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Abstract 

The drug discovery process is demanding and time-consuming, and machine learning-based research is increasingly 
proposed to enhance efficiency. A significant challenge in this field is predicting whether a drug molecule’s structure 
will interact with a target protein. A recent study attempted to address this challenge by utilizing an encoder that lev-
erages prior knowledge of molecular and protein structures, resulting in notable improvements in the prediction per-
formance of the drug-target interactions task. Nonetheless, the target encoders employed in previous studies exhibit 
computational complexity that increases quadratically with the input length, thereby limiting their practical utility. To 
overcome this challenge, we adopt a hint-based learning strategy to develop a compact and efficient target encoder. 
With the adaptation parameter, our model can blend general knowledge and target-oriented knowledge to build 
features of the protein sequences. This approach yielded considerable performance enhancements and improved 
learning efficiency on three benchmark datasets: BIOSNAP, DAVIS, and Binding DB. Furthermore, our methodology 
boasts the merit of necessitating only a minimal Video RAM (VRAM) allocation, specifically 7.7GB, during the train-
ing phase (16.24% of the previous state-of-the-art model). This ensures the feasibility of training and inference even 
with constrained computational resources.

Keywords Drug-target interactions, Pre-trained language model, Knowledge adaptation, Lightweight framework

Introduction
The process of drug discovery is often compared to find-
ing a needle in a haystack, requiring substantial funds and 
labor forces. Unfortunately, most newly discovered drugs 
fail to obtain approval for clinical use due to unexpected 

adverse drug reactions, insufficient drug effects, and low 
binding affinity [1–5]. Artificial intelligence has emerged 
as a promising tool for reducing expenses in various 
fields of drug discovery, including the predictions of 
drug toxicity, drug-drug interaction, and molecule prop-
erties, among others. In the first step of drug discovery, 
which involves drug repurposing and/or repositioning, it 
is critical to identify candidates of druggable molecules 
that target a specific protein. In this context, drug-target 
interaction (DTI) prediction tasks have emerged as a cru-
cial area of research.

Previous studies on DTI prediction can be broadly 
categorized into three categories: simulation-based 
molecular docking, structural similarity, and deep neu-
ral network (DNN) approach. Molecular docking simu-
lation utilized 3D structures of proteins and molecules 
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and simulated the binding sites [6–8]. While it offers a 
clear visual understanding, obtaining a 3D structure of 
a feature is challenging and it was hard to collect large 
datasets effectively. Conversely, the similarity-based tech-
nique proposed binding candidates using priorly estab-
lished drug-target pairs. While this approach showed 
considerable predictions for recognized pairs based on 
similarity, it confronts difficulties in determining simi-
larity for previously unobserved pairs [9, 10]. DNNs 
have exhibited proficient results in DTI prediction, simi-
lar to their successful implementations in various other 
domains. A pioneering study, DeepDTA [11], employed 
a drug and target encoder built on Convolutional Neural 
Networks (CNN) for the prediction of binding affinities. 
Instead of relying on highly complex datasets, the Deep-
DTA leveraged 1D expressions of the molecular structure 
system, Simplified Molecular Input Line Entry System 
(SMILES), and amino acid sequences, for drug and tar-
get, respectively. With hierarchical CNN layers, simi-
lar to conventional CNNs used for image recognition, 
DeepDTA can interpret the interactions of a given drug-
target pair. After the DeepDTA, a multitude of research 
initiatives have been undertaken to either enhance the 
encoder’s capability or predict interactions more effec-
tively. Such advancements encompass the deployment of 
CNNs [12–14], the development of interactions within 
gated cross attentions [15], the adoption of encoders that 
perceive molecular structures in graph format [16–18], 
computing similarity using enhanced DNN-based ker-
nels [19–21], encode sequence using generative models 
[22, 23], and the integration of multi-modal techniques 
[24–27].

The Transformer architecture [28], renowned for its 
proficiency in sequence processing, has been exten-
sively employed as an encoder [29–37]. Nonetheless, it 
possesses a fundamental limitation: the computational 
expense escalates quadratically with the increase in the 
input length (see more details in Appendix C). Conse-
quently, a majority of research initiatives have leaned 
towards its application as a drug encoder rather than for 
proteins [30–33, 37]. Recent advancements have brought 
forth efficient transformer methodologies, suggesting the 
potential for significantly reducing the computational 
demands in protein-encoding [38–41]. Concurrently, 
the ProtTrans project [35], leveraging the established 
Bidirectional Encoder Representations from Transform-
ers (BERT) [42] model and its training methodology 
has undertaken pre-training of a protein encoder using 
an expansive set of amino acids and subsequently made 
it publicly available. As of now, the academic commu-
nity lacks a publicly accessible, pre-trained model based 
on the efficient transformer, thereby preserving the rel-
evance and utility of ProtTrans. A recent study, that 

utilized both transformer-based encoders for represent-
ing drugs and targets was proposed [43]. The prediction 
performances were considerably improved, however, due 
to the large size of the protein encoder, they truncated 
the protein language model into half its size.

