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Abstract 

Modern data mining techniques using machine learning (ML) and deep learning (DL) algorithms have been shown 
to excel in the regression‑based task of materials property prediction using various materials representations. In 
an attempt to improve the predictive performance of the deep neural network model, researchers have tried to add 
more layers as well as develop new architectural components to create sophisticated and deep neural network mod‑
els that can aid in the training process and improve the predictive ability of the final model. However, usually, these 
modifications require a lot of computational resources, thereby further increasing the already large model training 
time, which is often not feasible, thereby limiting usage for most researchers. In this paper, we study and propose 
a deep neural network framework for regression‑based problems comprising of fully connected layers that can work 
with any numerical vector‑based materials representations as model input. We present a novel deep regression neural 
network, iBRNet, with branched skip connections and multiple schedulers, which can reduce the number of param‑
eters used to construct the model, improve the accuracy, and decrease the training time of the predictive model. 
We perform the model training using composition‑based numerical vectors representing the elemental fractions 
of the respective materials and compare their performance against other traditional ML and several known DL archi‑
tectures. Using multiple datasets with varying data sizes for training and testing, We show that the proposed iBRNet 
models outperform the state‑of‑the‑art ML and DL models for all data sizes. We also show that the branched structure 
and usage of multiple schedulers lead to fewer parameters and faster model training time with better convergence 
than other neural networks. Scientific contribution: The combination of multiple callback functions in deep neural 
networks minimizes training time and maximizes accuracy in a controlled computational environment with paramet‑
ric constraints for the task of materials property prediction.
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Introduction
One of the most critical aspects of modern computa-
tional materials science is to perform accurate mate-
rials property prediction to, in turn, discover new 
materials with desirable characteristics from the near-
infinite materials space. To achieve this goal, researchers 
have applied machine learning (ML) and deep learning 
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(DL) algorithms to large-scale datasets derived through 
experiments and high throughput simulations such as 
density functional theory (DFT) calculations [1–5] to 
understand materials better and predict their properties 
[6–10] leading to the novel paradigm of materials infor-
matics [11–19]. Materials property prediction is generally 
a regression-based task where various types of numerical 
features derived from domain knowledge, such as com-
position-based and structure-based features, are used as 
input to train and generate a predictive model [20–25]. 
Since the materials are represented in the form of a one-
dimensional numerical vector, traditional ML algorithms 
such as Random Forest and Support Vector Machines 
and neural networks based deep learning (DL) models 
composed of fully connected layers are widely used to 
perform the regression task [26–31].

In an attempt to obtain a highly accurate predic-
tive model for the regression-based task of materials 
property prediction, researchers have proposed deep 
learning models with complex input types, network 
components, and architecture design [32–41]. Work in 
[34] used a 17-layered deep neural network composed 
of fully connected layers with varying layer sizes called 
ElemNet which automatically captures the essential 
chemistry between the elements of a compound using 
elemental fractions without any domain knowledge 
based feature engineering as input to predict the forma-
tion enthalpy of materials. ElemNet was applied in [37], 
where they applied a transfer learning technique from a 
large DFT dataset to an experimental dataset to improve 
the accuracy of the predictive model trained on experi-
mental formation enthalpy. Work in [40, 41] proposed 
deep-learning framework based on branched residual 
learning with fully connected layers called BRNet which 
can efficiently build accurate models for predicting mate-
rials properties with fewer parameters and faster model 
training time. Zhou et al. [42] used a neural network with 
a single fully connected layer to predict formation energy 
from high-dimensional vectors learned from Atom2Vec. 
Work in [32] used a continuous filter convolutional neu-
ral network called SchNet to model quantum interac-
tions in molecules for the interatomic forces and total 
energy. SchNet was extended in [33] where they added an 
edge update network to allow for neural message passing 
between atoms for better predictions of molecular and 
materials properties. Crystal graph convolution neural 
network (CGCNN) proposed in [35] provides a universal 
and interpretable representation of crystalline materials 
by directly learning material properties from the con-
nection of atoms in the crystal. CGCNN was improved 
in [36] where they incorporated Voronoi tessellated 
crystal structure information, optimized chemical rep-
resentation of interatomic bonds in the crystal graph, 

and used explicit 3-body correlations of neighboring 
constituent atoms. Work in [43] developed a universal 
MatErials Graph Network (MEGNet) model with global 
state attributes for materials property prediction of mol-
ecules and crystals. Goodall and Lee developed Roost 
[38] that combines the stoichiometry of a compound 
with an atom-based embedding using a message-passing 
neural network comprised of dense weighted graphs to 
improve the predictive ability. Recently, Choudhary and 
DeCost developed Atomistic Line Graph Neural Net-
work (ALIGNN) [39], which combines angular informa-
tion along with the existing atom and bond information 
to obtain high accuracy models for improved materials 
property prediction.

