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Abstract 

The rapid increase of publicly available chemical structures and associated experimental data presents a valu‑
able opportunity to build robust QSAR models for applications in different fields. However, the common concern 
is the quality of both the chemical structure information and associated experimental data. This is especially true 
when those data are collected from multiple sources as chemical substance mappings can contain many duplicate 
structures and molecular inconsistencies. Such issues can impact the resulting molecular descriptors and their map‑
pings to experimental data and, subsequently, the quality of the derived models in terms of accuracy, repeatability, 
and reliability. Herein we describe the development of an automated workflow to standardize chemical structures 
according to a set of standard rules and generate two and/or three‑dimensional “QSAR‑ready” forms prior to the cal‑
culation of molecular descriptors. The workflow was designed in the KNIME workflow environment and consists 
of three high‑level steps. First, a structure encoding is read, and then the resulting in‑memory representation is cross‑
referenced with any existing identifiers for consistency. Finally, the structure is standardized using a series of opera‑
tions including desalting, stripping of stereochemistry (for two‑dimensional structures), standardization of tautomers 
and nitro groups, valence correction, neutralization when possible, and then removal of duplicates. This workflow 
was initially developed to support collaborative modeling QSAR projects to ensure consistency of the results 
from the different participants. It was then updated and generalized for other modeling applications. This included 
modification of the “QSAR‑ready” workflow to generate “MS‑ready structures” to support the generation of substance 
mappings and searches for software applications related to non‑targeted analysis mass spectrometry. Both QSAR 
and MS‑ready workflows are freely available in KNIME, via standalone versions on GitHub, and as docker container 
resources for the scientific community. Scientific contribution: This work pioneers an automated workflow in KNIME, 
systematically standardizing chemical structures to ensure their readiness for QSAR modeling and broader scientific 
applications. By addressing data quality concerns through desalting, stereochemistry stripping, and normalization, it 
optimizes molecular descriptors’ accuracy and reliability. The freely available resources in KNIME, GitHub, and docker 
containers democratize access, benefiting collaborative research and advancing diverse modeling endeavors 
in chemistry and mass spectrometry.
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Introduction
The need for the investigation of chemicals’ phys-
icochemical properties and biological activities, both 
in vitro and in vivo, commonly requires the use of com-
putational predictive approaches. In silico methods such 
as quantitative structure–activity/property relationship 
(QSAR/QSPR) models represent important tools for 
virtual screening, data gap-filling and prioritization for 
testing. It also facilitates the initial research and develop-
ment optimization of desirable molecular characteristics. 
Such models are trained on experimental data and rely 
entirely upon molecular structure representations to gen-
erate predictions from the learned relationships between 
structure and activity/property.

The ever-expanding experimental datasets available 
from public sources allow for rapid development and 
improvement of predictive models for different biologi-
cal and toxicological endpoints as well as physicochemi-
cal properties. However, when transforming molecular 
graphs and their associated data into predictions and 
insights, the quality of the input data sets an upper limit 
on the quality of the output. Thus, the predictivity and 
accuracy of the developed models highly depends upon 
the quality of the training data. Several methods have 
been developed and applied to curate experimental data 
using natural language processing techniques, as well 
as statistical methods for outlier detection, to detect 
and possibly correct reporting errors and unit conver-
sion mistakes [1–3]. The associated molecular graphs, 
however, have historically not received the same level of 
attention. Although machine-based molecular encod-
ings have been in use for over six decades, relatively little 
attention has been directed to curate the chemical struc-
ture representations that are the basis for training the 
models and applying them to provide predictions on new 
chemicals. Some highlighted studies include our own 
previous works in this area (2016) and those of Fourches 
et  al. (2010), Williams and Ekins (2011), and recently 
Lowe et al. (2023) [4–9]. However, failure to address this 
problem has negative consequences not only on property 
prediction and classification during training and use, but 
also affects registration and deduplication as well as simi-
larity and substructure searches within databases.

The conceptual basis of QSAR/QSPR and related 
approaches is the congenericity principle: the assumption 
that similar structures are associated with similar prop-
erties and/or biological activities. Thus, the unknown 
properties of a given chemical can be inferred from 
compounds with known experimental responses based 
on molecular structure. Predictive models are trained 
by applying machine learning algorithms relating spe-
cific structural features of chemicals to their associated 
experimental responses. However, this procedure usually 

requires a prior step to derive the appropriate struc-
tural features from the molecular representation which 
mainly depends on its intrinsic nature. This step consists 
of retrieving the corresponding information encoded in 
the molecular structures then converting it to an array 
of discrete or continuous numbers called molecular 
descriptors.