To reach an efficient computing model, knowledge dis-
tillation techniques were proposed [44, 45]. The key con-
cept of knowledge distillation is distilling the knowledge 
from the large and complex model to the small and sim-
ple model with minimum loss of knowledge (See more 
details on Appendix A). However, DistillProtBERT (260 
million parameters) [46], a model employing knowledge 
distillation from ProtBERT (420 million parameters) 
[35], is less efficient due to the inherent complexity of the 
amino acid sequence.

To address this, we proposed a more efficient learning 
method than knowledge distillation, namely hint-based 
knowledge adaptation. This method involves using the 
intermediate features of the teacher model as hints, rep-
resenting an expansion of knowledge distillation inspired 
by FitNet [47]. We term this approach “general knowl-
edge” as it provides a general understanding of the target 
sequence, though lacking direct knowledge of the DTI 
task. It is assumed that this general knowledge, serving as 
a hint to the sequence, will facilitate successful learning 
despite the small size and simplicity of the student model. 
Conversely, the student model, designed to directly learn 
DTI performance, was structured in a simplified form 
compared to the original ProtBERT. In essence, knowl-
edge adaptation presents an efficient means of leveraging 
both general knowledge of the target sequence and task-
specific knowledge related to DTI simultaneously. This 
underscores the concept of adapting the teacher’s knowl-
edge to the student’s knowledge, in contrast to knowl-
edge distillation, which directly conveys task-specific 
knowledge.

In this study, we proposed a Dual Language Model-
based DTI model named DLM-DTI. The DLM-DTI was 
a lightweight and efficient, but accurate DTI prediction 
model. With the knowledge adaptation, the rich informa-
tion from ProtBERT successfully adapted to predict DTI 
tasks. This study has several key contributions: 

1. The hint-based knowledge adaptation technique, 
despite its compact parameterization, demonstrates 
considerably improved performance compared to 
baseline methods.

2. By utilizing cached outputs from the teacher net-
work, we achieved a notable reduction in computa-
tional costs.

3. The knowledge adaptation approach is model-agnos-
tic, offering flexibility in the selection of pre-trained 
models and architectures.
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Materials and methods
Problem definition
In binary DTI classification, the goal is to predict the tar-
get value, Yi , for a given pair of Xi , where 
Xi = {xidrug, x

i
target} , and Yi ∈ {0, 1} for i = 1, · · · ,N  . The 

prediction of DTI can be viewed as a mapping function 
f (Xi) → [0, 1] , which maps the drug-target pairs to a 
probability score of the interaction.

Sequence representation
Sequence representations and embeddings involve con-
verting a sequence, like a sentence, into a format that a 
computer model can understand. The first step is turning 
each part of the sequence into tokens, which are basically 
integer numbers that the model can work with. In this 
study, each part of the sequence is treated as a separate 
token. Special tokens, like a class token, are also added 
to grasp the overall meaning of the entire sequence. The 
concept of tokenization and special tokens is illustrated 
in Fig. 1.

Dataset configurations
We employ three datasets, namely DAVIS, Binding DB, 
and BIOSNAP, to train and evaluate the DLM-DTI. 
The DAVIS dataset consists of 68 drugs and 379 pro-
teins, with 11,103 interactions measured in dissociation 
constant ( Kd ) [48]. The interactions are categorized 
as positive or negative, with 1506 and 9597 instances, 
respectively. Similarly, the Binding DB dataset includes 
10,665 drugs and 1413 proteins, with 32,601 inter-
actions measured in Kd [49]. The interactions are 

categorized as positive or negative, with 9166 and 
23,435 instances, respectively. In this study, the thresh-
old value for Kd is set to 30 units, and interactions 
with Kd values less than 30 units are considered posi-
tive binding interactions between the given drug and 
protein pair [29, 43]. The BIOSNAP dataset is initially 
composed of positive interactions only; however, nega-
tive pairs are added in the MolTrans study. The BIOS-
NAP dataset comprises 4510 drugs and 2181 proteins, 
with 27,482 interactions, including 13,741 positive and 
13,741 negative instances [29].

The integrated data training was first proposed by 
Kang et al., and they demonstrated improvements [43]. 
In this setting, training and validation datasets were 
merged, and a model was trained using integrated data-
sets. After the training steps, the trained model with 
integrated training datasets was evaluated on individ-
ual test datasets. For example, to test the BIOSNAP test 
dataset, the model was first trained using DAVIS, Bind-
ing DB, and BIOSNAP’s training datasets, and then 
tested on BIOSNAP’s test dataset. Generally, the diver-
sity and quantity of datasets are linked to the improve-
ment of prediction performance. Therefore, we also 
assessed the impact of dataset integrations using DLM-
DTI. A summary of the dataset description is presented 
in Table 1.

