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Abstract 

Cell-penetrating peptides (CPPs) are short chains of amino acids that have shown remarkable potential to cross the 
cell membrane and deliver coupled therapeutic cargoes into cells. Designing and testing different CPPs to target 
specific cells or tissues is crucial to ensure high delivery efficiency and reduced toxicity. However, in vivo/in vitro 
testing of various CPPs can be both time-consuming and costly, which has led to interest in computational meth-
odologies, such as Machine Learning (ML) approaches, as faster and cheaper methods for CPP design and uptake 
prediction. However, most ML models developed to date focus on classification rather than regression techniques, 
because of the lack of informative quantitative uptake values. To address these challenges, we developed POSEIDON, 
an open-access and up-to-date curated database that provides experimental quantitative uptake values for over 2,300 
entries and physicochemical properties of 1,315 peptides. POSEIDON also offers physicochemical properties, such 
as cell line, cargo, and sequence, among others. By leveraging this database along with cell line genomic features, 
we processed a dataset of over 1,200 entries to develop an ML regression CPP uptake predictor. Our results demon-
strated that POSEIDON accurately predicted peptide cell line uptake, achieving a Pearson correlation of 0.87, Spear-
man correlation of 0.88, and  r2 score of 0.76, on an independent test set. With its comprehensive and novel dataset, 
along with its potent predictive capabilities, the POSEIDON database and its associated ML predictor signify a signifi-
cant leap forward in CPP research and development. The POSEIDON database and ML Predictor are available for free 
and with a user-friendly interface at https:// morei ralab. com/ resou rces/ posei don/, making them valuable resources 
for advancing research on CPP-related topics. Scientific Contribution Statement: Our research addresses the critical 
need for more efficient and cost-effective methodologies in Cell-Penetrating Peptide (CPP) research. We introduced 
POSEIDON, a comprehensive and freely accessible database that delivers quantitative uptake values for over 2,300 
entries, along with detailed physicochemical profiles for 1,315 peptides. Recognizing the limitations of current 
Machine Learning (ML) models for CPP design, our work leveraged the rich dataset provided by POSEIDON to develop 
a highly accurate ML regression model for predicting CPP uptake.
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Graphical Abstract

Introduction
The biomedical field faces a significant challenge in the 
development of pharmacological compounds that can 
be efficiently delivered to binding sites. Cell-Penetrat-
ing Peptides (CPPs) provide a safe and effective means 
of delivering therapeutic agents and other cargoes into 
cells without causing damage to the cell membrane. Such 
cargo may include nucleic acids, proteins, peptides, nan-
oparticles, fluorophores, small therapeutic compounds, 
and peptide nucleic acids [1–4]. CPPs share common 
structural and physicochemical features, including short 
amino acid sequences consisting of 4–40 residues, which 
typically adopt α-helical structures [1, 5–7]. They are 
often amphiphilic or cationic, soluble in water, partially 
hydrophobic, and rich in arginine and lysine residues [6, 
8–10].

CPPs have been extensively studied for their poten-
tial use as drug delivery systems and diagnostic tools in 
various medical areas, such as immunotherapy [11], neu-
rological disorders [12], and cancer [13]. Although the 
number of clinical trials involving CPPs has increased, 
only one CPP has been approved by the European Med-
icines Agency (EMA) [1, 14]. The design and testing of 
different CPPs in vitro and in vivo can be expensive and 
labor-intensive [15, 16]. Therefore, efficient computa-
tional tools and methodologies are necessary for rapid 

and accurate identification of suitable CPPs. Recently, 
many computational resources have been used to provide 
information on CPPs design and uptake ability, including 
Machine Learning (ML) approaches such as C2Pred [17], 
CPPred-RF [18], SkipCPP-Pred [19], CellPPD-MOD [20], 
ML-based prediction of CPP (MLCPP) [21, 22], Kernel 
Extreme Learning Machine-based prediction (KELM-
CPPpred) [23], and StackCPPred [24]. However, existing 
methods rely solely on classification approaches because 
of the limited qualitative nature of the data available in 
current databases. One of the most commonly used data-
bases, CPPsite 2.0, published in 2016, contains qualitative 
data for over 1,800 CPPs sequences [2].

We created POSEIDON–Peptidic Objects SEquence-
based Interaction with cellular DOmaiNs, a compre-
hensive database containing quantitative uptake values 
and physicochemical properties of 1,315 cell-penetrating 
peptides across various scenarios, to fill gaps in the cur-
rent CPP design. POSEIDON is indeed the most exten-
sive database of quantitative CPP uptake values, with 
up-to-date information and unique data collection. Fur-
thermore, POSEIDON includes a processed dataset that 
employs a well-designed methodological approach, mak-
ing it an ideal benchmark for the development of new 
ML algorithms. By leveraging this database, coupled 
with cell line genomic features, we developed a novel ML 
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regression model that accurately predicted CPP uptake 
efficiency.