In general, most of the pre-existing works focus on 
using complex network components, input types, and 
architecture design to improve the predictive ability of 
the trained model, thereby making a trade-off between 
model accuracy with computational resources and 
training time. However, it can be challenging to lev-
erage such complex components to build predictive 
models as these changes require higher computational 
resources and training time. Moreover, these complex 
architectures use little to no callback functions, such 
as early stopping and learning rate schedulers, during 
their training process to help generalize and improve 
the performance of the trained model, even though 
various applications have been shown to benefit from 
the use of it [44, 45], thereby possibly requiring more 
rigorous random hyperparameter optimization in 
an attempt to obtain an accurate model for a specific 
materials property. Hence, in this work, we focus on 
the problem of building an effective and efficient deep 
neural network architecture with higher accuracy that 
has a lower computational cost during model training 
in a controlled computational environment (17-layers 
in our case) rather than introducing complex network 
components, input types, and architecture design to try 
and boost model performance as done in recent works 
[35, 36, 38–41, 43, 46]. For this purpose, we propose 
and analyze a deep learning framework composed of 
deep neural networks and multiple callback functions 
that has less computational cost and higher accuracy 
and can be used to predict materials properties using 
tabular representations. Since we encounter a lot of 
regression-based problems in physical sciences, and 
the datasets used to create a model consist of tabular 
data, the model architectures are mainly composed of 
fully connected layers. However, learning the regres-
sion mapping from input to output using fully con-
nected layers is comparatively more challenging than 
the classification problem due to its highly non-linear 
nature. Hence, to simultaneously minimize training 
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time and maximize accuracy in a controlled compu-
tational environment with parametric constraints, we 
propose a novel approach based on a combination of 
multiple callback functions and a deep neural network 
composed of fully connected layers.

The proposed approach leverages multiple callback 
functions in a deep neural network, building upon a 
pre-existing 17-layered deep neural network branched 
residual network (BRNet) as the base architecture, 
which comprises of a series of stacks, each composed 
of a fully connected layer and LeakyReLU [47] with a 
branched structure in the initial layers and residual con-
nections after each stack for better convergence during 
the training. For simplicity, we call our proposed model 
as improved branched residual network (iBRNet). We 
compare iBRNet against multiple baseline deep regres-
sion networks (all of which are made using 17 layers, 
with each layer comprised of the same number of neu-
rons): ElemNet with fully connected layers and drop-
out at variable intervals of the architecture, individual 
residual network (IRNet) with fully connected layers, 
batch normalization, and residual connections after each 
layer, branched network (BNet) with fully connected lay-
ers and branching at the initial layers of the architecture, 
and branched residual network (BRNet) with fully con-
nected layers, branching at the initial layers of the archi-
tecture and residual connection after each layer. We also 
compare iBRNet against other well-known deep neural 
networks [48–50] that use composition-based features as 
model input. We focus on the design problem of predict-
ing the formation enthalpy of inorganic materials from 
a tabular input vector composed of 86 features repre-
senting composition-based elemental fractions from the 
Open Quantum Materials Database (OQMD) [3], Auto-
matic Flow of Materials Discovery Library (AFLOWLIB) 
[51], Materials Project (MP) [4], and Joint Automated 
Repository for Various Integrated Simulations (JARVIS). 
We also evaluated the performance of the iBRNet using 
other materials properties in OQMD, AFLOWLIB, MP, 
and JARVIS datasets and found that iBRNet consist-
ently outperforms the networks trained in a controlled 
computational environment with parametric constraints 
on the prediction tasks. We also observe that the use of 
multiple callback functions during the training phase of a 
deep neural network leads to significantly faster conver-
gence than existing approaches that use little to no call-
back functions in their training phase. iBRNet leverages 
an intuitive and straightforward approach of leveraging 
multiple callback functions during the training phase of 
a deep neural network without requiring any additional 
modification to the architecture or domain-dependent 
model engineering, thereby making it easy and useful for 
researchers working not only on materials science but 

other scientific domains to train a predictive model for 
their regression-based tasks.

Results and discussion
Datasets
We use four datasets of DFT-computed properties in 
this work: Open Quantum Materials Database (OQMD) 
[3], Automatic Flow of Materials Discovery Library 
(AFLOWLIB) [51], Materials Project (MP) [4], Joint 
Automated Repository for Various Integrated Simula-
tions (JARVIS) [5]. We only keep the most stable struc-
ture available in the database to deal with duplicates 
arising due to different structures of the same composi-
tion, i.e., each data entry corresponds to the lowest for-
mation energy among all compounds with the same 
composition, representing its most stable crystal struc-
ture. Detailed descriptions of the datasets used to evalu-
ate our methods are shown in Table 1.