To ensure a fair comparison of model performance, 
we employ the same training, validation, and testing 
datasets used in previous studies [29, 43]. The datasets 
are split into training, validation, and testing datasets in 
the ratio of 7:1:2, respectively. The number of interac-
tions for each data splitting is summarized in Table 2.

Fig. 1 The concept of sequence representation and pre-training is illustrated. In A, the tokenization of a drug sequence (SMILES string) is depicted. 
In B, the tokenized elements are converted into integer values according to the predefined dictionary, and the encoder model (in this example, 
ChemBERTa) restores masked tokens into the original tokens (tokens colored in gray). After pre-training, the class token (CLS) is used to represent 
a given sequence
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Model configurations
The process flow of DLM-DTI is depicted in Fig.  2. 
DLM-DTI was comprised of three primary compo-
nents: the drug encoder, target encoder, and inter-
action prediction head. Notably, the target encoder 

encompasses both the teacher and student models of 
language models for protein sequences.

Drug encoder
The drug encoder converts SMILES sequences into 
meaningful features, serving as a mapping function from 
molecule sequences to a meaningful chemical space. We 
employed the ChemBERTa encoder, which was trained 
on various canonical SMILES and learned chemical 
space. Further details are described in Appendix B.

The class token of the last hidden layer was extracted 
as input for the interaction prediction head. The encod-
ing process of the drug sequence can be represented as 
follows:

where LN(·) denotes the layer normalization layer, f (·) 
denotes the projection function used to align the dimen-
sions, and the hidden dimensions were set to 512 in this 
study. The upper limit of the drug sequence length was 
512 tokens, corresponding to the maximum sequence 
length of the original ChemBERTa encoder [31].

Target encoder
Similar to the drug encoder, the target encoder also extracts 
meaningful features from raw target sequences (amino 
acid sequences). The target encoder in this study was com-
posed of both a teacher and a student model. The teacher 

(1)zdrug = f (LN(xclass)),

Table 1 The description of datasets

1 The unique values after integaration

Dataset Drugs Targets Interactions

Positive Negative

DAVIS 68 379 1506 9597

Binding DB 10,665 1413 9166 23,435

BIOSNAP 4510 2181 13,741 13,741

Integrated1 11,700 3067 24,413 46,773

Table 2 The number of interactions for each split

1 Training and validation are conducted using merged datasets; however, testing 
is performed on individual datasets

Setting Training Validation Testing

DAVIS 2086 3006 6011

Binding DB 12,668 6644 13,289

BIOSNAP 19,238 2748 5496

Integrated1 33,992 12,398 (6011/13,289/5496)

Fig. 2 The process flow of DLM-DTI. The drug and target sequences feed into their respective encoders. The encoded sequences are then merged, 
and the probability of bindings is computed using the interaction prediction head. DLM-DTI only utilizes the class token (CLS) of each encoded 
sequence because the class token preserves the abstract meaning of the entire sequence. The features of target sequences are computed using 
a teacher-student-based architecture, specifically employing a hint-based learning strategy
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model used for target sequence encoding was the Prot-
BERT model, pre-trained on UniRef and big fantastic data-
base databases [35]. Details of ProtBERT are described in 
Appendix C. The original ProtBERT model was trained on 
sequences up to 40 K characters, with 420 million parame-
ters. The student model was designed to match the original 
teacher model, ProtBERT, however, the number of layers 
was reduced. Except for the number of layers, the student 
model followed the hyperparameters of the teacher model. 
The number of parameters of the student model was 6.2% 
of the teacher model; teacher model: 420.0 million, student 
model: 26 million. The detailed parameters of the target 
encoder are presented in Table 3.

In most cases, fully fine-tuning the large model was 
impractical due to restrictions on datasets and the associ-
ated computational expenses. To address this challenge, 
we adopted a hint-based training scheme that kind of 
knowledge distillation comprises both a teacher model 
and a student model. The teacher model was prevented 
from parameter updates, enabling solely the parameters 
of the student model to be updated. Given that the teacher 
model’s output was not subject to training, it retained a 
fixed form, thus enabling us to cache outputs of the teacher 
model prior to the training and inference step. This strat-
egy markedly minimizes computational redundancy, 
thereby optimizing computational efficiency. Consider-
ing the teacher model’s output was not trained, it served 
as a form of hint to which the task-specific model (student 
model) could refer. The teacher and student models were 
combined using class token mixing to encode the target 
sequence. The output class token was treated as a “hint” 
that contained general knowledge of the given protein 
sequence. On the other hand, the output class token of the 
student model was considered as task-oriented specific 
knowledge. To mix the general knowledge and task-spe-
cific knowledge, we added two class tokens with learnable 
gating parameters ( � ). The encoding process of the target 
sequence can be represented as follows:

(2)
ztarget = �g

(

LN(xstudentclass ))+ (1− �)h(LN(xteacherclass )

)

