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Abstract 

REINVENT 4 is a modern open-source generative AI framework for the design of small molecules. The software utilizes 
recurrent neural networks and transformer architectures to drive molecule generation. These generators are seam-
lessly embedded within the general machine learning optimization algorithms, transfer learning, reinforcement 
learning and curriculum learning. REINVENT 4 enables and facilitates de novo design, R-group replacement, library 
design, linker design, scaffold hopping and molecule optimization. This contribution gives an overview of the soft-
ware and describes its design. Algorithms and their applications are discussed in detail. REINVENT 4 is a command 
line tool which reads a user configuration in either TOML or JSON format. The aim of this release is to provide refer-
ence implementations for some of the most common algorithms in AI based molecule generation. An additional 
goal with the release is to create a framework for education and future innovation in AI based molecular design. The 
software is available from https:// github. com/ Molec ularAI/ REINV ENT4 and released under the permissive Apache 2.0 
license. Scientific contribution. The software provides an open–source reference implementation for generative 
molecular design where the software is also being used in production to support in–house drug discovery projects. 
The publication of the most common machine learning algorithms in one code and full documentation thereof will 
increase transparency of AI and foster innovation, collaboration and education.

Keywords Generative AI, Reinforcement learning, Transfer learning, Multi parameter optimization, Recurrent neural 
networks, Transformers

Introduction
Molecular Design is the creation of novel molecules 
with desired properties for a given problem in chem-
istry, material science or nanotechnology. Ideally, this 
would be done in a systematic fashion rather than 
through trial–and–error. In drug discovery this is often 
approached with rational drug design [1] which makes 
significant use of computers and algorithms to generate 

novel molecules. Specifically, so–called de novo methods 
create molecules from scratch i.e. without or little prior 
molecular information [2]. In this context we will dis-
cuss de novo molecular design using generative AI mod-
els [3] and focus in particular on the implementation of 
the REINVENT software. The application of AI in drug 
discovery has been debated and challenged. It is there-
fore of high value to the scientific community that there 
exist reference implementations in the public domain of 
the most common algorithms for generative molecular 
design to facilitate a nuanced debate. It is also hoped that 
the released software can contribute to the education and 
innovation in the field of AI-based molecular design.

Generative AI models capture the underlying prob-
ability distribution of known molecules and their local 
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relationships to each other (distribution learning). This 
distribution is in principal unknown and thus the mod-
elled distribution only an approximation. However, we 
can define a “chemical space” in this way from which 
can be extrapolate into novel chemical space. Statistical 
methods are then used to sample from the distribution 
i.e. generate novel molecules. The field is still relatively 
new and experimental validations in the public domain 
are slowly starting to emerge [4–7] but various use-
ful perspectives and reviews of the methodology have 
already appeared in the literature [3, 8–11]. Here, we will 
focus on small molecule design but other modalities are 
being investigated as well [12, 13].

Numerous AI model architectures have been devel-
oped for generative molecular design e.g. variational 
autoencoders (VAE) [14, 15], generative adversarial 
networks(GAN) [16], recurrent neural networks (RNN) 
[6, 17–20], transformers [21, 22], flow models [23, 24] 
and diffusion models [25] (either directly generating in 
3D [26, 27] or from 1D SMILES strings [28]), reaction 
based models [29]. The molecular representation used 
for these algorithms can be different and can be typically 
categorized with their dimensionality [13, 30]. All these 
methods have their relative merits and there is no one 
solution that uniformly outperforms the others. Vari-
ous benchmarks have been designed to validate techni-
cal aspects of molecular generation and optimization [31, 
32].

Molecular design can be framed as an inverse design 
problem. In forward design we would modify existing 
compounds until they satisfy our criteria while inverse 
design first states the properties the molecule must pos-
sess and thus informs an algorithm on how to create 
the molecules. Drug molecules in particular must fol-
low a stringent property profile before being approved 
as safe and efficacious medicines including affinity to the 
target(s), selectivity against off–targets, the right phys-
ico–chemical properties, the right ADME (absorption, 
distribution, metabolism, excretion) characteristics, good 
PK/PD (pharmacokinetics/pharmacodynamics), favour-
able toxicology, chemical stability. Also very importantly 
synthesizability [33], the potential to scale-up a synthetic 
route and the requirements of green chemistry [34]. This 
highlights the complexities in designing a successful drug 
and the requirements for algorithms to solve this. The 
inverse design problem is the attempt to map a (manage-
able) number of properties back to a vast chemical space. 
Various attempts have been made at predicting the suc-
cess of a compound in the clinical stages by trying to find 
the “right” combination of molecular properties [35, 36].

Molecular design should be seen as part of the DMTA 
(design, make, tests, analyse) cycle. Generative models 
can contribute to the design part while robotic systems 

can contribute to make, test and analyse in an attempt to 
create a fully automated closed–loop experimentation 
system [37, 38]. The ambition is to speed–up molecu-
lar design in a systematic and efficient manner. Levels of 
automation have been defined and it is clear that decision 
making and synthesizability are key factors in achieving 
full automation [39].

In this contribution the progress of REINVENT as 
a framework for molecular generative AI is described. 
REINVENT is in production and continuously main-
tained. REINVENT tackles the inverse design problem 
through reinforcement learning [19, 20, 40–42] using 
RNNs and transformers as deep learning architectures 
based on SMILES strings as molecular representation. 
Here we describe the new version 4 emphasizing novel 
features like combined reinforcement/curriculum learn-
ing (RL/CL) staged learning, new transformer models for 
molecule optimization, full integration of all generators 
within all algorithmic frameworks: transfer learning (TL), 
RL, CL, reworked scoring subsystem utilizing a plugin 
mechanism for easy extension and the TOML configura-
tion file format in addition to JSON (incompatible with 
previous releases). REINVENT 4 is a well–designed and 
complete molecular design software solution. The code 
base has been largely rewritten and all software and mod-
els are available in a single repository. The descriptions of 
the original REINVENT version 1 and version 2.0 have 
been published elsewhere [19, 20]. The code of version 3 
has been released as open–source software but without 
accompanying manuscript.