OQMD, AFLOWLIB, MP, and JARVIS were down-
loaded from the website of the databases, whereas all the 
other datasets were obtained using Matminer [52]. For 
evaluation, all the datasets are randomly split with a fixed 
random seed and stratification based on the number of 
elements in a compound (to make the model train, vali-
date, and test on the same proportion of compound with 
variable no. of elements) into training, validation, and 
test sets in the ratio of 81:9:10.

Model architecture design
We use BRNet [40, 41] as our base architecture as it was 
shown to perform better than traditional machine learn-
ing models and other existing neural networks with the 
same parametric constraints. A detailed explanation of 
the model architectures used in this work is provided in 
the Methods section. To improve the performance of the 
existing BRNet model without introducing additional 
computational parameters, we made some changes to the 
components and evaluated how it affects its accuracy and 
training time for the task of predicting formation energy 
using training data from OQMD, AFLOWLIB, MP, and 
JARVIS.

Table 1 Datasets used in this work

Dataset Data size No. of 
properties

OQMD [3] 345,134 3

AFLOWLIB [51] 234,299 3

MP [4] 89,181 5

JARVIS [5] 19,994 5
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The BRNet is modified by combining “reduce learn-
ing rate on plateau (RLROP)” with “early stopping (ES)” 
callback functions. ES is used to stop the model train-
ing if the validation loss does not improve after a cer-
tain number of specified epochs and save the model 
with the best validation error to prevent the model from 
overfitting. RLROP is used to reduce the learning rate 
by a factor (generally between two-ten) if the validation 
loss stops improving after a certain number of specified 
epochs to help the model get out of the learning stagna-
tion state. These callback functions are often seen used 
in deep neural networks composed of simpler neural net-
works, such as a fully connected network but rarely seen 
in more advanced neural networks, such as graph neu-
ral networks, possibly requiring more rigorous random 
hyperparameter optimization in an attempt to obtain an 
accurate model for a specific materials property. Next, we 
perform model training using different combinations of 
epochs required to activate the callback functions used in 
the iBRNet (ES and RLROP) to see the effect on the accu-
racy and training time of the model. We start with a com-
bination of 5/10 epochs for RLROP/ES and go till 95/100 
epochs (e.g. of combinations: 5/10, 10/15,...95/100) where 
the difference in the number of epochs between the two 
callback functions is set to five for generalizability. For 
RLROP, we change the learning rate by a factor of 10 
from 1× 10

−4 to 1× 10
−8 as the model stops improving.

Table 2 shows the validation MAE and training time for 
different combinations of RLROP/ES. From Table  2 we 
can see that initially, the validation MAE decreases as we 
increase the number of epochs required to activate the 
RLROP and ES callback functions. Then we see a stagna-
tion in the validation MAE of the prediction task for all 
four datasets used in the analysis. Also, even though the 
validation MAE does not decrease after a certain combi-
nation of RLROP/ES, we observe a constant increase in 
the training time as we increase the number of epochs 
required to activate the RLROP and ES callback func-
tions. Hence, we narrow down the RLROP/ES combi-
nations used for performing model training for iBRNet 
45–50 only to perform model testing on the holdout test 
set to have a fair comparison with other models with par-
ametric constraints for the rest of the analysis. Next, we 
compare the performance of our proposed model against 
its base architecture as well as other DL models with the 
same parametric constraint, on the holdout test set.

Table  3 shows that the proposed model significantly 
outperforms the existing deep neural network architec-
tures, which do not use multiple callback functions for 
model training, on the prediction task for all the datasets. 
We also observed that multiple callback functions sig-
nificantly reduce the training time without changing the 
number of parameters used to construct the architecture, 
which illustrates its benefit over ElemNet, IRNet, BNet, 

Table 2 Validation MAE and training time for different combinations of RLROP/ES on OQMD, AFLOWLIB, MP, and JARVIS

RLROP/ES 
Combination

OQMD AFLOWLIB MP JARVIS

Validation 
MAE

Training Time 
(s)

Validation 
MAE

Training Time 
(s)

Validation 
MAE

Training Time 
(s)

Validation 
MAE

Training Time 
(s)