,

where g(·) and h(·) are the projection functions used to 
align the dimensions, and the adaptation parameter � is 
a learnable parameter initialized randomly from a uni-
form distribution, � ∼ Uniform(0, 1) . The term “adapta-
tion” was employed to describe the process of adjusting 
general knowledge to suit the specific requirements of 
a particular task. An elevated value of the adaptation 
parameter indicated an increased emphasis of the model 
on the class token derived from the teacher model. In 
contrast, a decreased value of the adaptation parameter 
signified a predominant utilization of task-specific infor-
mation obtained from the student model. The hidden 
dimensions of the class token mixing were set to 1024 in 
this study. The maximum length of the target sequence 
was set to 545 tokens, which covered 95% of proteins in 
the datasets, and the same max protein sequence lengths 
of previous studies [29, 43].

Interaction prediction head
The class tokens of drug and target sequences have 
abstract meanings for each sequence. The interaction 
prediction head aggregated the features of drug-target 
pairs and predicted binding probability. In this step, there 
were multiple choices for mixing the features; for exam-
ple, cross attention, capsule network, etc. However, we 
simply employed concatenation that showed stable per-
formances in the previous work [43].

The interaction module consists of three sequential 
blocks. Each block is structured with a Fully Connected 
(FC) layer, followed by an activation function and subse-
quently a dropout layer. The respective dimensions of the 
FC layers are 2048, 1024, and 512. The chosen activation 
function for these blocks is the Gaussian Error Linear 
Unit (GeLU). Additionally, a dropout rate of 0.1 has been 
employed for regularization. A detailed schematic of 
this configuration can be found in Fig. 3, and the specific 
parameter values are summarized in Table 4.

Experimental setup
Evaluation metrics
We used the Area Under the Receiver Operation Char-
acteristics curve (AUROC) and the Area Under the 
Precision-Recall Curve (AUPRC) as primary evaluation 
metrics. AUROC is one of the most favorable metrics 
to measure classification performance, particularly in 
the medical field; however, it could be easily overesti-
mated when the data has class imbalance [50]. Therefore, 
AUPRC is a relatively robust metric for measuring clas-
sification performance in imbalanced settings [50]. Sensi-
tivity and specificity scores were utilized as sub-metrics, 
and the threshold for these sub-metrics was simply set to 
0.5.

Table 3 The specific parameters of target encoder

Teacher Student

Number of hidden layers 30 2

Number of attention heads 16 16

Hidden dimension 1024 1024

Intermediate-size 4096 4096

Number of parameters 420 M 26 M
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Model training hyperparameters
The DLM-DTI was optimized using the AdamW opti-
mizer with a learning rate of 0.0001. A cosine annealing 
learning rate scheduler was employed to adjust the learn-
ing rate. The binary cross-entropy loss was used to calcu-
late the difference between predictions and ground truth. 
The model was trained for 50 epochs, and the best-per-
forming parameters were selected based on the AUPRC 
score during validation. Due to severe class imbalance, 
the model could easily be overfitted to the dominant 
class. To prevent the selection of an overfitted model, we 

set the selection criteria as AUPRC rather than AUROC 
or the minimum loss coefficient. Automated mixed pre-
cision was utilized, and the batch size was set to 32. The 
best combination of hyperparameters was determined 
through iterative experiments.

The use of a class imbalance sampler did not show any 
benefit for model training; therefore, we did not apply an 
imbalance sampler. Instead, AUPRC-based optimization 
demonstrated better performance in predicting binding 
probability.

Hardware and softward
We used a single NVIDIA A100 GPU to train DLM-DTI. 
The Python (v3.8) and PyTorch deep learning framework 
(v1.13) for trained DLM-DTI.

Results
Binding probability prediction
The baseline models, namely MolTrans [29] and the 
approach by Kang et  al. [43], along with our proposed 
DLM-DTI, were trained on the same training datasets 
and evaluated using identical test datasets. Table  5 pre-
sents a summary of the evaluation results obtained from 
these experiments. MolTrans was exclusively trained on 
individual datasets and evaluated individually. In con-
trast, both Kang et  al. and our DLM-DTI were trained 
using both individual and combined dataset settings. 
This approach was claimed in Kang et al., and therefore 

Fig. 3 Structure of the interaction prediction head. The interaction prediction head mixes the features of the drug-target pair to predict the binding 
probability of a given pair. The number under the block indicates the feature dimension

Table 4 The detailed parameters of interaction prediction head

1 Feature of drug sequence, zdrug
2 Feature of target sequence, ztarget

Block Layers Input 
dimensions

Output 
dimensions

Dropout rate

Input Concatenation 5121 , 5122 1024

Block 1 FC layer 1024 2048

GeLU & Drop-
out

2048 2048 0.1

Block 2 FC layer 2048 1024

GeLU & Drop-
out

1024 1024 0.1

Block 3 FC layer 1024 512

GeLU & Drop-
out

512 512 0.1

Output FC layer 512 1
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the previous study, MolTrans, did not experiment with 
an integrated dataset.