REINVENT has been shown to outperform many other 
methods of molecular optimization in terms of sample 
efficiency [43] but is also successful in proposing realistic 
3D molecules as shown in a recent docking benchmark for 
generative models surpassing many graph–based methods 
[44]. It has also been demonstrated that the algorithm can 
produce chemistry outside of the training set with cer-
tain CL protocols [45]. Table 1 compares functionalities in 

Table 1 Comparison of major functionalities in REINVENT and 
DrugEx

Functionality REINVENT 4 REINVENT 
2.0 [20]

DrugExV3 [18]

De novo design � � �

Scaffold design � �

Linker design �

Molecule optimization �

Reinforcement Learning � � �

Curricululm Learning �

Transfer Learning � � �

Input format(s) TOML/JSON JSON command line
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REINVENT 4 with the previous version 2.0 and DrugEx 
version 3 [18]. DrugEx is another open–source generative 
AI software similar in spirit to REINVENT and also in pro-
duction state. We do not compare here to research based 
software released for in a specific publication for reproduc-
ing the claims in the publication.

Theory
Here the theory underlying REINVENT 4 is described. The 
specifics of the software is also highlighted. A comprehen-
sive collection of various capabilities that are otherwise 
distributed in previous publications are provided [19, 20, 
46–48].

Generating molecules
All REINVENT 4 models consist of sequence–based neu-
ral network models that are parameterized to capture 
the probability of generating tokens t in an auto-regres-
sive manner. The models are called agents. A sequence 
describes a SMILES string which represents a molecule. 
The tokens are characters or character combinations in 
SMILES strings, see  Affitional file 1. Tokens are drawn 
from a fixed vocabulary t ∈ V  , created at training time (and 
fixed at inference time implying that input SMILES must 
follow the model’s vocabulary). A special termination token 
indicates completion of the sequence. REINVENT 4 sup-
ports unconditional and conditional agents which describe 
probability distributions over sequences from V. The joint 
probability P(T ) for unconditional agents of generating a 
particular sequence T of length ℓ with tokens t1, t2, . . . , tℓ 
is given by

Conditional agents model a joint probability P(T |S) of 
generating a particular sequence T of length ℓ given an 
input sequence S given by

From Eqs. 1 and 2 we define the negative log-likelihood 
as

for P(T ) and P(T |S) , respectively.

(1)P(T ) =

ℓ
∏

i=1

P(ti|ti−1, ti−2, . . . , t1).

(2)P(T |S) =

ℓ
∏

i=1

P(ti|ti−1, ti−2, . . . , t1, S).

(3)NLL(T ) =− log P(T ) = −

�
∑

i=1
log P

(

ti |ti−1, ti−2, . . . , t1
)

(4)NLL(T |S) =− log P(T |S) = −

�
∑

i=1
log P

(

ti |ti−1, ti−2, . . . , t1, S
)

As in previous versions, a number of prior agents are 
made available (details in  Priors). These are foundation 
models, trained in an unsupervised fashion with teacher–
forcing [49] using SMILES strings from large public data 
sets of molecules. The teacher–forcing strategy feeds the 
model with the actual output from the data set (ground 
truth) as input during training instead of the network’s 
generated output. Once trained, REINVENT 4 agents 
acquire an understanding of the syntax of the SMILES 
strings, enabling them to generate valid molecules. In 
practice this amounts to updating the weights of the 
models to decrease the negative log-likelihood of either 
Eqs. 3 or 4 (depending on the model type) over all mol-
ecules in the training data set.

Because the models are trained on all input molecules 
in the same way, priors represent unbiased molecule gen-
erators (however, still biased due to the limited chemi-
cal space of the training set), resulting in a theoretically 
uniform distribution over the training molecules. These 
models possess the capability to sample molecules that 
goes beyond just re-sampling the training data. For 
example, a prior trained on 1 million molecules can easily 
sample 100 s of millions of unique, valid molecules [50]. 
Training priors on multiple equivalent SMILES represen-
tations of the same molecule has been shown to result in 
more expressive priors [51].

REINVENT 4 supports two decoding strategies, 
namely multinomial sampling used for e.g. by  [22, 52] 
and beam search [53]. Multinomial sampling allows fast, 
non–deterministic generation of compounds. At each 
step, a token is randomly selected based on the prob-
ability distribution over the vocabulary. The current 
implementation supports a positive temperature–like 
parameter K (default K = 1 ) used to scale the probabil-
ity distribution. When decreasing the temperature, i.e. 
K < 1 , the distribution becomes sharper: the chance 
of high probability tokens being selected increases, 
conversely the chance of low probability tokens being 
selected decreases. This results in less randomness and 
so more determinism. More randomness is introduced 
when the temperature is increased ( K > 1 ) which causes 
the distribution to become flatter and lower probability 
tokens to be selected more preferentially. Multinomial 
sampling might suffer from mode collapse i.e. sampling 
might tend to produce a small number of compounds. 
The computational complexity for multinomial sampling 
is O(ℓ · |V |) , where ℓ is the length of tokens and |V| is the 
size of the vocabulary.

In contrast, beam search is a deterministic approach 
that always generates unique compounds. However, it is 
computationally more expensive than multinomial sam-
pling as it scales as O(B · ℓ · |V |) , where B is the beam 
size. Note that for both techniques the complexity of the 
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underlying generative model impacts the performance. 
This complexity arises because SMILES strings are gen-
erated iteratively by feeding the transformer with n− 1 
tokens to obtain the nth token. In fact, for multinomial 
sampling, the model needs to compute the probabilities 
of each possible token, while for beam search, we also 
need to store the B most probable SMILES subsequences.