Methods
Data extraction and curation
The general workflow for data collection is shown in 
Fig.  1, which depicts the collection, organization, and 
extraction of accurate and relevant information from 
various sources to create a centralized and annotated 
database. CPP sequences and associated features were 
first collected from the CPPsite 2.0 database [2]. We 
obtained the first dataset, composed of 1,855 entries cor-
responding to each entry to a CPP and their features in 
the dataset. The information retrieved from this database 
included the CPP identifier, its name, and corresponding 
sequence, along with information such as PubMed IDs, 
cell lines used in the study, and cargo coupled to the CPP. 
All scientific articles referenced in CPPsite2.0 were man-
ually curated to fill POSEIDON with CPPs quantitative 
uptake values and respective units. Uptake values were 
recorded when quantitative data were available in plots 
or when they were directly mentioned by the authors. 
In addition, the temperature, concentration, time for 
CPP incubation, and uptake evaluation methods from 
the referenced articles were manually annotated. There-
fore, only peptides with quantitative information were 
retained in the dataset, reducing the number of curated 
entries to 906, which corresponds to 676 unique CPPs.

Subsequently, we conducted a thorough literature 
search to supplement the database with manually curated 
samples. This process involved extensive and careful 
examination of relevant publications to identify addi-
tional data points. To this end, another 228 CPP-related 
articles from PubMed were queried using the filters 
“((((CPP) AND (Cell Penetrating Peptide)) OR (Cell-
penetrating Peptide)) AND (Cellular Uptake)) AND 
((”2015/11/19 “[Date—Publication]:”2022/08/01 “[Date—
Publication])))”)” were evaluated and quantitative experi-
mental information was added when existent. The final 
database comprised 2,371 entries, of which 1,315 were 
unique CPPs and 1,056 were CPPs with different uptake 
conditions. The latter refers to unique peptides that have 
been repeated under different conditions, such as varying 
cargoes, cell lines, temperatures, or incubation times, to 
analyze the uptake capacity of a peptide under different 
conditions.

To develop a suitable ML approach, it was necessary 
to refine the dataset to ensure the uniformity of the tar-
get variable (Uptake) in units, values, and experimental 
determination approaches. The following steps were per-
formed to obtain a benchmark dataset for ML training 
and testing:

• Rows lacking information on concentration or with 
unclear peptide sequences were excluded, resulting 
in 2,067 remaining samples.

• Only samples determined by fluorescence were 
retained, as other methods would yield different 
target variables, leaving 1,765 samples.

• Samples with relative uptake efficiencies were 
excluded because they could not be interpreted as 
actual experimental values for ML purposes, reduc-
ing the dataset to 1,563 samples.

• Samples with unusable peptide concentration infor-
mation were removed, leaving a final set of 1,316 
samples.

• Peptide sequences that contained an excessive 
number of anomalous amino acids or non-peptide 
sequences were manually curated and excluded, 
resulting in 1,274 samples.

• Outliers for Uptake were removed, resulting in a 
final dataset size of 1,263 peptides.

• Since the original dataset had the same CPPs 
appearing multiple times but with different uptake 
conditions, we included these repetitions in the ML 
dataset. This was done because varying uptake con-
ditions are considered important factors for devel-
oping an ML predictor. As a result, the ML data-
set, consisting of 1,263 peptides, contained CPPs 
that appeared multiple times under different uptake 
conditions, totaling 642 unique CPPs.

The POSEIDON original dataset and the ML predic-
tor dataset are available at the following GitHub reposi-
tory: https:// github. com/ Morei raLAB/ posei don/ tree/ 
main/ data. These datasets are stored under the names 
“CPP_dataset.csv” and “CPP_ML.csv”, respectively.

Feature extraction
To prepare the dataset for ML, the POSEIDON pipeline 
incorporates various features that aim to characterize 
peptides, cell lines, and experimental conditions.

The features can be further classified into three 
subcategories.

• Whole-peptide features were obtained using the 
Peptides R package [25].

• In-house position one-hot encoding features based 
on the size of the longest peptide. One-hot encod-
ing is a reliable and interpretable method for repre-
senting categorical data such as amino acids in pep-
tides [26, 27]. It is compatible with traditional ML 
algorithms, is robust to data variations, and mini-
mizes information loss.

https://github.com/MoreiraLAB/poseidon/tree/main/data
https://github.com/MoreiraLAB/poseidon/tree/main/data
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Fig. 1 Overall workflow of data collection
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• Annotation-based features, in which the sequence 
anomaly type and location were substituted with the 
closest amino acids (Additional file 1: Table S1).