Within the BIOSNAP dataset, DLM-DTI showed an 
improved AUPRC score (absolute value; percentage) than 
MolTrans (0.013; 1.44%), and Kang et al. (0.014 ∼ 0.017; 
1.56 ∼ 1.90%). The AUROC score was improved com-
pared to MolTrans (0.019; 2.12%), however, the AUROC 
showed similarity to Kang et  al.’s model. Similarly, in 
the Binding DB, DLM-DTI exhibited a considerably 
improved AUPRC score than other methods, MolTrans 
(0.021; 3.38%), and Kang et al.’s model (0.004 ∼ 0.02; 0.63 
∼ 3.21%), respectively.

In the DAVIS dataset, the performance of the DLM-
DTI was degraded, and its performance was similar to 
that of MolTrans. The training with an integrated data-
set showed benefits for the DLM-DTI only in the DAVIS 
dataset.

Adaptation parameter, �
During the training, the randomly initialized adaptation 
parameter � gradually decreased and converged, as illus-
trated in Fig. 4. The adaptation parameter controlled the 
feature weights from the teacher and student encoder. As 
mentioned earlier, the teacher encoder contained gen-
eral knowledge of the target sequence, and the student 
encoder had narrow but specific task-related knowledge. 
With the adaptation parameter, the DLM-DTI modu-
lated the importance of each feature to accurately predict 
binding probability.

To evaluate the effect of teacher-student architecture-
based target sequence encoding, two ablation studies 
were conducted.

• � set to 0: Only the teacher encoder (general knowl-
edge) was utilized.

• � set to 1: Only the student encoder (task-specific 
knowledge) was utilized.

The adaptation setting (which utilized both teacher-stu-
dent encoders) showed the best performance (AUROC: 
0.912; AUPRC: 0.643) compared to the teacher encoder-
only setting (AUROC: 0.911; AUPRC: 0.635) or the 

Table 5 The prediction performance of binding affinity

S: single dataset, I: integrated dataset

Performances of five randomly initialized runs were averaged

Best performance is highlighted in bold

Dataset Model AUROC AUPRC Sensitivity Specificity

BIOSNAP MolTrans 0.895 ± 0.002 0.901 ± 0.004 0.775 ± 0.032 0.851 ± 0.014

Kang et al., S 0.914 ± 0.006 0.900 ± 0.007 0.862 ± 0.025 0.847 ± 0.007

Kang et al., I 0.910 ± 0.012 0.897 ± 0.014 0.830 ± 0.029 0.863 ± 0.011
DLM-DTI, S 0.914 ± 0.003 0.914 ± 0.006 0.848 ± 0.016 0.844 ± 0.024

DLM-DTI, I 0.910 ± 0.005 0.914 ± 0.004 0.850 ± 0.014 0.821 ± 0.006

DAVIS MolTrans 0.907 ± 0.002 0.404 ± 0.016 0.800 ± 0.022 0.876 ± 0.013

Kang et al., S 0.920 ± 0.002 0.395 ± 0.007 0.824 ± 0.026 0.889 ± 0.015
Kang et al., I 0.942 ± 0.005 0.517 ± 0.017 0.903 ± 0.017 0.866 ± 0.015

DLM-DTI, S 0.895 ± 0.003 0.373 ± 0.017 0.833 ± 0.044 0.802 ± 0.070

DLM-DTI, I 0.898 ± 0.026 0.406 ± 0.026 0.860 ± 0.016 0.786 ± 0.022

BindingDB MolTrans 0.914 ± 0.001 0.622 ± 0.007 0.797 ± 0.005 0.896 ± 0.007

Kang et al., S 0.922 ± 0.001 0.623 ± 0.010 0.814 ± 0.025 0.916 ± 0.016

Kang et al., I 0.926 ± 0.001 0.639 ± 0.018 0.802 ± 0.022 0.928 ± 0.013
DLM-DTI, S 0.912 ± 0.004 0.643 ± 0.006 0.888 ± 0.014 0.793 ± 0.015

DLM-DTI, I 0.912 ± 0.004 0.636 ± 0.007 0.869 ± 0.023 0.811 ± 0.010

Fig. 4 Variation of the adaptation parameter ( � ) during model 
training process
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student encoder-only setting (AUROC: 0.900; AUPRC: 
0.635). The effect of the � parameter is summarized in 
Table 6.

The student encoder-only setting exhibited the poor-
est prediction performance (Rank: 3rd ). This implies that 
two layers of simple and shallow networks were not suffi-
cient to capture the complex patterns and features of tar-
get sequences to accurately predict DTIs. However, the 
teacher encoder-only setting demonstrated comparable 
performance (Rank: 2nd ). This suggests that the general 
knowledge of the teacher model has the potential to pre-
dict binding probability. The teacher encoder-only setting 
corresponds to linear probing, where the training strat-
egy only updates the prediction head without adjusting 
the weights of the encoder [51, 52]. The prediction per-
formance of linear probing is considered as an encoder’s 
existing knowledge.