The process of generating molecular descriptors used 
to establish the correct relationships between the training 
structures and the experimentally demonstrated proper-
ties is based on the molecular representation. However, 
a molecular structure has no unique representation. 
Instead, several models exist depending on the theoreti-
cal approach adopted and the degree of approximation. 
The complexity of a molecular structure relates to the fact 
that most of its properties cannot be derived from only 
considering its single atoms; rather, it is a holistic system 
that depends on the atomic connections and interactions. 
Any change in these parameters can alter a molecular 
descriptor value. Thus, standardization of the molecular 
representation rules is important to achieve consistency 
in terms of descriptor values between the training step 
and any future model application to generate predictions.

These standardization approaches deal with issues 
such as tautomerization, standardization of functional 
groups (e.g., nitro group and azo group representations), 
salt handling, and other standardization concerns to 
bring structure sets into coherence under a defined set 
of rules. Despite their importance to the outcomes of 
QSAR/QSPR modeling, there was little consideration 
of general guidelines or protocols regarding standardi-
zation or curation of molecular graph encodings in the 
literature until recently. The first real mention of chemi-
cal structure errors in QSAR datasets is a 2008 study by 
Young et  al. [10]. In 2010, a pivotal review by Fourches 
et al. demonstrates the non-negligible effects of molecu-
lar graph errors on the performance of QSAR models 
and their accuracy [6]. Until these two publications, the 
problem was only treated tangentially, as stated in the 
Fourches et al. review.

Since then, several reports and tools have been pub-
lished reflecting the burst of publicly available datasets. 
These data are commonly assembled from historical 
collections and are consequently affected by a signifi-
cant lack of molecular graph curation. This ‘snowballing’ 
problem emphasizes the need for community guide-
lines. While there are vendor-provided solutions such as 
MDL Cheshire (https:// med. stanf ord. edu/ conte nt/ dam/ 
sm/ htbc/ docum ents/ mdl_ chesh ire_ ds. pdf ), and Che-
mAxon (https:// docs. chema xon. com/ displ ay/ docs/ stand 
ardiz ation- in- step- by- step. md), these approaches have 
their benefits locked behind potentially insurmountable 

https://med.stanford.edu/content/dam/sm/htbc/documents/mdl_cheshire_ds.pdf
https://med.stanford.edu/content/dam/sm/htbc/documents/mdl_cheshire_ds.pdf
https://docs.chemaxon.com/display/docs/standardization-in-step-by-step.md
https://docs.chemaxon.com/display/docs/standardization-in-step-by-step.md
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barriers for QSAR/QSPR modelers without the means to 
access them.

Public access tools have only been available in recent 
years. The first noteworthy online tool was the Chemical 
Validation and Standardization Platform (CVSP) deliv-
ered in 2015 by the ChemSpider team [11]. CVSP was 
designed to help with the detection of issues in molecular 
representations using a predefined dictionary of molecu-
lar patterns, the ability to define and upload custom sets 
of standardization operations, alongside the option to 
perform manual review. Inspired by the CVSP platform, 
and the concerns outlined in Fourches et  al., an early 
version of the QSAR-ready standardization workflow, 
subject of the current manuscript, is first mentioned 
in 2016 by Mansouri et  al. [4]. Several other tools have 
since appeared in the literature describing other stand-
ardization approaches and these include MolVS in 2017, 
PubChem standardization in 2018, an RDKit chemical 
structure curation pipeline (from the ChEMBL group) in 
2020, and IBM’s standardization library in 2022 [12–18].

This publication describes the development of the 
QSAR-ready standardization workflow and its automated 
process of generating curated standardized structures 
for the molecular descriptors calculation step of mod-
eling. This standardization can be performed as a desk-
top application and does not require submission to any 
web-based application. The first version of the applica-
tion was developed in 2015 at the U.S. Environmental 
Protection Agency (EPA). The resulting software product 
provided regulatory scientists, students, and researchers 
with the ability to effectively process multiple in silico 
data streams in support of various regulatory decision 
frameworks.

The workflow was designed using the Konstanz Infor-
mation Miner platform commonly referred to as KNIME 
[19]. The first version of the workflow, developed in 2014, 
was used to standardize thousands of chemical struc-
tures for the international collaborative estrogen receptor 
activity prediction project (CERAPP), led by the EPA and 
published in 2016, providing the workflow as supplemen-
tal material [4]. This initial workflow was incrementally 
improved over time and continues to be used to stand-
ardize molecular structures for the interagency suite of 
QSAR models known as OPERA [20, 21]. As a result of 
the inherent simplicity and flexibility of the workflow, it 
was adapted to standardize structures to support mass 
spectrometry (MS), specifically to support the non-tar-
geted analysis (NTA) with high-resolution mass spec-
trometry (HRMS) research efforts at the US-EPA [22].