REINVENT 4 includes Mol2Mol, a conditional prior 
agent, as described in [54] which allows for a systematic 
exploration of the chemical space. The prior was trained 
on over 200 billion pairs from Pubchem [55] for which 
their Tanimoto similarity, calculated with ECFP4 count 
fingerprints, was ≥ 0.50. Furthermore, the prior training 
was regularized with the ranking loss, allowing to directly 
link negative log-likelihood to similarity.

Transfer learning
Transfer Learning (TL) are methods that re–use existing 
knowledge to facilitate the learning of another, related 
task. In machine learning this is typically applied to 
retrain a large model with a small amount of data to effi-
ciently obtain a new improved model and can accordingly 
be used when only little data is available for the new task. 
TL can thus be seen as fine–tuning an existing model. 
TL has been applied successfully in drug discovery [56] 
specifically it has been shown that a focused generative 
model can produce a similar fraction of active molecules 
as experience replay [7] (see  "Inception" for an explana-
tion of experience replay).

In REINVENT 4, transfer learning is conceptualized as 
retraining of a prior model using the same teacher–forc-
ing strategy as in the pre–training of the prior model 
(see  Generating Molecules). A small, task–focused data 
set is chosen, for example a data set containing active 
molecules for a particular drug target. TL then creates 
a new agent that is specifically biased toward generating 

analogues to these active molecules. In this way the agent 
will be able to generate relevant molecules more quickly.

Reinforcement learning
Reinforcement Learning (RL) describes various optimi-
zation methods in machine learning where an agent acts 
in an environment to learn a strategy (policy or goal). 
The agent is rewarded when the action is beneficial to the 
goal or receives negative feedback when the action isn’t 
beneficial. For example, in generative molecular design 
the goal is to drive a prior model such that the generated 
molecules satisfies a predefined property profile. RL is a 
frequently used optimization method in drug discovery 
[56].

In REINVENT, RL is used to iteratively bias the mol-
ecules generated by an agent (normally a prior or transfer 
learning agent) via a policy gradient scheme (Fig. 1). In a 
drug discovery project, the aim is typically not to create a 
new model but rather to generate molecules which score 
highly according to the provided scoring function. This is 
achieved by providing a scalar score, S ∈ [0, 1] , for each 
token sequence T (representing a molecule) generated in 
each epoch. This is used to define a so–called augmented 
likelihood for each sequence as

First proposed in [19], this expression combines the 
reward signal with the likelihood of the sequence under 
the fixed, generalist prior model, which serves as a reg-
ularization term to control the generation of plausi-
ble sequences from a chemistry viewpoint. The balance 
between the reward and regularization is controlled with 
the scalar parameter σ ≥ 0 . σ is a user–adjustable param-
eter and it can have a major impact on performance [43].

(5)log Paug(T ) = log Pprior(T )+ σS(T )

Chemical space

Prior

Chemical space

Prior

TL regionTL region

High-scoring regionHigh-scoring regionregio

Fig. 1 Illustration of idealized behavior of priors, transfer learning agents and reinforcement/staged learning agents. In all cases, the models 
describe the probability of sampling a given token sequence corresponding to a specific molecule (green squares), represented by a colored fill. 
The prior model is trained to increase probability over all drug–like molecules. A transfer learning agent built from this prior increases the likelihood 
on a specific region (blue, middle). In staged learning (red, right), starting from the transfer learning agent, likelihood of sampling high-scoring 
sequences is iteratively increased, resulting in concentration on high-scoring regions (red polygon)
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In the “Difference between Augmented and Posterior” 
(DAP) strategy [46], the augmented likelihood is used to 
define a loss for each sequence in the batch, computed as

were log Pagent(T ) is the likelihood of sequence (T) under 
the current agent. This loss is averaged over all mol-
ecules generated in a batch and then the current agent 
is updated to reduce this loss via a stochastic gradient 
descent method (Sect.  "Other Parameters"), i.e. bring 
the likelihood of the sequences closer to log Paug(T ) . 
The only term in 6 that is a function network parameter 
is Pagent . The presence of the prior in these expressions 
constrains how far the RL agent can stray from the prior, 
similar to proximal policy gradient methods, except that 
the prior is static during the RL process.

This definition of the augmented likelihood and loss 
function has a few non–obvious implications. Firstly, 
the form of Eq. 5 and non–negativity of the score means 
that the likelihood for sequences is only increased (or 
unchanged) relative to the prior in each epoch. A mole-
cule that obtains a zero score will have a augmented like-
lihood identical to that obtained under the prior model, 
and so low–scoring molecules have little impact on the 
state of the agent, i.e. there is limited learning from nega-
tive examples early in the run.

However, the behavior can be markedly different in 
the case of dynamic variation in how the reward is com-
puted during the run. To illustrate this, we consider a 
simple experiment where we start with the REINVENT 
4 prior: we run 500 epochs of RL with standard settings 
( σ = 128 ) and a scoring function that encourages genera-
tion of extremely large molecules (1500 Da) relative to the 
drug–like molecules in the prior. At the 500 epoch mark, 
we move to a second stage where the scoring transform is 
reversed, encouraging the generation of molecules with 
≤ 500 Da molecular weight. The agent is rapidly able to 
solve both tasks (Fig. 2a and b).

Despite learning to make large molecules that are 
highly unlikely under the prior ( log Pprior(T ) < −75 , 
Fig. 2c) for 500 epochs, the agent is rapidly able to adapt 
to the change in scoring function and generate small 
molecules again by epoch 550. This transition period is 
accompanied by the agent likelihood regressing back to 
be similar to the prior likelihood, before separating again. 
This plasticity is a capacity that makes these systems 
adaptive in various settings, for example active- [57] or 
curriculum learning [58] settings.