Cell line features (736 in total) were obtained from the 
Genomics of Drug Sensitivity in Cancer (GDSC) [28] 
database and matched with the cell lines of the POSEI-
DON dataset. They were then tagged as a true match 
depending on whether they were present on the GDSC. 
The POSEIDON dataset contained 43 available cell lines 
from the GDSC (Additional file 1: Table S2).

Finally, the experimental conditions were characterized 
using several variables (71 in total), including concentra-
tion (μM), categorical temperature (°C), incubation time 
availability and duration (in minutes), and curated cargo 
to avoid repetition (Additional file 1: Table S3). Prior to 
dimensionality reduction, this added up to 2,908 features 
(Table 1).

Data pre‑processing and statistics treatment
Data cleaning, visualization, selection, and preprocess-
ing of the raw dataset were performed using the pro-
gramming language R (version 4.1.0) [29]. Peptides with 
unknown uptake values were excluded from the final 
dataset, as the methodologies used in these studies did 
not quantitatively measure peptide internalization. The 
resulting dataset consisted of 2,371 peptides with quan-
titative values, varying units, and uptake-evaluation 
techniques.

Subsequently, statistical analysis of the data was 
performed using RStudio (version 1.4.1717) [30]. The 

tidyverse package (version 1.3.1), which includes dplyr 
for data manipulation and ggplot2 for data visualization 
[31], was used for the data analysis.

To construct the processed dataset, Python program-
ming language (version 3.10.8) was used in combina-
tion with NumPy (version 1.24.1) and Pandas (version 
1.5.2.), and scikit-learn (version 1.2.0). The usable sam-
ples were extracted and accessed on GitHub (https:// 
github. com/ Morei raLAB/ posei don). The dataset 
underwent several uniformization steps such as incuba-
tion time uniformization, temperature encoding, valid 
peptide sequence generation, and curation of the target 
variable (peptide uptake) in log10 form, as it provides a 
more comprehensible scale.

Feature extraction was performed as described, 
resulting in 1,330 usable features after removing fea-
tures with null variance, which can be fully explained 
and linked to real information, as depicted on the web-
site. A random 70–30 data split was performed, and 
data normalization was applied based on the average 
and standard deviation of the training set, which was 
then applied to both the training and test sets. The 
decision to retain dimensionality without reduction 
was bolstered by several factors: the sample size of the 
dataset, the relevance of domain-specific features, the 
robust performance of the model on an independent 
test set encompassing 30% of the total data, the need 
for transparency to facilitate interpretability, and the 
model’s evident ability to withstand overfitting despite 
its high dimensionality. Notably, this high dimension-
ality was driven by the inclusion of relevant one-hot 

Table 1 POSEIDON features for the ML summary table

Total Sample object Amount Description

2.908 Peptides 31 Whole-peptide features

2.000 Peptide-position one-hot encoding. Considering the maximum size of 100 amino acids (longest peptide registered 
in the dataset), one-hot encoding was used for each of the positions of the 20 amino acids

70 After inspecting the peptide sequences with anomalous amino acid substitutions, we annotated the position 
of the substitution (maximum of 24 as this was the size of the longest peptide with anomalous substitutions). 
Allows 56 possible substitutions along with those registered in the dataset

Cell Lines 735 According to the GDSC, cell line gene mutation data includes 42 available cell lines

1 According to the GDSC, cell line gene mutation data includes 42 available cell lines
A categorical variable to indicate whether the cell line present in POSEIDON is exactly that of GDSC or a similar cell 
line present in the same tissue

Experimental 1 Concentration (μM) of the peptide sequence

5 Categorical temperature (°C). Although it is possible to use a numerical variable, there are only five available 
temperatures with biological relevance. For example, 37 °C is the regular human body temperature and 25 °C 
is a common room environment. For these reasons, and because in some cases, there is no temperature informa-
tion available, the temperature was categorically encoded

2 Incubation time and duration (min)

63 Annotated cargo was manually curated in several steps of the dataset. Initially, only cargoes annotated in the origi-
nal research papers were considered. Additionally, while processing the dataset, position-independent additions 
were considered as cargoes

https://github.com/MoreiraLAB/poseidon
https://github.com/MoreiraLAB/poseidon
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encoding features that accounted for 98% of the feature 
space.