5/10 0.041 8477 0.045 5542 0.106 1216 0.073 339

10/15 0.040 10003 0.043 8424 0.105 1533 0.068 602

15/20 0.040 14779 0.043 8056 0.104 2137 0.065 926

20/25 0.038 20389 0.043 12870 0.103 2623 0.065 965

25/30 0.039 18192 0.043 12593 0.102 3806 0.065 1005

30/35 0.039 24020 0.043 15289 0.100 4597 0.065 1231

35/40 0.038 30933 0.043 17979 0.102 6053 0.065 1000

40/45 0.039 28640 0.043 18908 0.103 10103 0.064 1534

45/50 0.038 38252 0.043 19255 0.101 5514 0.065 1828

50/55 0.038 28982 0.043 22525 0.100 9021 0.065 1619

55/60 0.038 33719 0.043 23637 0.101 7860 0.066 1750

60/65 0.038 34438 0.043 21431 0.100 10317 0.065 1915

65/70 0.038 44597 0.043 23908 0.101 10866 0.064 2265

70/75 0.038 53111 0.043 25401 0.099 8753 0.065 1817

75/80 0.038 45250 0.043 27630 0.100 8161 0.066 2106

80/85 0.039 72469 0.043 26827 0.099 8624 0.065 3564

85/90 0.038 56431 0.043 32344 0.099 11587 0.064 2363

90/95 0.038 65028 0.043 34705 0.099 10913 0.065 3730

95/100 0.038 79660 0.043 46944 0.098 10642 0.065 2363
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and BRNet for the design task. Moreover, the difference 
in test MAE and training time between BRNet and iBR-
Net is also significant, suggesting that simply introducing 
a meaningful set of callback functions can help improve 
the performance of the deep neural network architec-
tures trained in a controlled computational environ-
ment with the same parametric constraint. Additionally, 
we observe that the MAE of the trained model does not 
always decrease with the increase in the number of data 
points, like in the case of the model trained using the MP 
dataset, which shows higher model error as compared to 
the model trained using the JARVIS dataset. It would be 
interesting to see if it is possible to analyze the underlying 
cause of this by exploring the parametric settings of the 
DFT simulations used to generate the MP dataset.

Other materials properties
Next, we analyze the performance of our proposed model 
for predicting materials properties other than forma-
tion enthalpy. To show the impact on the performance, 
we compare the performance of our proposed network 
against DL networks that do not incorporate multiple 
callback functions for their model training.

Table  4 shows that the proposed model with multiple 
callback functions always outperforms other DL models 
that do not incorporate multiple callback functions for 
their model training in terms of accuracy and training 
time. The performance of ElemNet and IRNet is almost 
always the worst, with ElemNet showing low accuracy 
and IRNet showing large training time, except for some 
cases where there are fewer data points for model train-
ing. We also observe that the training time of iBRNet is 
almost always faster as compared to its base architecture 
BRNet. iBRNet also shows better or comparable training 
time as compared to other architectures while keeping 
the best accuracy among all the models.This shows that 
a deep neural network significantly benefits from the use 
of multiple callback functions both in terms of improving 

accuracy and decreasing the training time. Similar to the 
previous observation, the MAE of the trained model does 
not always decrease with the increase in the number of 
data points for other materials properties like Band Gap 
as well. We also plot the percentage change in test MAE 
and training time of the proposed iBRNet against BRnet 
and best performing pre-existing model in Figs.  1,   2 
respectively.

Figures 1, 2 show that iBRNet outperforms the existing 
DL models for most of the cases with up to 13% reduc-
tion in test MAE and 51% reduction in training time with 
BRNet as well as other pre-existing DL models which 
uses the same number of layers in the architecture for 
almost all materials properties in the four datasets used 
in the analysis. Although for some of the cases, pre-
existing DL models (mostly ElemNet) have faster train-
ing time as compared to iBRNet, the test MAE of those 
pre-existing DL models is far worse as compared to iBR-
Net, making those DL models not very useful for further 
analysis. This clearly illustrates the benefit of incorporat-
ing multiple callback functions for traning deep neural 
networks.

Other materials representation
Next, we investigate the adaptability of the proposed net-
work by training models on an other materials represen-
tation as model input. Here, we train all the DL networks 
using a vector composed of 145 features representing 
composition-based physical attributes [21] for model 
input instead of 86 vector elemental fractions (EF) [34].

From Table  5, we observe that our proposed model 
outperforms other DL models for all the datasets with 
different materials properties, which shows that irre-
spective of the materials representation that is used 
as the model input to train the DL models, the deep 
neural network with multiple callback functions sig-
nificantly helps in accurately learning the materials 
properties as compared to other DL networks. We 

Table 3 Test MAE and training time of different models for prediction task of “Model Architecture Design”

Dataset Evaluation Models

(Size) Metrics ElemNet IRNet BNet BRNet iBRNet

OQMD MAE 0.0491 0.0421 0.0423 0.0409 0.0372

(345,134) (Training Time (s)) (70851) (258367) (97587) (106658) (38252)

AFLOWLIB MAE 0.0581 0.0508 0.0481 0.0468 0.0433

(234,299) (Training Time (s)) (16493) (94373) (18123) (30501) (19255)

MP MAE 0.1210 0.1166 0.1118 0.1063 0.1035

(89,181) (Training Time (s)) (5951) (25249) (8367) (15677) (5514)