Since Eq. 5 have values in (−∞, σ ] , log Paug is not guar-
anteed to be an obtainable log-likelihood for the discrete 
distribution of sequences that can be generated by these 
models (i.e. ≤ 0 ), particularly for high scoring sequences 

(6)L(T ) =
(

log Paug(T )− log Pagent(T )
)2

and large values of σ . This is not a problem in practice, 
and while various other loss functions have been consid-
ered [46] (and remain available, see RL Learning Strat-
egy), DAP typically provides the most rapid learning and 
serves as a robust general purpose method. The combina-
tion of Eqs. 5 and 6 means that the loss for any sequence 
is lower-bounded by

This, combined with the observation that the loss is 
computed with respect to a new batch of ideas for each 
epoch, can lead to counter-intuitive behaviour where 
the loss function can increase during RL as the score 
increases (Fig. 2d). However, this is the expected behav-
iour as the loss is reduced on the previous batch of mol-
ecules, which are not re–evaluated but the agent in the 
next epoch. Generally, the loss lower bound is highest for 
high scoring batches that are also likely under the prior, 
as in the case of the molecules with drug-like molecular 
weight generated in the second part of the experiment.

Methods
Reinforcement learning
Reinforcement Learning (RL) is the main molecule opti-
mization method in REINVENT. RL has been re–framed 
in the new version into staged learning (see  "Methods") 
which allows multiple successive and consecutive RL 
runs with varying parameters.

Each stage will write out a CSV file which contains 
all information about negative log likelihoods, total and 
individual component scores and the sampled SMILES 
strings. The CSV file is created in real time i.e. every RL 
epoch is immediately written to disk (the operating sys-
tem may impose buffering such that the file is written in 
chunks). This implies that the data in the CSV is unfil-
tered meaning that invalid SMILES and low scoring com-
pounds will be logged also. It is the user’s responsibility 
to post–process this file in a meaningful way.

RL learning strategy
Previously, four different RL learning strategies in REIN-
VENT were described [46]. It was found that DAP dis-
played the best learning rate while the others showed 
very little or no improvement. In version 4 we still offer 
all four functions but we recommend the DAP for prac-
tical use. The other three are still available but are dep-
recated meaning that they might be removed in future 
releases.

Diversity filter
The diversity filter is, as its name suggests, a mechanism 
to promote molecular diversity during an RL run. This 

(7)L(T ) ≥ max(0, log Pprior(T )+ σS(T ))2
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is primarily based on scaffold diversity using a memory 
with a user adjustable size. The memory is organized 
into “buckets” which hold a given scaffold. When the 
bucket is full every further occurrence of that scaffold 
enforces a zero score for the whole molecule. Scaffolds 
can be computed as Murcko type scaffolds, “topologi-
cally” which means the scaffold is determined disre-
garding elements and bond types (unlabelled graph) 
and scaffold similarity which stores the most similar 
scaffolds found so far. In the current implementation 
all scaffold filters also contain a global SMILES string 
memory of size 1. This means that every further occur-
rence of the same canonical SMILES string is scored 
with zero. This happens both locally i.e. within a batch 
and globally i.e. over the whole run. This implies that 
SMILES are not de–duplicated in advance conforming 
with previous versions. Otherwise the behaviour would 

be altered, see Eq.  6 where duplicates have zero score 
but their negative log likelihoods are still present.

There is one special “filter” which only penalizes the 
occurrence of the same molecule and is not part of any 
of the scaffold filters above. This penalty is recommended 
for the Mol2Mol generator. The user can adjust the 
penalizing factor to be between 0 and 1.

Inception
Inception, also known as experience replay, can have 
a profound impact on the learning rate and sampling 
of desired molecules [7, 59] (see also Additional file for 
a demonstration). In REINVENT it is a mechanism to 
memorize the highest scoring molecules and use those 
scores to contribute to the loss in addition to the loss 
computed from the scores of the currently sampled 
batch. This means that the total loss is calculated from 
two parts: batch loss and inception loss. The number 
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Fig. 2 Simple experiment demonstrating adaptable learning behavior starting with the default REINVENT 4 agent. 500 epochs of RL are run 
with a scoring function that rewards molecular weight ≥ 1500 Da, before it is switched in a second stage that rewards molecular weight ≤ 1500 Da, 
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The loss lower bound (Eq. 7) is also shown in d. A dashed line indicates the change of scoring function. The run used default settings: batch size 
of 128 and σ = 128
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of molecules contributing to the inception loss can be 
adjusted by the user as well as the number of randomly 
sampled molecules from the memory to be used in com-
puting the inception loss. Currently, this memory is only 
available for the original Reinvent molecular generator 
(see below).

The inception memory can be seeded with SMILES 
strings provided by the user to guide the RL into a 
desired part of the chemical space. It should be noted, 
that if these molecules do not score highly with the cur-
rently chosen scoring function, the molecules will be 
removed from the memory possibly very early on in the 
run. As the RL run progresses and generates better scor-
ing molecules in each successive step this is generally 
to be expected. This also means that, depending on the 
size of the inception memory and the number of sam-
pled SMILES strings from the memory, the total loss and 
thus eventually the generation of new molecules starts to 
be dominated by the highest scoring compounds in the 
memory. The replay memory will either not at all or only 
marginally be updated in longer RL runs.

Other parameters
The user can adjust the batch size which is the number of 
SMILES strings sampled in each step. While this param-
eter can be changed to influence the learning rate in an 
RL run it should be noted that the batch size will also 
influence the convergence of the stochastic gradient algo-
rithm (Adam) [60, 61].

Randomizing SMILES can be switched on benefiting 
LibInvent and LinkInvent runs where the priors were 
trained with randomized SMILES to improve gener-
alizability of the sampled chemical space and prevent 
overfitting [51]. Randomizing SMILES is a form of data 
augmentation which can help to build robust models 
with smaller data sets [62].

Run modes
REINVENT 4 supports various “run modes” which are 
briefly described here. All run modes can either run 
on a GPU or a CPU. TensorBoard output is written for 
transfer and reinforcement learning, respectively. Fig-
ure 3 summarizes the basic flow of information in REIN-
VENT 4. Input configuration file examples in the TOML 
format are listed in the additional file  material. SMILES 
are canonicalized with RDKit and normalized [20, 46, 47, 
54] before passed on to the learning algorithms. Only the 
Mol2Mol prior (see "Priors") supports stereochemistry.