Machine learning models deployment and optimization
After constructing the training and test sets as described, 
a battery of ML models from scikit-learn (1.2.0) [32] 
was implemented upon hyperparameter optimization 
(Table 3). In particular, xgboost (1.7.3) [33] and Tensor-
Flow (2.11.0) [34] were optimized using ray[tune] (2.2.0) 
[35] as a tool (parameter range in Table  2). The tested 
models were a Support Vector Machine (SVM), Stochas-
tic Gradient Descent (SGD), k-Nearest Neighbors (kNN), 
Decision Tree (DT), Random Forest (RF), Extreme Rand-
omized Trees (ERT), eXtreme Gradient Boosting (XGB), 
Deep Neural Network (DNN), and forked Neural Net-
work (fNN). While most of these models are standard 
imports from their respective packages, the fNN was 
designed for these purposes, comprising a neural net-
work with different points of entry for each feature block 
type. All models were parameterized using the train-
ing set and an independent testing set. In this study, we 
evaluated the performance of our regression ML mod-
els using several metrics, including Root Mean Squared 
Error (RMSE), Mean Squared Error (MSE), Mean 
Absolute Error (MAE), Pearson correlation, Spearman 
correlation, and coefficient of determination  (r2)-

POSEIDON front‑end implementation
A web server free available to the scientific commu-
nity can be found at https:// morei ralab. com/ resou rces/ 
posei don/. The webserver was constructed using the 
Nginx webserver with a Linux operating system. To 
develop the web interface, Flask [36] was used as the 
back end and HTML, CSS, and JavaScript were applied 
as the front end in conjunction with Plotly [37] for 
dynamic plot visualization.

Upon navigating to the POSEIDON platform, users 
are greeted with an intuitive interface designed to 
facilitate the submission of peptide sequences for pre-
diction. Detailed instructions are provided on the 
homepage to guide users through the input process. 
This involves the following steps:

• Users input peptide sequence(s) into a designated 
text field within the interface.

• After entering the sequence, users can customize 
properties, such as peptide concentration, incubation 
time, temperature, and cell line type.

• Users are required to provide a valid email address to 
which the prediction results will be sent.

• To initiate the prediction process, users must click 
the ’Submit’ button.

Table 2 Hyper parameter optimization parameters for all the tested models

Model Parameters Package

Support vector machine Kernel: [“linear”, “poly”,”rbf”,”sigmoid”]; C: [0.5, 1.0, 1.5]; Gamma: [“scale”, “auto”] scikit-learn

Stochastic gradient descent Loss: “squared_error”; Penalty: [“l2″, “l1″,”elasticnet”]; Alpha: [0.00001, 0.0001, 0.001]; Learning rate: [“invs-
caling”, “optimal”, constant”,”adaptive”]

k-nearest neighbors N Neighbors: [2, 3, 5, 7]; P: [1, 2]; Algorithm: [“auto”, “ball_tree”, “kd_tree”, “brute”]

decision tree Splitter: [“best”, “random”]; Criterion: ["squared_error", "friedman_mse", "absolute_error"]; Maximum depth: 
[None, 3, 5, 10, 50, 100]; Minimum samples split: [2, 3, 5, 7, 10]; Minimum samples leaf: [2, 3, 5, 7, 10]; Mini‑
mum weight fraction leaf: [0.0, 0.25, 0.50]; Maximum features: ["auto", "sqrt", "log2", None]

Random forest Number of estimators: [10, 50, 100, 250]; Criterion: ["squared_error", "friedman_mse", "absolute_error"]; 
Maximum depth: [3, 5, 10, 50, 100]; Minimum samples split: [2, 3, 5, 7, 10]; Minimum samples leaf: [2, 3, 
5, 7, 10]
Minimum weight fraction leaf: [0.0, 0.25, 0.50]

Extreme randomized trees Number of estimators: [10, 50, 100, 250]; Criterion: ["squared_error", "friedman_mse", "absolute_error"]; 
Maximum depth: [None, 3, 5, 10, 50, 100]; Minimum samples split: [2, 3, 5, 7, 10]; Minimum samples leaf: 
[2, 3, 5, 7, 10]; Minimum weight fraction leaf: [0.0, 0.25, 0.50]

Extreme gradient boosting Number of estimators: [10, 50, 100, 250]; Maximum depth: [None, 3, 5, 10, 50, 100]; Maximum leaves: 
[None, 1, 3, 5, 10, 25]; Learning rate: [None, 0.15, 0.3, 0.46, 0.60, 0.76, 0.90]; Booster: [None, "gbtree", "gblin-
ear", "dart"]; Alpha: [0, 1, 3, 5]; Lambda: [1, 3, 5]; Gamma: [0, 1, 3, 5]

xgboost

Deep neural network Depth: tune.qrandint(1, 10); Layer size: tune.qrandint(100, 1500, 100); Use dropout: tune.grid_search([True, 
False]); Dropout rate: tune.quniform(0.1, 0.9, q = 0.1); Epochs: tune.qrandint(100, 1000, 10); Learning rate: 
tune.quniform(0.00001, 0.001, q = 0.00001)