JARVIS MAE 0.0829 0.0942 0.0713 0.0705 0.0664

(19,994) (Training Time (s)) (2036) (3547) (1913) (4467) (1828)
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Table 4 Test MAE and training time of different models for each of the materials properties for the prediction task of “Other materials 
properties”

Dataset Property Evaluation Models

(Size) Metrics ElemNet IRNet BNet BRNet iBRNet

OQMD Band Gap MAE 0.0517 0.0544 0.0500 0.0476 0.0449

(345,134) (Training Time (s)) (27428) (119341) (37516) (37914) (29021)

Stability MAE 0.0509 0.0470 0.0447 0.0429 0.0414

(345,134) (Training Time (s)) (41206) (131252) (62139) (93733) (23872)

AFLOWLIB Density MAE 0.2271 0.1855 0.1844 0.1762 0.1656

(234,299) (Training Time (s)) (8160) (81221) (22021) (23989) (20849)

EGap MAE 0.1446 0.1398 0.1161 0.1078 0.0940

(14,751) (Training Time (s)) (628) (2651) (642) (866) (861)

MP Band Gap MAE 0.3417 0.3159 0.3170 0.3151 0.2943

(89,181) (Training Time (s)) (5780) (18998) (9458) (9346) (4493)

Density MAE 0.3732 0.3734 0.3489 0.3441 0.3293

(89,181) (Training Time (s)) (11080) (25609) (12724) (13433) (6260)

E Above Hull MAE 0.1080 0.1120 0.1031 0.1086 0.1005

(89,181) (Training Time (s)) (2461) (6763) (5790) (10339) (4993)

Total Magnetization MAE 1.4277 1.3947 1.4123 1.4331 1.4094

(89,181) (Training Time (s)) (2095) (6394) (2369) (2916) (2317)

JARVIS Gap OPT MAE 0.2935 0.2995 0.2645 0.2602 0.2451

(17,924) (Training Time (s)) (1200) (2561) (1042) (1113) (1082)

Bulk Modulus MAE 11.556 11.707 11.791 10.632 10.115

(8,199) (Training Time (s)) (792) (1270) (427) (879) (561)

Shear Modulus MAE 10.640 10.754 11.101 9.9359 9.6818

(8,199) (Training Time (s)) (585) (764) (274) (527) (397)

Gap TBMBJ MAE 0.5441 0.5259 0.4833 0.4967 0.4828

(5,287) (Training Time (s)) (373) (792) (257) (276) (241)

Fig. 1 The figure indicates the percentage change in test MAE of the proposed iBRNet w.r.t (a) BRNet, and (b) best performing pre‑existing model. 
The x‑axis shows the dataset size on a log scale, and the y‑axis shows the percentage change in test MAE from all the model training performed 
in Tables 3, 4 calculated as ((MAEiBRNet/MAEOther)–1) x 100%



Page 7 of 13Gupta et al. Journal of Cheminformatics           (2024) 16:17  

also see that the iBRNet is more accurate and requires 
less training time than its base architecture BRNet 
for almost all of the cases, which shows that the pres-
ence of multiple callback functions during the train-
ing phase of the neural network contributes towards 
producing a better model faster. Moreover, other 
pre-existing DL models that have less training time 
as compared to iBRNet have far worse test MAE than 
the proposed network making it not useful for further 
analysis. This shows the adaptability of the deep neural 
network with multiple callback functions for the gen-
eral materials property predictive modeling task using 
any type of numerical vector-based representation as 
model input.

Additionally, we investigate the impact of differ-
ent composition-based input representations used for 
model training on the performance in terms of accu-
racy and training time of the model by comparing the 
elemental fraction (86 vector features representation) 
and physical attributes (145 vector features repre-
sentation) using iBRNet in Fig.  3. In general, physical 
attributes are seen as a more powerful and informative 
set of descriptors as compared to elemental fractions. 
Interestingly, we observe that feature representation 
composed of elemental fractions performs better as 
compared to the physical attributes. We believe this 
might be due to the well-known deep neural network’s 
ability to work well on raw inputs without manual fea-
ture engineering [34, 53]. Hence, for further analysis, 
we will only use the feature representation composed 
of composition-based elemental fractions as model 
input.

Comparison against other models
Finally, we investigate the performance of the proposed 
network against other well-known deep neural net-
works, i.e., Roost [48], CrabNet [49] and MODNet [50] 
that use composition-based features as model input in 
terms of MAE. We train iBRNet using feature representa-
tion composed of 86 vector composition-based elemen-
tal fractions as the model input. Roost uses matscholar 
[54] embedding comprised of composition and structure 
based information as input representations for graph 
neural networks (GNN). MODNet [50] featurizes com-
position based attributes from Matminer [52] and per-
forms feature selection based on the specific materials 
property before feeding them into the neural network. 
CrabNet [49] uses mat2vec [54] embedding comprised 
of composition and structure based information as input 
representation for attention-based network.