Scoring
This run mode passes input SMILES strings to the scor-
ing subsystem (see "Scoring Subsystem") and returns the 
results in a CSV file. The CSV file contains columns for 
the SMILES strings, the total score and each individual 
component score both in “raw” (unmodified i.e. not 
transformed) and transformed form. Duplicate input 
SMILES strings will not be removed thus the CSV file 

RL/CL

TL

Sampling

Scoring

TOML/JSON (SMILES)

Generator 
Model

Scoring 
subsystem

SMILES, scores, NLL, etc.

Reinvent
Atom-by-atom 
generation

Libinvent
Library design & 
scaffold decoration

Linkinvent
Fragment linking &
scaffold hopping

Mol2Mol
Transformer based
molecule optimization

QSAR

Generators Scoring

Fig. 3 Information flow in REINVENT 4 for all run modes (green boxes) depicted in the left row. Also shown are the supported generators 
and the scoring subsystem. A input configuration file in TOML or JSON format controls all aspects of the software. The configuration file may 
contain “seed” SMILES for the Lib/Linkinvent and Mol2Mol2 generators. Input SMILES strings are needed for staged learning, TL and scoring. NLL 
is the negative log–likelihood as defined in Eqs. 3 and 4
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may contain identical rows. An example of an input file 
can be found in the (Additional file 1) Listing S6.

Sampling
This run mode generates molecules given a model pru-
duced by either TL or RL. No input SMILES are needed 
for Reinvent, a scaffold is needed for Libinvent, two war-
heads for Linkinvent and an input molecule for Mol2Mol. 
The output is a CSV file containing the sampled SMILES, 
the input or fragment SMILES (where applicable) and the 
negative log likelihood (which is a positive mangitude) for 
the sampled SMILES. Output SMILES will be canonical-
ized and duplicates can be removed. Mol2Mol supports 
either multinomial sampling (with temperature) or beam 
search.

Transfer learning (TL)
TL optimizes a more general model to generate mole-
cules that are closer to a defined set of input molecules. 
The user provides a prior and a SMILES file e.g. a chemi-
cal series. TL will compute the negative log likelihood 
from the molecules and computes the loss from the 
resulting mean negative log likelihood over all molecules. 
This will drive the current prior towards a model which is 
increasingly closer to the provided molecules.

As this is prone to overfitting (the model will start to 
generate molecules identical to the input SMILES strings) 
a validation set of SMILES can be provided which ena-
bles the user to monitor the validation loss. Training/vali-
dation set split is currently the responsibility of the user. 
The output is a new model file which can be used for RL 
or sampling.

The user can set the desired number of epochs, how 
often the current state of the model should be written 
out and the batch size. Mol2Mol allows in addition to set 
the similarity type (see Table 4) and its upper and lower 
threshold.

Staged learning
This is basically curriculum learning [58] (CL) which in 
REINVENT 4 is implemented as a multi–stage RL. The 
main purpose is to allow the user to optimize a prior 
model conditioned on a calculated target profile by vary-
ing the scoring function in stages. Typically this would 
be used to gradually “phase–in” computationally more 
expensive scoring functions e.g. before docking is ena-
bled it may make sense to first filter the molecules with 
custom alerts and scoring functions that assess the drug–
likeness of the generated molecules. Custom alerts are a 
set of SMARTS patterns of unwanted chemistries.

Multiple stages can be provided at once (automatic 
CL). After each stage a checkpoint file is written to disk 
which can be used for the next stage (manual CL). A 

stage terminates if the supplied maximum score or the 
maximum number of steps is reached. In the latter case 
all stages will be terminated.

Staged learning requires both a prior and an agent 
model. The prior is only being used as a reference, see 
discussion in  "Generating Molecules". The agent is the 
model that is being trained in the run. At the beginning 
of a staged learning run prior and agent will typically 
be the same model file. When a run terminates, either 
because the termination criterion has been reached or 
the user terminates the run explicitly (Ctrl–C) a check-
point file representing the current state of the agent will 
be written to disk. This checkpoint can be reused as the 
agent later.

Just as for sampling the user needs to supply a file with a 
molecule or a fragment SMILES string depending on the 
desired generator. This is not needed for Reinvent which 
constructs molecules from scratch. Mol2mol allows both 
beam search and multinomial sampling strategies.

The user can set the batch size and whether input 
SMILES should be randomized or generated sequences 
should be unique (this form of de–duplication is a feature 
from previous versions of REINVENT and is kept for 
backward compatibility). The available learning strategies 
(explained in "RL Learning Strategy") can be tuned with 
σ to control the contribution of the total scoring function 
to the augmented log-likelihood, see Eq. 6, and the learn-
ing rate. Diversity filter and inception are both optional.

All scaffold diversity filters need a parameter for the 
size of each scaffold bucket. Each molecular SMILES 
string is stored in a single memory. Both memories are 
subject to a minimum score parameter that is only if the 
total score exceeds this value scaffolds and molecules are 
stored. A minimum Dice similarity is needed for the sim-
ilar scaffold filter. A penalty multiplier is used for penal-
izing the total score of a SMILES string in the penalize 
same SMILES string filter.

Inception may be seeded optionally with a list of 
SMILES strings, the size of the memory and how many 
random samples should be included in each step can be 
adjusted.

For each stage a scoring profile can be defined which 
can also be read in from a separate file for easier reuse. 
The supported formats are TOML and JSON. The stage 
is terminated either when a maximum score threshold is 
exceeded or the maximum number of steps is reached. In 
the former case the run proceeds to the next stage (if pre-
sent). In the latter case the whole run is terminated. The 
rationale is that the user then inspects if the run should 
proceed or not because not reaching the score threshold 
may be a sign that there is a problem with that stage. The 
user can also enforce a minimum number of steps before 
the termination criterion is checked.
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The results are written into a CSV file similar to the 
scoring run mode but one file is created for each stage. 
The user can define a prefix for the CSV file name that 
is then appended with a number for the current stage. 
The CSV file contains columns for the negative log like-
lihoods for prior, agent and the augmented likelihood 
(Eq.  6). Further columns are for the generated SMILES 
string, the total and individual component scores (both 
raw and transformed) and a final column records the cur-
rent step number (epoch).