tensorflow

Forked neural network Depth: tune.qrandint(1, 10); Dropout: tune.quniform(0.1, 0.9, q = 0.1); Use dropout: tune.grid_search([True, 
False]); Learning Rate: tune.quniform(0.00001, 0.001, q = 0.00001); Experimental layer size: tune.qrandint(5, 
50); Cargo layer size: tune.randint(25, 250); Sequence anomalies layer size: tune.qrandint(5, 200); Whole‑
peptide features layer size: tune.qrandint(10, 300); Sequence encoding layer size: tune.qrandint(100, 
1000); Genomics layer size: tune.qrandint(100, 750); Anomalous position layer size: tune.qrandint(5, 50); 
Epochs: tune.qrandint(100, 1000, 10)

https://moreiralab.com/resources/poseidon/
https://moreiralab.com/resources/poseidon/
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After submission, the POSEIDON prediction is swiftly 
computed, and the results are delivered on a separate 
page. Users are notified via email when a run succeeds.

Data and associated code underpinning the analy-
ses presented herein are accessible via the repository at 
https:// github. com/ Morei raLAB/ posei don.

Results
Database description
The POSEIDON database is a unique collection of recent 
information on CPPs, including quantitative cellular 
uptake values that have been experimentally obtained for 
each peptide. In addition to including all peptides in the 
CPPsite 2.0 database for which experimental quantitative 
cellular uptake data are available, POSEIDON has been 
highly enriched with up-to-date mining of the available 
literature.

A dataset of 2,371 entries was obtained through several 
steps of data acquisition and preprocessing, providing 
information about uptake evaluation methods, uptake 
conditions (such as temperature, cell line, and time of 
CPP incubation), uptake values, uptake units, cargoes, 
and peptide sequence. Both the CPPsite 2.0, and POSEI-
DON databases share information on peptide sequences, 
characteristics, modifications, validation methods, and 
cargo types. However, POSEIDON stands out because it 
offers quantitative uptake values for CPPs, whereas CPP-
site 2.0 provides qualitative data.

POSEIDON covers all types of CPPs, including 
L-amino acids, D-amino acids, L- and D-amino acids, 
and non-natural amino acids (Fig. 2A). The composition 
of CPPs revealed that certain types of residues, such as 
arginine, lysine, and leucine, were more prominent in 
CPPs than in methionine, aspartate, tyrosine, and aspara-
gine residues, which were not enriched in CPPs (Fig. 2C). 
The positively charged residues like arginine and lysine in 
POSEIDON interact with negatively charged cell mem-
brane components, increasing cellular uptake, as shown 
in Fig. 2B. The amphiphilic nature of CPPs, owing to their 
cationic and hydrophobic residues, enhances their inter-
actions with the cell membrane and improves cell pen-
etration [38] or cargo interaction [39].

This database provides peptide sequences that facili-
tate the retrieval of physicochemical properties that can 
be directly calculated from their primary sequences. Our 
dataset contained a significant number of peptides with 
lengths less than 10 amino acids (n = 821) and between 
11 and 20 amino acids (n = 1,029), as shown in Fig. 3A. 
Most CPPs exhibit molecular weights ranging from 1 
to 1.5 kDa. Both charge distribution and peptide length 
properties enable CPPs to interact with various cell-sur-
face molecules, significantly influencing the selection of 
an entry pathway [40]. Among several influencing factors, 

such as the physicochemical properties of the peptide 
and its cargo, the internalization routes of CPPs are pri-
marily directed towards two major pathways: endocytosis 
(an active or energy-dependent process) and membrane 
translocation (a direct or passive energy-independent 
process) [41]. Therefore, we analyzed the distribution of 

Fig. 2 Representation of peptide composition in the POSEIDON 
database, raw data in blue, and benchmark data in red based on A 
chirality/modifications of CPP, B the type of amino acid, and C 
quantification of the amino acid composition of CPPs. The data 
pertain to peptides without non-natural amino acids

https://github.com/MoreiraLAB/poseidon
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the cell lines, as they play a key role in peptide cell pen-
etration. POSEIDON showed that more than 100 cell 
lines are associated with CPPs internalization. As shown 
in Fig. 3B, most CPPs were tested in HeLa cells (n = 597), 
followed by MCF7 (n = 162), A549 (n = 137), CHO 
(n = 97), CHO-K1 (n = 94), and HEK293T cells (n = 82). 
The diversity of cell lines ensures that CPP/cell line com-
binations can be analyzed using this database.