From Table 6, we observe that the proposed architec-
ture outperforms the existing well-known deep neural 
network models in terms of test MAE for most of the 
cases, even though they comprise of complex architec-
ture and informative input. This also shows the impor-
tance of hyperparameter selection and tuning for training 
deep neural networks. We believe this will inspire mate-
rials scientists to incorporate multiple schedulers for 
model training when building deep neural networks for 
the task of predicting materials properties.

Performance analysis
Additionally, to visually illustrate the performance ben-
efits of the proposed approach, we analyze the perfor-
mance using a bubble chart, prediction error chart, and 

Fig. 2 The figure indicates the percentage change in training time of the proposed iBRNet w.r.t (a) BRNet, and (b) best performing pre‑existing 
model. The x‑axis shows the dataset size on a log scale, and the y‑axis shows the percentage change in training time from all the model training 
performed in Tables 3, 4 calculated as ((TimeiBRNet/TimeOther)–1) x 100%
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cumulative distribution function (CDF) of the prediction 
errors. In this analysis, we perform a comparative study 
of different deep neural networks comprised of the same 
number of layers in terms of the model accuracy and the 
training time using formation enthalpy of the four differ-
ent DFT-computed datasets (OQMD, AFLOWLIB, MP, 
and JARVIS) as the materials property and composition-
based elemental fractions as the model input.

Figure 4 shows the bubble charts that indicate the per-
formance in terms of training time on the x-axis, MAE on 
the y-axis, and bubble size as the model parameters for 
different DL models using formation energy as the mate-
rials property and composition-based elemental fractions 

as the model input. The bottom-left corner of the bubble 
chart corresponds to the better overall performance for a 
DL model, as it indicates that the approach can produce 
an accurate model with less training time. We observe 
the following trends from Fig.  4: 1. ElemNet and IRNet 
architectures that are constructed by stacking the layers 
components linearly and do not have multiple schedulers 
almost always perform poorly both in terms of accuracy 
and training time. Here, ElemNet is usually less accurate 
with faster training time, and IRNet is usually more accu-
rate with slower training time; 2. BNet and BRNet archi-
tectures that are constructed by stacking the layers with 
branching and do not have multiple schedulers perform 

Table 5 Test MAE and training time of different models for each of the materials properties for prediction task of “Other materials 
representation”

Dataset Property Evaluation Models

(Size) Metrics ElemNet IRNet BNet BRNet iBRNet

OQMD Formation Energy/Atom MAE 0.0841 0.0620 0.0527 0.0513 0.0478

(345,134) (Training Time (s)) (17177) (117742) (60088) (95614) (43220)

Band Gap MAE 0.0645 0.0503 0.0491 0.0512 0.0474

(345,134) (Training Time (s)) (18683) (130030) (40658) (31271) (30125)

Stability MAE 0.0725 0.0642 0.0526 0.0529 0.0497

(345,134) (Training Time (s)) (21556) (87608) (60030) (53959) (37015)

AFLOWLIB Formation Energy/Atom MAE 0.0688 0.0612 0.0501 0.0507 0.0463

(234,299) (Training Time (s)) (18437) (48912) (42212) (30582) (21103)

Density MAE 0.2263 0.1871 0.1884 0.1862 0.1746

(234,299) (Training Time (s)) (21416) (77124) (22172) (34066) (14534)

EGap MAE 0.1546 0.1140 0.1085 0.1144 0.1064

(14,751) (Training Time (s)) (781) (5278) (1500) (1640) (1620)

MP Formation Energy/Atom MAE 0.1581 0.1429 0.1409 0.1329 0.1291

(89,181) (Training Time (s)) (6439) (16382) (6272) (13797) (8417)

Band Gap MAE 0.3576 0.3352 0.3339 0.3421 0.3207

(89,181) (Training Time (s)) (5051) (24761) (9203) (8078) (7660)

Density MAE 0.4100 0.3626 0.3617 0.3609 0.3333

(89,181) (Training Time (s)) (4783) (19122) (6659) (9681) (7330)

E Above Hull MAE 0.1166 0.1140 0.1205 0.1131 0.1098

(89,181) (Training Time (s)) (6904) (22931) (8625) (9220) (7985)

Total Magnetization MAE 1.4962 1.4637 1.4212 1.4222 1.4114

(89,181) (Training Time (s)) (4850) (11990) (5603) (6159) (5152)

JARVIS Formation Energy/Atom MAE 0.1261 0.1398 0.1037 0.1035 0.0925

(19,994) (Training Time (s)) (1505) (4712) (2109) (3036) (2350)

Gap OPT MAE 0.2960 0.3090 0.2840 0.2945 0.2679

(17,924) (Training Time (s)) (1502) (4132) (1669) (2242) (2137)