Molecule generators
REINVENT 4 supports several molecule generators 
which will be briefly describe here, see Fig. 4. A generator 
is a fundamental algorithm which creates new molecules 
considering certain constraints. The project name of the 
generator as described in previous publications will be 
given in parentheses.

1. De novo design [19, 20]. This unconstrained and 
unrestrained generator builds molecules in sequence 
atom–by–atom using an RNN. This is the classical de 
novo algorithm described in the very first publication 
of REINVENT [19]. (Reinvent)

2. R–group replacement and library design [46]. A scaf-
fold is supplied to the RNN based generator serving 
as a template and constraint in building the new mol-
ecule. The generator will decorate this scaffold with 
suitable R–groups. Up to four attachment points are 
supported. Naturally this generator can also be used 
to create AI guided libraries. (Libinvent)

3. Fragment linking and scaffold hopping [47]. Two 
“warheads” are supplied to the RNN based genera-
tor as constraints. The generator will create a suitable 
linker joining the two warheads. Generally, the linker 
can be any type of scaffold (subject to the training set 
of the prior). (Linkinvent)

4. Molecular optimization [22, 52]. A molecule is sup-
plied to the generator as restraint. The generator will 
find a second molecule within a defined similarity. 
Depending on the similarity radius the molecule will 
be relatively similar to the supplied molecule but, 
importantly, the scaffold can change within the limits 
of the given similarity. (Mol2Mol)

Scoring subsystem
Reinforcement learning is an optimization algorithm in 
machine learning which rewards a desired behaviour. In 
this context it means that a molecule is optimized with 
respect to a user defined aggregation of scoring func-
tions which is fed into Eq. 6. REINVENT 4 supports an 
extensive array of scoring functions as summarized in 
Table 2. Most scoring functions have multiple, so–called 
“endpoints”. This can be used for instance to provide sev-
eral SMARTS patterns e.g. to GroupCount or to compute 
both inertial moment ratios in the PMI function. Multi–
task models are another natural fit for this mechanism 
allowing the choice of a desired subset.

Scores for each SMILES string will be cached on a per–
component basis to avoid the re–computation of scores. 
All SMILES strings are passed to the subsystem in RDKit 
canonical form as the priors do not necessarily generate 

Fig. 4 The four types of molecular generators in REINVENT 4 illustrating how they work. Reinvent creates new molecules de novo i.e. from scratch, 
Libinvent decorates a scaffold, Linkinvent identifies a linker between two fragments and Mol2Mol optimizes molecules within a user defined 
similarity
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SMILES in canonical form. Duplicates are marked as 
such and handled by the caching mechanism. Chiral 
information (when using Mol2Mol) is retained. Each 
scoring component may transform the SMILES into the 
form that is needed for the underlining model. This is 
important as the model may have been trained or oper-
ates on a different canonicalization scheme.

It is worth noting that custom alerts and reaction filter 
act as a global filter and are not components. What this 
means is that, effectively, the total score will be multiplied 

with the outcome of the filter, either 1 for passed or 0 for 
not passed. For efficiency reasons this also implies that 
SMILES that do not pass those filters will not be sub-
jected to score evaluation and consequently all compo-
nent scores will be zero. Furthermore, there is currently 
one penalty component: matching substructure which 
globally applies the penalty factor to the final total score.

Many of the scoring functions cover various phys-
icochemical properties from the RDKit toolkit includ-
ing Lipinski’s rule–of–five [63] and QED [64]. Special 

Table 2 Summary of REINVENT 4 scoring functions

a The name of the scoring component in the TOML/JSON configuration file.
b https:// github. com/ Molec ularAI/ maize
c To be published
d New in REINVENT 4

Component  name1 Description

Qed QED drug-likeness score (RDKit)

SlogP Crippen SLogP (RDKit)

MolecularWeight Molecular weight (RDKit)

TPSA Topological polar surface area (RDKit)

GraphLength Topological distance (RDKit)

NumAtomStereoCenters Number of stereo centers (RDKit)

HBondAcceptors Number of hydrogen bond acceptors (RDKit)

HBondDonors Number of hydrogen bond donors (RDKit)

NumRotBond Number of rotatable bonds (RDKit)

Csp3 Fraction of sp3 carbons (RDKit)

Numsp Number of sp hybridized atoms (RDKit)

Numspb Number of sp2 hybridized atoms (RDKit)

Numspc Number of sp3 hybridized atoms (RDKit)

NumHeavyAtoms Number of heavy atoms (RDKit)

NumHeteroAtoms Number of hetero atoms (RDKit)

NumRings Number of total rings (RDKit)

NumAromaticRings Number of aromatic rings (RDKit)

NumAliphaticRings Number of aliphatic rings (RDKit)

GroupCount d Count how many times the SMARTS pattern is found (RDKit)

PMI d Principal moment of inertia to assess dimensionality (RDKit)

TanimotoDistance Tanimoto distance using the Morgan fingerprint (RDKit)

MatchingSubstructure penalty applied to final score when SMARTS pattern is found (RDKit)

ReactionFilter d Reaction filter for Libinvent, applied to total score (RDKit)

CustomAlerts SMARTS substructure filter applied to the total score (RDKit)

DockStream Docking interface [65] (see text for supported docking software)

Lcolos Generic interface to Icolos workflow manager [74]

Maize d Generic interface to Maize workflow  manager1 (replaces Icolos)

Qptuna d QSAR models with  Qptuna3

ChemProp d ChemProp D–MPNN models [72, 73]

MMP d Matched molecular pairs [77]

ROCSSimilarity ROCS [75]

SAScore d Synthesizability score [76]