Scientific studies have shown that there are various 
roles associated with CPPs, ranging from fluorophores 
to nucleic acids. Thus, cargoes associated with each pep-
tide are available in POSEIDON. As expected, our data-
set demonstrated that fluorescein isothiocyanate (FITC), 

fluorescein, and carboxyfluorescein were the cargoes 
most strongly associated with CPPs (Fig. 4A). As shown 
in Fig.  4B, most CPPs in the dataset were associated 
with fluorophores (n = 4,368), followed by small ligands 
(n = 795), nanoparticles (n = 633), proteins (n = 600), and 
nucleic acids (n = 471).

Flow cytometry was the most commonly employed 
method for uptake evaluation in this dataset, account-
ing for 1,349 entries, whereas fluorescence microscopy, 
fluorescence spectroscopy, and Fluorescence-Activated 
Cell Sorting (FACS) were employed for 289, 247, and 
155 entries, respectively (Fig.  4C). However, as shown 
in Fig.  4D, there was a high degree of variability in the 
uptake units, and several studies used slight differences 
in identical uptake unit designations.

After standardizing identical units to a unique designa-
tion, the mean fluorescence intensity was the most fre-
quently employed unit in this dataset, with 481 entries. 
The different units presented in Fig.  4C highlight the 
lack of standardization in CPP uptake evaluations con-
ducted in previous studies, which hinders the compari-
son and analysis of the CPP uptake data. Although there 
are currently no standardized methods for CPP uptake 
evaluation, flow cytometry has been employed signifi-
cantly more frequently than the other methods. This 
suggests that it is possible to establish a general method 
using specific easily attainable controls, allowing a large 
amount of quantitative data to be acquired and compared 
more adequately and easily. This database also provides 
information on the temperature and time of CPP incu-
bation. Due to the nature of CPPs and their internaliza-
tion mechanisms, changes in certain conditions, such as 
temperature, can significantly impact the uptake of CPPs 
by cells, often due to alterations in the underlying mecha-
nism [42–44]. Thus, these data are highly valuable for the 
development of new approaches.

Processed database description
The POSEIDON database uptake-prediction methods 
developed in this study rely exclusively on fluorescence 
measurements. This approach was selected because other 
methods can produce inconsistent results, leading to 
discrepancies in the derived uptake units. Therefore, to 
establish a reliable benchmark dataset, we selected CPPs 
that were evaluated using fluorescence methods,

resulting in a dataset of 1274 entries. After removing 
outliers, the final dataset contained 1263 entries.

As shown in red in the figures, most amino acids are 
L-amino acids (Fig.  2A) and were essentially hydro-
phobic and polar charged (Fig. 2B). Similar to the raw 
dataset, arginine, lysine, and leucine were present in 
large numbers in the CPP sequences, in contrast to 

Fig. 3 CPP features in both datasets (raw data in blue 
and benchmark data in red). A Length of peptide sequences 
in the database. B The 10 most used cell lines according 
to the dataset
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Fig. 4 Distribution of CPPs in POSEIDON according to A cargo, B cargo type, C uptake evaluation methods, and D uptake units. A and B represent 
both datasets: raw data in blue and benchmark data in red
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methionine, aspartate, asparagine, and tyrosine resi-
dues, which were not prominent in CPPs (Fig. 2C).

The benchmark dataset included CPP sequences 
of various sizes, with sequences consisting of 11–20 
residues being the most common (n = 619), followed 
by sequences with fewer than 10 residues (n = 316), 
and sequences consisting of 21–30 residues (n = 265) 
(Fig.  3A, red). In terms of cell lines, HeLa cells were 
the most frequently used, as in the raw dataset. How-
ever, the benchmark dataset showed the emergence 
of HepG2, Jurkat, and bEnd.3 cell lines as among the 
most frequently used cell lines for CPPs. Regarding 
cargo, the benchmark dataset showed a slightly differ-
ent trend than the raw dataset, with Dil, rhodamine 
(Rho), small interfering RNA (siRNA), and TAM being 
highly associated with CPPs. Fluorophores were the 
most common cargo (n = 1,249), followed by nanopar-
ticles (n = 198), small ligands (n = 165), nucleic acids 
(n = 110), and proteins (n = 56) (Fig. 4B, red).

Additional interesting information emerges when 
conducting a correlation analysis between the features 
and the processed target variable. Among the 30 fea-
tures that exhibited the highest correlation with the 
target variable (Additional file  1: Table  S4), 50% with 
the highest Pearson correlation were position-encod-
ing features. One-third of the most correlated fea-
tures are genomic features. Only two features from the 
entire sequence were present in the top 30, whereas 
cargo had 3. Although experimental features such as 
concentration and temperature were not included in 
the top 30, it is apparent that they are among the top 
100 on the additional figures on the website.