Time and memory analysis
Typically, a model’s performance exhibits a direct cor-
relation with its parameter count, suggesting that larger 
models often yield superior outcomes. Nonetheless, 
this advantage comes with a caveat; substantial models 
necessitate considerable computational resources dur-
ing both the training and inference stages. In light of 
this, we embarked on a systematic analysis comparing 
training time and parameter counts (Table 7). The met-
ric for training time was derived by computing the mean 

learning time across three epochs, utilizing the Binding 
DB dataset.

DLM-DTI showed the best AUPRC score (0.643), only 
with 24.56% (86.7 million) of parameters compared to the 
Kang et  al. (353.0 million) [43]. Additionally, DLM-DTI 
required 7.7 GB video random access memory (VRAM), 
and 63.00  s for a single training epoch. It was 16.24% 
(47.4 GB), and 9.98% (631.00  s) of the Kang et  al. [43]. 
The MolTrans required the smallest VRAM (5.9 GB), 
however, the AUPRC score (0.622) was slightly lower 
than DLM-DTI (0.643). In our experimental setting, 
DLM-DTI required 7.7 GB of VRAM, therefore, it could 
be trained on conventional graphic processing units 
(GPUs), not for high-performing research machines (See 
details on 2.5.2).

Cold drug, target, and bindings
In addressing DTI challenges, the cold splitting testing 
approach is widely adopted [36, 53], primarily due to 
the inherent difficulties in dataset procurement and the 
paramount importance of achieving generalization for 
novel pairs. The term “cold splitting” pertains to scenar-
ios where previously unseen drug-target interactions are 
involved, ones that were excluded from both the train-
ing and validation datasets. To simulate this condition, 
we conducted experiments where we isolated cold drugs, 
cold targets, and cold binding interactions from the test 
set of models trained to utilize the Binding DB dataset. 
We identified a total of 2,127 cold drugs and 136 cold tar-
gets. Specifically, a cold drug configuration encompasses 
all interactions associated with a cold drug, while a cold 
target configuration comprises all interactions associated 
with a cold target. The cold bindings were the interac-
tions between cold drugs and cold targets, and only 114 
pairs were identified. The performances of cold-splitting 
datasets are summarized in Table  8. DLM-DTI’s per-
formance was comparable to the baseline models in the 
context of the cold drug, yet exhibited a minor deterio-
ration to the cold target and was found to be most defi-
cient in addressing cold binding. Conversely, Kang et al. 
[43] manifested commendable prediction capabilities 
across all testing scenarios. MolTrans [29] exhibited a 

Table 6 The prediction performance of binding affinity

Performances of five randomly initialized runs were averaged

Best performance is highlighted in bold

BindingDB dataset is utilized

AUROC AUPRC Sensitivity Specificity

Student only 0.900 ± 
0.001

0.612 ± 
0.003

0.845 ± 
0.024

0.805 ± 
0.018

Teacher only 0.911 ± 
0.002

0.635 ± 
0.002

0.880 ± 
0.012

0.800 ± 0.014

Adaptation 0.912 ± 
0.004

0.643 ± 
0.006

0.888 ± 
0.014

0.793 ± 0.015

Table 7 Time and memory analysis of baseline models and DLM-DTI

M: millions, S: seconds, GB: Giga bytes
1 Mean ± SD
2 Batch size is matched to 32
3 Results of Binding DB with single training setting. Best performance is highlighted in bold

Parameters (M) Training time (S)1 Memory capacity (GB)2 AUPRC3

MolTrans 62.8 75.33 ± 3.51 5.9 0.622 ± 0.007

Kang et al. 353.0 631.00 ± 17.06 47.4 0.623 ± 0.010

DLM-DTI 86.7 63.00 ± 1.00 7.7 0.643 ± 0.006
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performance metric closely mirroring Kang et al. in terms 
of AUROC, but fell short when evaluated using AUPRC.

Discussion
In this study, we suggested a lightweight but accurate DTI 
prediction model, namely DLM-DTI. The main hurdle 
for utilizing protein sequence-based language models, 
such as ProtBERT [35], was heavy computing resource 
requirements. To comprehend the complex and long 
sequence of a protein, it needed heavy and large archi-
tectures and an intensive pre-training process. The DLM-
DTI mitigated the computational burden caused by the 
protein encoder, by using a knowledge adaptation. DLM-
DTI achieved improved AUPRC performance, especially 
in Binding DB (0.63 ∼ 3.38%), and BIOSNAP (1.44 ∼ 
1.9%) datasets. The most interesting point was that DLM-
DTI utilized only 25% of parameters (86.7 million) com-
pared to the previous state-of-the-art model, Kang et al. 
(353 million) [43]. Additionally, DLM-DTI required only 
7.7 GB of VRAM, and 63 s for each training epoch, that 
of 16.24%, and 9.98% of Kang et al. [43].