ExternalProcess d Generic component to run an external process for scoring

REST Generic REST interface

https://github.com/MolecularAI/maize
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fragment versions of these are available for Linkinvent 
so to be able to separately score the linker in addition to 
length scores. Docking is handled with the generic inter-
face DockStream [65] that supports AutoDock Vina [66, 
67], rDock [68], Hybrid [69], Glide [70] and GOLD [71]. 
Quantitative Structure-Activity Relationship (QSAR) 
models are handled with Qptuna (to be published). 
ChemProp [72, 73] provides an alternative using directed 
message-passing neural networks (D-MPNN) for model 
building. General workflows can still be created with 
ICOLOS [74] but it will be superseded with the newer 
workflow manager Maize (to be published). There are 
also generic interfaces for a REST service calling external 
processes which allows programming entirely arbitrary 
scoring components. Shape similarity can be computed 

with ROCS [75]. Estimation of synthesizability can be 
carried out with the SA score [76]. Matched molecular 
pairs can be used via mmpdb [77].

Each scoring function result can be arbitrarily modi-
fied with a transformation function to compress scores to 
between 0 and 1. A list of transforms is given in Table 3. 
A weight needs to be set for each endpoint to deter-
mine its relative importance with respect to the other 
components.

All components of a scoring function are finally aggre-
gated into a single total score (a priori scalar objective 
[78, 79]). At the moment aggregation is done either via 
a weighted arithmetic mean or a weighted geometric 
mean.

The scoring subsystem implements a simple plug–
in mechanism (as Python namespace packages) which 
allows easy addition of scoring components. Basically, 
new code only needs to be dropped into an existing 
plugin directory following a code template, see SI for 
details. None of the original REINVENT 4 code would 
need to be changed.

Priors
REINVENT 4 provides a range of off-the-shelf ready–
made priors. These are pre–trained on ChEMBL [80] 
(except of the Mol2Mol prior which is trained on 
PubChem) and specific to each generator. Table  4 sum-
marizes all currently available priors. Listing  10 (Addi-
tional file 1) lists all recognized tokens of the priors. All 
priors support the same atoms (elements). The main dif-
ferences between the priors are ring sizes and that Mol-
2Mol supports and generates chiral centers at C and 
(quarternary) N and double bond isomers.

Software
The software is available from https:// github. com/ Molec 
ularAI/ REINV ENT4 and released under the permissive 
Apache 2.0 license. REINVENT 4 is being developed 
with Python 3. The currently required minimum version 
is 3.10. We use the machine learning framework Pytorch 
in version 1.x but initial tests have shown that the newer 
version 2.0 works as well. For chemoinformatic manipu-
lations we use RDKit in version 2022.9. In fact, any recent 
version of RDKit should be sufficient. For visualisa-
tion REINVENT supports TensorBoard [81] which logs 
generated molecules and various statistics from RL and 
sampling runs as easy to interpret graphs. REINVENT 
4 is not principally backward compatible with previous 
versions because the layout of the input configuration 
has changed. It is still possible to use JSON as input file 
format but version 4 now also supports TOML (https:// 

Table 3 Summary of REINVENT 4 transforms

Transform Description

Sigmoid S–shaped logistic function

Reverse_sigmoid Reverse sigmoid function

Double_sigmoid Two–sided sigmoid function

Right_step Heaviside step function, can be shifted along x

Left_step Left–sided step function

Step Two–sided step function

Value_mapping Maps a categorical value (string) to a user–
supplied number

Table 4 Summary of REINVENT 4 priors. Mol2Mol comes with six 
different priors with pairs trained on different types of similarity

a Tanimoto similarity ≥ 0.5.
b .5 ≤ Tanimoto similarity < 0.7.
c Tanimoto similarity ≥ 0.7.
d Molecules sharing the same Murcko scaffold (RDKit).
e Molecules sharing the same unlabelled Murcko scaffold.
f Matched molecular pairs have been extracted with mmpdb [77].
g Pubchem was collected in December 2021.
h Tanimoto similarity ≥ 0.5 on ECFP4 fingerprints with counts

Generator Dataset notes

Reinvent ChEMBL 25 Published in Ref. [19, 20]

Libinvent ChEMBL 27 Published in Ref. [46]

Linkinvent ChEMBL 27 Published in Ref. [47]

Mol2Mol ChEMBL 28 Published in Ref. [22]

Similaritya

Medium  similarityb

High  similarityc

Scaffoldd

Generic  scaffolde

Matched molecular  pairsf

Mol2Mol Pubchemg Published in Ref. [54]

Similarityg

https://github.com/MolecularAI/REINVENT4
https://github.com/MolecularAI/REINVENT4
https://toml.io/
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toml. io/) which tends to be more user friendly. The con-
figuration file controls almost all aspects of REINVENT 4 
(see SI for example inputs).

Just like in previous versions REINVENT 4 is a com-
mand line tool (see  "Installation"). A few command line 
options are available (see +–help+ for details), most 
notably are the ones for writing logging information to 
a file (+stderr+ by default) and the choice of format for 
the input configuration file (TOML by default or JSON). 
The logging information shows timestamped information 
about software versions used, parameter settings and 
setup as well as some basic statistics of the run includ-
ing memory usage. The output will depend on the par-
ticular run mode chosen, see "Run Modes". The random 
seed can be set for PyTorch and Numpy (efficient vector 
and matrix handling) to aid in reproducibility Additional 
files: 1, 2

Installation
Detailed installation instructions are provided in the 
repository in the file +README.md+. In short, the user 
needs to create a basic conda environment. This environ-
ment is then populated with REINVENT 4 and depend-
ent packages using +pip+. Versioning of dependencies is 
controlled through a lock file to guarantee a functioning 
environment out–of–the–box. The installation will cre-
ate an entry point into the main script of REINVENT and 
generate a simple wrapper that can be called on the com-
mand line as +reinvent+.