Performance of the different predictors
After implementing the hyperparameter optimization 
pipeline (Table 3), the best-performing models were XGB 
and DNN, as indicated by their evaluation metrics on 
the independent test set that did not participate in either 
training or hyper-parameter optimization (Table 4). Spe-
cifically, both models achieved high  r2 scores, exceeding 
0.76, whereas the other methods barely surpassed the 
0.70 threshold. Furthermore, they exhibited high corre-
lation metrics, with Pearson correlations above 0.87 and 
Spearman correlations above 0.88. Consequently, the 
final prediction pipeline of POSEIDON displays predic-
tions generated by both DNN and XGB models.

Discussion
CPPs have great potential in therapy and diagnosis; how-
ever, identifying new and efficient CPPs can be costly and 
time-consuming. Consequently, computational biologi-
cal studies have become increasingly important in this 
field, although they have mainly focused on the qualita-
tive features of CPPs. POSEIDON addresses this gap by 
offering a novel up-to-date database that includes quan-
titative experimental uptake efficiency data and serves 
as a benchmark for the field. The POSEIDON database 
and prediction pipeline have provided several important 
insights into the rapidly evolving field of CPP research. 
First, it is evident that effective CPPs are characterized by 
an abundance of positively charged amino acids, which 
is biochemically logical because it allows peptides to lev-
erage the electrostatic differences inside and outside the 
cell, thereby augmenting cellular internalization. Indeed, 
the internalization mechanism of CPPs remains a subject 
of ongoing debate, with CPP concentration, charge, and 
amphipathicity emerging as crucial factors. The intricate 

Table 3 Optimal parameters for optimized ML models

Model Parameters Package

Support vector machine Kernel:”rbf”; C: 1.5; Gamma: “scale” scikit-learn

Stochastic gradient descent Loss: “squared_error”; Penalty: “l2″; Alpha: 0.00001; Learning rate:”adaptive”

k-nearest neighbors N Neighbors: 2; P: 2; Algorithm: “brute”

Decision tree Splitter: “best”; Criterion: "friedman_mse"; Maximum depth: 10; Minimum samples split: 3; Minimum 
samples leaf: 7; Minimum weight fraction leaf: 0.0; Maximum features: "auto"

Random forest Number of estimators: 50; Criterion: "squared_error"; Maximum depth: 50; Minimum samples split: 3; 
Minimum samples leaf: 3; Minimum weight fraction leaf: 0.0

Extreme randomized trees Number of estimators: 10; Criterion: "friedman_mse"; Maximum depth: 100; Minimum samples split: 
10; Minimum samples leaf: 7; Minimum weight fraction leaf: 0.0

Extreme gradient boosting Number of estimators: 50; Maximum depth: 10; Maximum leaves: 10; Learning rate: None; Booster: 
"dart"; Alpha: 1; Lambda: 3; Gamma: 0

xgboost

Deep neural network Depth: 1; Layer size: 500; Use dropout: True; Dropout rate: 0.3; Epochs: 230; Learning rate: 0.0005 tensorflow

Forked neural network Depth: 7; Dropout: 0.9; Use dropout: False; Learning Rate: 0.0001; Experimental layer size: 39; Cargo 
layer size: 239; Sequence anomalies layer size: 79; Whole‑peptide features layer size: 155; Sequence 
encoding layer size: 850; Genomics layer size: 687; Anomalous position layer size: 45; Epochs: 170
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processes governing CPP internalization involve a combi-
nation of endocytic and direct translocation mechanisms 
[41]. The positive charge, particularly from arginine resi-
dues, significantly influenced CPP uptake, with arginine 
being more favorable for delivery and CPP activity than 
lysine. Amphipathicity peptides can directly penetrate 
the cell membrane at low concentrations, whereas non-
amphipathic CPPs rely on endocytosis [6]. Regarding 
CPP concentration, endocytosis is typically the predomi-
nant mechanism under physiological conditions and at 
low peptide concentrations. In contrast, at higher peptide 
concentrations, direct translocation across the plasma 
membrane becomes more prevalent [41]. Further inves-
tigation of the specific mechanisms employed by CPPs 
with different physicochemical properties and concen-
trations will provide valuable insights into the complex 
dynamics governing cellular uptake.

Second, fluorophores are significant molecular inter-
ventions for CPP activity, as their presence is methodo-
logically required, and they are highly correlated with 
the uptake variable, implying that they may intervene in 
molecular interactions. Moreover, the presence of cargo 
can modify the CPP uptake pathway, as demonstrated by 
the observed impact of cargo size and binding methodol-
ogy on the CPP translocation mechanism [41, 45].

Third, genomics descriptors play a crucial role in this 
process, which was not adequately addressed before 
POSEIDON. Notably, mutation of the NRAS gene, which 
is linked to cell division in cancer, was found to be the 
variable most correlated with CPP uptake, followed 

closely by mutation of IDH1, which is associated with 
the expression of isocitrate dehydrogenase 1, a key player 
in the Krebs Cycle. Exploring the biological relationship 
between these genes (and several others high in ranking) 
and CPPs might be a worthy endeavor.