Bulk Modulus MAE 12.331 12.191 11.965 11.789 11.144

(8,199) (Training Time (s)) (553) (3147) (409) (1593) (981)

Shear Modulus MAE 11.010 10.580 10.535 10.392 10.043

(8,199) (Training Time (s)) (341) (2056) (450) (1559) (847)

Gap TBMBJ MAE 0.6194 0.5373 0.5663 0.5307 0.5270

(5,287) (Training Time (s)) (263) (1710) (671) (1076) (622)
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better as compared to ElemNet and IRNet in terms of 
accuracy and training time due to their architecture. 
Here, BNet is usually slightly faster in terms of training 
time, and BRNet is slightly better in terms of accuracy; 
3. The proposed improved branched deep neural network 
architecture with multiple schedulers is always closest 
to the bottom-left corner of the bubble chart, showing 
that it is better as compared to other DL models without 
multiple schedulers in terms of model accuracy as well 
as training time when model training is performed in a 

controlled computational environment with parametric 
constraints.

Figure  5 illustrates the prediction error chart and 
cumulative distribution function (CDF) of the prediction 
errors for formation energy as materials property and 
composition-based elemental fractions as model inputs 
using four DFT-computed datasets. Although we observe 
some similarity in the scatter plot of the ElemNet, 
BRNet, and iBRNet, the prediction and outliers for iBR-
Net are relatively closer to the diagonal for all the cases 

Fig. 3 Impact of input representation on the accuracy and training time of iBRNet. The x‑axis shows the dataset size on a log scale, and the y‑axis 
shows the percentage change in: (a) test MAE and (b) training time of the model trained using composition‑based elemental fraction as input 
w.r.t. the model trained using composition‑based physical attributes as input (calculated as ((MAEEF/MAEPA)–1) x 100% ) for test MAE and (calculated 
as ((TimeEF/TimePA)–1) x 100% ) for training time

Table 6 Test MAE of different models for each of the materials properties for prediction task of “Comparison against Other Models”

Bold indicates the lowest MAE values

Dataset Property (Size) MODNet [55] CrabNet [48] Roost [49] iBRNet

OQMD Formation Energy/Atom (345,134) 0.0887 0.0506 0.0399 0.0372
Band Gap (345,134) 0.0711 0.0668 0.0508 0.0449
Stability (345,134) 0.0820 0.0443 0.0419 0.0414

AFLOWLIB Formation Energy/Atom (234,299) 0.0699 0.0415 0.0407 0.0433

Density (234,299) 0.2463 0.1770 0.1733 0.1656
EGap (14,751) 0.1083 0.1410 0.1001 0.0940

MP Formation Energy/Atom (89,181) 0.1605 0.1340 0.1061 0.1035
Band Gap (89,181) 0.4674 0.3810 0.3413 0.2943
Density (89,181) 0.4236 0.4320 0.3407 0.3293
E Above Hull (89,181) 0.1324 0.1040 0.1015 0.1005
Total Magnetization (89,181) 1.666 0.1340 1.3995 1.4094

JARVIS Formation Energy/Atom (19,994) 0.1101 0.0926 0.0681 0.0664
Gap OPT (17,924) 0.2959 0.3350 0.2713 0.2451
Bulk Modulus (8,199) 13.276 10.600 11.072 10.115
Shear Modulus (8,199) 12.696 10.100 10.012 9.682
Gap TBMBJ (5,287) 0.5475 0.4870 0.4894 0.4828
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as compared to the other DL models. A few test points 
in Fig.  5 show a notable deviation between DFT-calcu-
lated and predicted energies. Such deviations usually 
stem from model/data bias caused by uneven coverage of 
materials classes in the dataset, as well as the differences 
in the materials property value distribution between 
train and test splits [56], and computational bias caused 
by parametric choices associated with DFT simulations 
to achieve reasonable accuracy across a wide variety of 
materials and properties [57]. Particularly, we observe 
two groups of large deviations, with horizontal deviation 
showing near-constant prediction values (which should 
exhibit different prediction values) and vertical devia-
tion showing different prediction values (which should 
exhibit near-constant prediction values) in the MP data-
set. In future work, it would be interesting to analyze 
what types of compounds fall into the area showing large 
deviations along with their underlying causes and impli-
cations. Moreover, comprehensive guides and practices 
to ensure standardization and interoperability among 
different simulation settings and diversity of materials 
classes and systems in datasets need to be ensured to 
mitigate such deviations. The CDF (cumulative distribu-
tive function) curves for the three models also help us 

better understand the difference in prediction error dis-
tributions, where for all four DFT-computed datasets, 
we observe lower 50th and the 90th percentile absolute 
prediction error for iBRNet as compared to ElemNet and 
BRNet. The bubble chart, prediction error chart, and 
cumulative distribution function (CDF) of the prediction 
errors demonstrate the advantage of incorporating multi-
ple schedulers in a deep neural network for an improved 
overall predictive performance of the model trained in a 
controlled computational environment with parametric 
constraints.

