 
This indicated that the multitask model was able to 
inherit the cross-classes GPCR knowledge through the 
2,554 aligned protein features. The model was further 
improved by applying feature selection algorithms to 
keep only informative features with greater performance 
and less training time (MTL-AG-ATG-FS). The key pro-
tein features were mapped into the 3D GPCR structures 
and provided insights into the mechanism of the GPCR-
ligand interactions.

While the largest database of GPCRdb was utilized in 
this study, it is still possible to leverage large-scale pre-
trained models. Future works could be the use of features 
generated by using pre-trained models, such as GPT [50], 
ProtVec [51], MegaMolBART [52], and the adaptation of 
different multitask feature selection algorithms [53, 54].

This multitask model not only enables the prediction 
of  EC50 for the orphan GPCRs, but also provides a new 
perspective on the combination of proteins and ago-
nistic and antagonistic chemical features to unravel the 
hidden message of the GPCR superfamily. The devel-
oped multitask model enables a more in-depth com-
prehension of the mechanisms behind the GPCR-ligand 
interactions and has potential implications in the study 
of orphan GPCR proteins and the discovery of thera-
peutic substances. In addition, the transferability of the 

Fig. 6 Four GPCR‑ligand structures with highlighted top‑ranked 200 protein features. A Class A GPCR representation protein structure adapted 
from the mu‑type opioid receptor OPRM_HUMAN, PDB 8EF6. The bound‑ligand showed as a space‑fill format in magenta. B Class B1 GPCR 
representation protein structure adapted from the secretin receptor SCTR_HUMAN, PDB 6WZG. The bound‑peptide ligand showed as a space‑fill 
format in dark green. C Class C GPCR representation protein structure adapted from the metabotropic glutamate receptor 1 GRM1_HUMAN, 
PDB 7DGD. D Class F GPCR representation protein structure adapted from the human smoothened homolog, SMO_HUMAN, PDB 6XBM. The 
bound‑ligand showed as a space‑fill format in dark blue. Abbreviations: EC, extracellular; IC, intracellular
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model to orphan receptors was investigated based on 
the similarity of protein features. Overall, the proposed 
method and identified informative residues could 
facilitate the understanding of the GPCR superfamily 
and accelerate the development of novel therapeutic 
substances.

Scientific contribution
This study has made two significant contributions: 
(1) introducing the first model for predicting  EC50 of 
orphan GPCR-ligand pairs and (2) demonstrating the 
transferability of data-rich GPCR patterns for orphan 
GPCR drug discovery. The proposed multitask model 
based on explainable features is expected to be valuable 
for GPCR superfamily drug development.
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