The Transformer-based language model has exhib-
ited impressive capabilities across various applications, 
including molecular and protein sequences. However, 
pre-training has emerged as a key approach to further 
optimize the model’s functional and semantic relation-
ship learning from large sequence datasets [35–37, 42, 
43]. Despite the promising results, the computational 
cost of the language model increases significantly with 
the input length. To address this challenge, Kang et  al. 
proposed a Kang et  al. approach, which employed only 
half of the pre-trained target encoder [43]. The meth-
odology employed by the ELECTRA-DTA model aligns 
closely with our approach [36]. In the ELECTRA-DTA 
framework, the features originating from the pre-trained 
drug encoder and protein encoder are individually aver-
aged. Subsequently, these averaged features are com-
pactly represented as a compressed feature vector. This 
vector is subsequently incorporated into a squeeze-and-
excitation network, aiming to enhance the predictive 
capabilities of the model. Their approach can also be per-
ceived as a tactical maneuver to circumvent the neces-
sity of fine-tuning the complete encoder. However, it is 

important to note that we could not directly compare 
the prediction performance of our DLM-DTI approach 
to that of ELECTRA-DTA due to differences in the tar-
get tasks, with DLM-DTI using binary classification and 
ELECTRA-DTA using pKd regression.

In our study, we introduced an adaptation parameter 
to efficiently generate meaningful protein features. The 
adaptation parameter, denoted as � , was randomly ini-
tialized and tuned. This parameter controlled the weights 
of knowledge from both the teacher model (provid-
ing general knowledge) and the student model (captur-
ing task-specific knowledge). In the ablation studies 
(Table 6), the absence of knowledge adaptation resulted 
in significant degradation of performance for both the 
teacher-only and student-only settings. However, the 
DLM-DTI with knowledge adaptation exhibited weak-
nesses in generalization performance. Kang et  al.’s [43] 
work also demonstrated strong performance under cold-
splitting conditions (Table  8). In contrast, our DLM-
DTI, which either matched or outperformed Kang et al. 
on the complete dataset, showed reduced effectiveness 
in cold-splitting evaluations, particularly concerning 
cold-binding interactions. This may be attributed to the 
over-reduction of the student model, limiting gener-
alization performance. Inspired by recent examples that 
incorporate natural language-based prior knowledge to 
enhance prediction performance, we aim to improve our 
approach by adding natural language information related 
to the function of proteins in future work [54]. Interest-
ingly, integrated dataset training did not prove beneficial 
for DLM-DTI. In Kang et al. [43], training with integrated 
datasets demonstrated outstanding performances. Large-
scale Transformer-based architectures typically require 
a substantial amount of data to realize their full poten-
tial. However, DLM-DTI introduces a small-scale student 
model, and it is speculated that the small size was suffi-
cient for effective learning.

Recently, foundation models based on large language 
models have been widely studied [55, 56]. A shared chal-
lenge between these models and protein sequence encod-
ers pertains to the intricacies involved in fine-tuning. 
Due to the scarcity of annotated data and the extensive 
parameters within these models, innovative strategies for 

Table 8 The classification performances within the cold splitting settings

Best performance is highlighted in bold

MolTrans Kang et al. DLM-DTI

AUROC AUPRC AUROC AUPRC AUROC AUPRC

Cold Drug 0.853 0.562 0.884 0.617 0.850 0.584

Cold Target 0.841 0.668 0.855 0.716 0.789 0.527

Cold Binding 0.718 0.370 0.744 0.448 0.622 0.261
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effective fine-tuning have been proposed. For instance, 
a method called low-rank adaptation (LoRA) [57], simi-
lar to our own approach, adopt a technique where only 
the adaptation layer is adjusted. This is achieved by inte-
grating a low-rank adaptation layer, which eliminates the 
need for comprehensive fine-tuning across all layers. This 
approach proves to be more cost-effective and quicker to 
converge compared to the resource-intensive process of 
complete fine-tuning. Therefore, in our future study, we 
plan to compare the performances of a fine-tuning model 
using LoRA’s adaptation approaches. Furthermore, there 
is a need for enhancement in the design of the interac-
tion head. Currently, this component is composed of a 
sequence of straightforward FC layers, which exhibits 
reduced effectiveness in cold bindings. To address this, 
potential strategies include the integration of a squeeze-
and-excitation network [58], capsule network [59], cross-
attention [60], and other alternatives.

Conclusion
In this study, we employed knowledge adaptation to effi-
ciently and accurately predict binding probability. The 
knowledge adaptation was efficiently tuned with both 
general knowledge and task-specific knowledge through 
the teacher-student architectures. With only 25% of the 
model parameters, DLM-DTI exhibited considerable 
performance compared to the previous state-of-the-art 
model. Notably, DLM-DTI required 7.7 GB of VRAM, 
allowing training on conventional GPUs without the 
need for high-performing GPUs.