The modified “MS-Ready” workflow has also been used 
to process the entire contents of the DSSTox database to 
produce the “MS-ready structures” that are used on the 
EPA’s CompTox Chemicals Dashboard (from hereon, the 

Dashboard) as the basis of the Linked Substances capa-
bility [23, 24]. More recently, the QSAR-Ready workflow 
proved to be essential to the global collaborative mod-
eling projects to predict both androgen receptor activity 
(CoMPARA) and acute oral toxicity (CATMoS) [25, 26]. 
Additionally, it was used to standardize the QSAR-ready 
structures also available on the Dashboard via the batch 
search and national toxicology program interagency 
center for the evaluation of alternative toxicological 
methods (NICEATM) integrated chemical environment 
(ICE) [24, 27, 28].

Materials and methods
Background
Analysis of molecular structure data, typically graphs, 
to generate insights or predictions is foundational to 
computational chemistry and cheminformatics. In these 
research areas the performance of the modeling outputs 
is set by the quality of the input. In this context, the qual-
ity of the empirical input data has been the subject of 
much study and is increasingly well defined [29]. How-
ever, when considering the associated molecular graphs, 
the question of what aspects of representation should be 
fixed or rejected and under what conditions is of utmost 
consideration. These issues are generally addressed in 
machine learning literature. However, attention within 
QSAR/QSPR and as representation pertains to chemical 
data and inputs remains under-inspected [30].

One of the first big leaps that contributed to modern 
computational chemistry was the storage of two-dimen-
sional structures by the IBM 704 computer system [31]. 
This allowed chemists to draw any structural fragment 
or moiety, search the stored files, and have the computer 
print it in a format that did not require translating or 
decoding. Since then, the rapid evolution of computer 
science technologies has brought revolutionary advance-
ments in modern data analytics. Presently, it is possible 
to analyze enormous streams of chemistry-related data 
in depth and handle a multitude of parameters simul-
taneously. In terms of a standardization workflow, this 
allows not only for the detection and removal of errone-
ous structural representations, but also for the repair and 
harmonization of data with the application of specific, 
predefined rules.

For every standardization process reported in the lit-
erature to date, three main steps are employed which aim 
to reduce factors that interfere with extracting accurate 
predictions and insights from molecular graphs [6, 10, 
11, 32].

The first step is always related to parsing the input 
file containing the chemical structure(s) and checking 
its validity. There are multiple file formats for storing 
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chemical structures, but the most commonly used are 
the MOL file (originally developed by MDL Information 
Systems and now managed by Dassault Systems) storing 
a single chemical in multiline string format, the structure 
data file (SDF) composed of multiple structures concat-
enated in MOL format, and the simplified molecular-
input line-entry system (SMILES) that defines a structure 
in a single line string format initially developed at the US 
EPA, but managed and enhanced by Daylight [33–36].

Each of the file formats has its own syntactical rules for 
encoding atom and bond types as well as the two- and 
three-dimensional information and coordinates. Vio-
lations of these rules usually lead to parsing errors or 
warnings. While some violations can be programmati-
cally corrected, others will corrupt the structural integ-
rity of the chemical representation and lead to a complete 
parsing failure. This speaks to the importance of estab-
lishing standardized workflows compatible with com-
mon molecular file types to prevent automated pipelines 
from failing due to violations of established encoding 
standards.

The second step assesses the consistency of the input 
file and depends upon the presence of additional infor-
mation about the chemical structure. For example, MOL 
and SDF files may include several fields storing informa-
tion such as systematic names, international chemical 
identifiers (InChI), Chemical Abstracts Service registry 
number  (CASRN®), among others. The role of this step 
is to check how the molecular graph information reflects 
the known features implied by those identifiers. The 
consistency of each file entry can be ranked and used 
to determine if and how the validity of the input can be 
restored in case of a parsing error or warning [5].

The third and main step is what is usually intended by 
the standardization process. It consists of checking if the 
molecular graph breaks any commonly known or subjec-
tively predefined rules for representation form, style, or 
semantics.

Standardization process
The complexity of the workflow increases dramatically 
over the mentioned steps. The first is relatively simple 
since any cheminformatics reader tool should report for-
mat-related parsing errors that can be directed towards 
review and repair or removal of the entry. The degree of 
importance and complexity of the second step depend on 
the nature and number of what identifiers are available 
and whether they are internal to the input or external to 
it. The third step is the most complex but also the most 
critical. Its rules and operations may vary by organiza-
tion, team, and project, and/or dataset.