Documentation
The new TOML format is described in several markdown 
documents located in +configs/toml+. Details are there 
given on the various option for each run mode and gen-
erator settings. The Supplement provides annotated list-
ings which can also be found in the directory.

Case study
We provide a simple example to demonstrate some of the 
key functionalities in REINVENT 4 (see Additional file 2 
for input data). To this end we describe a hypothetical 
virtual screening exercise to find novel Phosphoinositide-
dependent kinase-1 (PDK1) inhibitors. A more detailed 
study has been published previously [58] which itself is 
based on the original structure–based design work of 
Angiolini et  al. [82]. In contrast to our previous experi-
ment, we consider a simple structure–based design set-
ting where we seek to identify putative PDK1 binders. We 
define a simple target profile consisting of a docking com-
ponent and the QED score [64] to approximate drug–like 
properties. The generated compounds where docked 
without constraints to PDB crystal structure 2XCH using 

DockStream [65] with Ligprep and Glide [70]. Here, we 
arbitrarily consider any molecule generated with a dock-
ing score ≤ −8 kcal/mol and QED ≥ 0.7 as a favourable 
compound.

Starting from the standard Reinvent prior, we run 50 
epochs of staged learning with a batch size of 128 and the 
two scoring components. Input configurations are pro-
vided in the SI (Additional file 1: Listings S8 and S9) and 
the required grid and files for docking are available in the 
electronic SI.

Despite the rather short RL run, we are able to generate 
119 hits from 6400 ( 128× 50 ) total generated molecules 
for a hit rate of 1.9 % (Fig. 5a). However, the productiv-
ity of RL agents increases with epoch (see for example 
Ref [57]), being 2.8% in the last 20 epochs. These hits are 
spread across 103 generic Bemis–Murcko scaffolds [83], 
indicating high diversity (Fig. 5b and c). Remarkably, the 
top scoring hit is a pyrroloquinazoline that is extremely 
similar to the native pyrazoloquinazoline core. This gen-
erated molecule is predicted to adopt an identical bind-
ing pose, including the hinge interaction ALA 162 and 
an amide that interacts with LYS 111, seen in the native 
structure (Fig. 5d).

In order to demonstrate the potential advantages of 
TL, we obtained a list of 315 congeneric pyridinon–
bearing compounds shown to be active against PDK1 
as per PubChem Assay AID17 98002. We selected this 
set because it is the largest (in terms of number of com-
pounds tested in a single assay) reported in PubChem 
against PDK1. A more careful study could consider 
multiple assays or more intentionally curated relevant 
chemistry.

After running 10 epochs of TL we repeated the struc-
ture–based design exercise starting with this agent. 
Although the compounds in the series are not closely 
related to the native pyrazoloquinazoline inhibitor the 
TL agent is nearly twice as productive as the baseline 
RL agent over 50 epochs, finding 222 hits with a 3.5% hit 
rate (Fig.  5a). The diversity is high (Fig.  5b, c) with 176 
unique generic scaffolds identified. The pose correspond-
ing to the best docking score contains an imidazole core 
that makes the same interaction with LYS 111 as the 
native ligand, and also positions a basic nitrogen close to 
ASN 210 and GLU 208 which makes it a plausible design 
hypothesis. However, we observe the hinge interaction 
with ALA 162 is not complete in this case due to a miss-
ing donor (Fig. 5d). This could be addressed through the 
addition of constraints in the docking grid as was done in 
[58].

https://toml.io/
https://pubchem.ncbi.nlm.nih.gov/bioassay/1,798,002
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Conclusion
The technical details and basic usage of the new version 
4 of the AI molecular design software REINVENT have 
been described. The tool is both a continuation of previ-
ous releases and a major update in functionality includ-
ing staged learning, transformer models, consistent 
framework of optimization algorithms and a reworked 
scoring subsystem fit for future challenges. We hope that 
the AI in chemistry community will greatly benefit from 
the release of a reference implementation of a molecular 
generation software including releasing the software as 
open–source and making all documentation available to 
guide the user. We hope that the release will contribute 
to increased transparency around AI–driven molecular 
design and the released software be used as a reference 

implementation for educational purposes as well as spur 
further innovation in generative AI for molecular design. 
The software is available from https:// github. com/ Molec 
ularAI/ REINV ENT4.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 024- 00812-5.

Additional file 1: Additional validation results, input file examples, sup-
ported tokens.

Additional file 2: ZIP archive containing data used in the case study: 
docking grid, DockStream configuration, SMILES used for transfer learning.
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Fig. 5 Demonstration of a simple structure–based drug design in REINVENT 4 using a crystal structure for PDK1 (PDB ID 2XCH). The cumulative 
number of hits identified over 50 epochs are shown a for reinforcement learning starting from the prior (RL, black) or from a transfer learning 
agent (TL-RL, red). The diversity of the hits generated is compared using principal component analysis (PCA) based on 2D RDKit  descr iptors b 
and by counting the number of distinct hit and not–hit generic scaffolds c. For the PCA plot, we show hits as colored circles and include the convex 
hulls of all generated compounds as polygons b. d The predicted binding pose in the PDK1 binding site (based on PDB 2XCH) for the best scoring 
idea from each method are shown with a stick representation, contrasted with the native ligand in cyan. The docking scores for the poses are 
as follows: −10.1 kcal/mol (RL) and −10.1 kcal/mol (TL-RL). The protein is represented as a cartoon with key binding site residues (ALA 162/green, LYS 
111/blue, GLU166/red, GLU209/red, ASN 210/blue) shown in a stick representation, with a transparent binding site surface overlaid. 2D inserts show 
the structure of the ligands. Hits are defined as molecules with a docking score ≤ −8 kcal/mol and QED ≥ 0.7

https://github.com/MolecularAI/REINVENT4
https://github.com/MolecularAI/REINVENT4
https://doi.org/10.1186/s13321-024-00812-5
https://doi.org/10.1186/s13321-024-00812-5
https://www.rcsb.org/structure/2xch
https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
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