Appendix A Knowledge Distillation
Recent high-performing DNN models boast millions or 
billions of parameters, necessitating extensive and high-
performance hardware resources, such as GPU clusters 
and TPU pods. Knowledge distillation was proposed to 
develop a lightweight model while retaining robust infor-
mation processing capabilities [44, 45]. The knowledge 
distillation process involves two models, specifically the 
teacher model and the student model. Conventionally, 
knowledge distillation begins by training the teacher 
model, a complex and high-capacity model, on the tar-
get task. Subsequently, the acquired knowledge from 
the teacher model is transferred to the student model, a 
more lightweight counterpart. This transfer is typically 
achieved by encouraging the student model to mimic 
the outputs [44] or internal representations [47] of the 
teacher model. The overarching goal is to distill the com-
prehensive knowledge captured by the teacher model 
into a more compact and computationally efficient stu-
dent model.

FitNet [47] introduces the concept of “hints” to 
enhance the knowledge distillation approach. In addi-
tion to replicating the output of the current teacher 
model, hints guide the student to mimic intermedi-
ate features together. This inclusion of hints enhances 
the performance of knowledge distillation by enabling 
the learning of not only the final result but also the 
intermediate features. In this context, a hint can be 
interpreted as providing information about both the 
intermediate features and the final feature.

Appendix B Drug Encoder: ChemBERTa
ChemBERTa is a Transformer-based model pre-trained 
using 10 million SMILES sequences [31]. Based on 
RoBERTa [61], a model known for its outstanding 
performance in natural language processing, Chem-
BERTa comprises 12 attention heads and 6 layers. 
Drug sequences, expressed in Canonical SMILES, are 
tokenized using a subword-level tokenizer, while a byte-
pair encoder (BPE) tokenizer is employed to group fre-
quently occurring elements together into larger chunks 
for more efficient processing. BPE stands as a blend of 
character and word-level representations, facilitating 
the management of extensive vocabularies in natural 
language corpora. Guided by the insight that less com-
mon or unfamiliar words can frequently be broken 
down into several recognized subwords, BPE identifies 
the optimal word segmentation through an iterative and 
greedy merging of frequently occurring character pairs 
[62]. ChemBERTa has a total of 767 tokens, including a 
class token to encapsulate the abstract meaning of the 
entire sequence, a start of sequence token (SOS), an 
end of sequence token (EOS), and a pad token to mark 
the start and end of the sequence.

ChemBERTa was trained using masked language 
modeling (MLM), where the task involves masking 
a portion of the entire sequence and then restoring 
the corresponding tokens; 15% of the total sequence 
was masked. The maximum processable sequence 
length is 512 tokens. ChemBERTa, pre-trained using 
MLM tasks, can then be used as an encoder for drug 
sequences because it has been trained on restoration 
tasks and has an understanding of molecule sequences. 
ChemBERTa can perform comparably to the commonly 
used extended-connectivity fingerprint (ECFP) [63] in 
molecule properties prediction tasks using the Chem-
BERTa encoder, and it was employed in this study due 
to its availability through the HuggingFace API, facili-
tating easy utilization.
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Appendix C Target Encoder: ProtBERT
ProtBERT, a component of the ProtTrans project, is a 
BERT model trained on an extensive dataset of amino 
acid sequences [35]. It underwent training using the 
same MLM approach as ChemBERTa, with 15% mask-
ing (Appendix B). However, owing to the intricacy of 
amino acid sequences, ProtBERT consists of 30 layers 
and 16 attention heads, resulting in a total parameter 
count of 4.2 million. Each element is considered one 
token in ProtBERT, and it comprises 30 tokens, includ-
ing special tokens. Notably, it was trained to handle 
sequences of up to 4000 tokens, accommodating the 
typically extended length of amino acid sequences.

However, ProtBERT uses the Transformer’s core 
operation, self-attention, where the amount of compu-
tation increases as the square of the length of a given 
sequence. The self-attention operation is as follows:

where the query (Q) is the product of input sequence x 
and learnable parameter WQ , and key (K) is the product 
of input sequence x and learnable parameter WK .

Therefore, a substantial amount of memory and com-
putational resources must be allocated to manage long 
sequences of amino acids. This constitutes a significant 
bottleneck in the practical utilization of ProtBERT. 
While recent proposals, such as efficient self-atten-
tion computations using linear transformers [64] and 
Nystrom approximation [38], aim to address this chal-
lenge, pre-training with such approaches remains 
expensive. As an illustration, ProtBERT underwent 
training utilizing 1,024 tensor processing units (TPUs), 
a resource allocation typically inaccessible in stand-
ard research environments. Consequently, this study 
emphasizes the efficient utilization of the previously 
published ProtBERT, prioritizing practical applica-
tion over creating a new pre-training model that might 
reduce computational requirements.
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