Conclusion
We presented a novel approach to incorporate multiple 
callback functions in deep neural networks to facilitate 
improved performance in terms of accuracy and train-
ing time for materials property prediction tasks in a 
controlled computational environment with parametric 
constraints. To demonstrate the advantages of the pro-
posed approach, we built a deep neural network iBRNet, 
by using BRNet as the base architecture and introduce 
multiple callback functions during its model training. To 
compare the performance of the proposed model, we use 
existing deep neural networks which consist of the same 

Fig. 4 Bubble charts indicating the performance of the DL models based on the training time (s) on the x‑axis, MAE (eV/atom) on the y‑axis, 
and model parameters as the bubble size for (a) OQMD, (b) AFLOWLIB, (c) MP, and (d) JARVIS. The bubbles closer to the bottom‑left corner 
of the chart are desirable as they correspond to less training time as well as low MAE
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number of layers in their architecture and do not incor-
porate multiple callback functions for their model train-
ing to ensure a fair comparison. The proposed model was 
first evaluated on the design problem of performing a 
predictive analysis on the formation energy of four differ-
ent well-known DFT computed datasets. The proposed 
model significantly outperformed all the other existing 
deep neural networks in terms of accuracy and training 
time on the design problem. We also illustrate the gen-
eralizability of the proposed approach by comparing 
the performance of the proposed model with the exist-
ing well-known deep neural network, which comprises 

of complex architecture and informative input. Further-
more, we show the adaptability of the proposed model 
in terms of the input provided for model training by 
performing a predictive analysis of materials properties 
using different feature representations, i.e., composition-
derived 86 vector elemental fractions and 145 vector 
physical attributes.

Overall, the proposed approach significantly outper-
forms other DL models in terms of accuracy and training 
time, irrespective of the data size and materials property 
being evaluated, where multiple callback functions dem-
onstrate an effective and efficient ability to understand 

Fig. 5 Comparison of ElemNet, BRNet against proposed iBRNet on formation energy as materials property and composition‑based elemental 
fractions as model inputs. The rows represent different DFT‑computed datasets in the order of OQMD, AFLOWLIB, MP, and JARVIS from top 
to bottom. Within each row, the first three subplots represent the prediction errors using three models: ElemNet, BRNet, and iBRNet; the last subplot 
contains the cumulative distribution function (CDF) of the prediction errors using the three models, with 50th and 90th percentiles marked
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and analyze the hidden connection between a given input 
representation and the output property. Moreover, as our 
approach only requires little modification for the model 
training of the deep neural network, it does not affect the 
number of parameters required to build the deep neural 
network. But even with that small modification, we find 
that the proposed approach significantly reduced train-
ing time and even increased the accuracy of the model as 
compared to other baseline architectures used for com-
parison. Since the proposed approach of deep neural net-
work with multiple callback functions is not dependent 
on any specific material representation/embedding to be 
used as model input for model training, it is expected to 
improve the performance of other DL works using other 
types of feature representations not only in materials 
science but other scientific domains as well. Combin-
ing the proposed approach with other innovations pre-
viously discussed, such as sophisticated networks and 
architectures, to evaluate its broad applicability would 
be an interesting future study. Interested readers can also 
explore different combinations of epochs for RLROP/ES 
to train the neural network or use more variety of call-
back functions in a bid to boost the performance of the 
target model for a specific materials property. The pro-
posed approach of a deep neural network with multiple 
callback functions is conceptually simple to implement 
and build upon and is thus expected to be widely appli-
cable. The iBRNet framework code is publicly available at 
https:// github. com/ Gupta Vishu 2002/ iBRNet.

Methods
The improved branched deep neural network archi-
tecture is created by using BRNet as the base archi-
tecture, which is formed by putting together a series of 
stacks, each composed of a fully connected layer and 
LeakyReLU [47] (except for the final layer, which has no 
activation function) with a branched structure in the 
initial layers and residual connections after each stack 
for better convergence during the training. The concept 
of branching and residual connection makes the regres-
sion learning task easier and provides a smooth flow of 
gradients between layers. “early stopping” and “reduce 
learning rate on plateau” were added as schedulers in 
this work for the multiple scheduler approach. The deep 
learning models were implemented using Python, Ten-
sorFlow 2 [58], and Keras [59]. Other hyperparameters 
for the deep neural networks were kept the same as the 
original work with Adam [60] as the optimizer, 32 as the 
mini-batch size, 0.001 as the (initial) learning rate, and 
mean absolute error as the loss function. For a detailed 
description of each of the deep neural networks, please 
refer to their respective publications [34, 40, 41, 61].
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