Fourth, CPP penetration into cells is influenced by the 
cell line owing to differences in membrane composition, 
receptor expression, and intracellular mechanisms. These 
factors affect the effectiveness and penetration mecha-
nism of CPPs. Understanding CPP behavior in specific 
cell lines is crucial for accurate results, as the findings 
may not apply universally, as studies on various cell lines 
reveal cell-dependent preferences for specific CPPs [41], 
which also supports targeted CPP application in various 
biological and therapeutic contexts.

The POSEIDON database is not only the largest but 
also a comprehensive, curated database with CPP infor-
mation. The inclusion of an extensive range of experi-
mental characteristics in our dataset underscores the 
complexity inherent in CPP behavior. The prediction 
method employed by POSEIDON is unique in that it 
effectively considers CPP uptake activity as a continu-
ous variable, unlike previous efforts that only featured 
categorical predictions. Our approach also includes mul-
tiple previously unused sources of information, which 
will allow users to test sequence anomalies, select tissue-
specific cell lines, choose up to two cargoes per peptide, 
and adjust experimental conditions, such as temperature, 
concentration, and incubation time. We ensured that the 
algorithm incorporated all relevant parameters, thereby 

Table 4 Results for the best performance of each optimized ML model

Model Subset RMSE MSE MAE Pearson Spearman r2

Support vector machine Train 0.550 0.303 0.318 0.918 0.943 0.817

Test 0.717 0.514 0.485 0.856 0.887 0.706

Stochastic gradient descent Train – – – 0.002 0.002 –

Test – – – 0.002 0.002 –

k-nearest neighbors Train 0.419 0.175 0.263 0.946 0.942 0.894

Test 0.746 0.557 0.572 0.828 0.823 0.681

Decision tree Train 0.690 0.476 0.488 0.844 0.824 0.712

Test 0.951 0.904 0.669 0.704 0.707 0.483

Random forest Train 0.397 0.158 0.259 0.958 0.961 0.905

Test 0.700 0.490 0.452 0.856 0.869 0.720

Extreme randomized trees Train 0.527 0.277 0.349 0.915 0.924 0.832

Test 0.765 0.585 0.522 0.819 0.830 0.665

Extreme gradient boosting Train 0.177 0.031 0.098 0.991 0.989 0.981

Test 0.643 0.413 0.394 0.874 0.881 0.764

Deep neural network Train 0.259 0.067 0.153 0.980 0.979 0.959

Test 0.640 0.410 0.402 0.876 0.880 0.765

Forked neural network Train 0.358 0.128 0.199 0.961 0.960 0.923

Test 0.740 0.547 0.447 0.839 0.857 0.687
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enabling it to capture intricate and nonlinear relation-
ships among the variables. This approach enhances the 
predictive capacity of the model, making it adept at han-
dling multifaceted experimental conditions encountered 
in various studies.

Assessing the POSEIDON ML approach in compari-
son with other prediction methods poses a distinct chal-
lenge mainly because of the limited availability of similar 
approaches. Nonetheless, Dowaidar et al. represented an 
exception, as they spearheaded the creation of Fragment 
Quantitative Structure–Activity Relationship (FQSAR) 
models [46]. These models were specifically tailored to 
forecast the biological activity of CPPs in peptide-based 
transfection systems (PBTS), trained on only 11 data 
points, yet achieved  r2 values ranging from 0.906 to 0.961 
across various models. Nevertheless, POSEIDON stands 
out with very high correlation metrics and low errors, 
fully demonstrating its ability to predict CPP uptake 
under different conditions with exceptional performance.

Conclusion
POSEIDON provides the first quantitative data on cel-
lular uptake, methodology, units, and experimental con-
ditions, making it an exceptional tool. The POSEIDON 
database, a recently launched, open-source, and compre-
hensive resource, focuses exclusively on curated CPPs 
with quantitative uptake values. Each CPP in the data-
base is accompanied by physicochemical properties, cell 
line, cargo, sequence, uptake evaluation method, concen-
tration, temperature, and incubation time. The POSEI-
DON predictor is also groundbreaking, as it was the first 
tool to predict CPP uptake based on quantitative uptake 
and genomic data. With its dynamic, free, and easy-to-
use interface, users can easily submit a peptide sequence 
and obtain computational predictions of its uptake in 
various cell lines. Additionally, users can customize prop-
erties, such as peptide concentration, incubation time, 
temperature, and cell line type. The POSEIDON data-
base is a unique resource for researchers to develop new 
methodologies and predictors for CPP sequence design, 
based on uptake values.
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