However, once well-defined and self-consistent 
rule sets are defined, the rules support the implicit 

requirement for standardization on any new dataset, 
including chemical datasets generated outside the rule-
setting organization. As would be expected, some data-
set-specific exceptions may apply to certain rules and 
there is not a “one-size-fits-all” guide to standardization.

Thus, the objective of exhaustively cataloging the dif-
ferent operations is to provide the richest possible set of 
options to generate structures for one type of application 
and, in this case, to generate “QSAR-ready” structures 
suitable for descriptor calculation and model building. A 
secondary goal is to make the set of rules as flexible as 
possible for expert curators to combine and select rules 
as needed to adapt for other applications. An example of 
this, as mentioned previously, the “MS-ready” standardi-
zation workflow to support specific searches supporting 
mass-spectrometry as detailed in McEachran et al. [22].

In general, a standardization rule is a two-step 
sequence that checks for the presence of a specific fea-
ture and then prescribes one or more graph transforma-
tions to remedy the potential issue. The standardization 
process involves an ordered specification of these rules, 
bearing in mind that some steps are order-dependent 
and lead to a different outcome if commuted (Additional 
file 1: S1) [37].

The proposed process in this work is customizable and 
consists of the following procedures:

• A broad number of checks and remedies for valency 
including hypervalent nitrogen, sulfur, phosphorous, 
N-oxides, nitro compounds, sulfoxides, sulfones, 
phosphates, etc.

• Filter metals, inorganics, and organometallics.
• Filter ambiguous structures that passed the initial 

parsing such as Markush structures and R-groups.
• Stripping of salts and solvents using a block list (inte-

grated in the workflow). The inorganic and organic 
fragments that are in the list of known salts and sol-
vents are carried through separately for consideration 
when they may be included in modeling efforts in, for 
example, melting point or partition coefficients.

• Filter organic mixtures. Any substance with uncon-
nected organic fragments that are not identified in 
the previous steps as a known salts or solvents, are 
filtered out as mixtures which does not pass stand-
ardization.

• Flatten stereochemistry for two-dimensional output 
and carry the stripped information for the three-
dimensional output, if requested.

• Virtualize explicit hydrogens, specifically to support 
tautomers (make nonstereogenic explicitly repre-
sented hydrogens implicit).

• A series of bond/group standardization and neutrali-
zation rules when required:
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• Protonate or deprotonate the parent ion when a 
salt/counterion is removed.

• Zwitterion to covalent bond.
• Standardize nitro mesomers.
• Tautomerize groups based on a list of rules and 

transformations provided in a reaction format.
• Ambiguous double bond conformation to crossed 

double bond.

• Switch rings to aromatic, according to Hückel’s rule, 
or Kekulé as requested [38, 39].

• Sanitize atomic coordinates.
• Generate InChI and InChI keys.
• Collapse duplicates based on the IUPAC (Interna-

tional Union of Pure and Applied Chemistry) InChI 
(International Chemical Identifier) codes because 
these are unequivocal identifiers, if requested.

• Filter based on size and shape, if requested (num-
ber of heavy atoms, molecular weight, nano material 
shapes).

• Generate canonical SMILES.
• A series of standardization rules for three-dimen-

sional structures, if requested, including:

• Add explicit hydrogen atoms.
• Generate three-dimensional coordinates.
• Optimize conformation geometry.

• Output format containing the following data fields:

• QSAR-ready SDF file (both 2D and 3D files avail-
able).

• QSAR-ready SMILES file: canonical QSAR-ready 
SMILES and the provided main entry identifier.

• Stripped salt/solvent information.
• Filtered out entries with a field specifying the rea-

son: failed parsing, mixtures, inorganics, organo-
metallics, size (based on the molecular weight and 
number of heavy atoms, nano-shaped molecules 
(based on a ratio of number of bonds and number 
of heavy atoms).

• Summary CSV file of the processed QSAR-ready 
structures including identifiers, InChI/InChIkeys, 
canonical SMILES, and additional processing 
details.

By far the most complicated step in this process is the 
application of tautomerization and neutralization rules 
[40]. In this work, this step includes more than a hundred 
transformations that are applied individually and turned 
on or off by expert users (Additional file 2). Most of these 
transformations were adapted from the earlier work of 
Sitzmann et al. [41].

Workflow development under KNIME
Software to manage a QSAR-ready standardization 
workflow of the complexity described above would be 
a challenging task to develop from scratch using a pro-
gramming language or custom scripts. For the widest 
accessibility and adoption, fully mature standardization 
software requires a user interface to navigate and cus-
tomize the different processes, in addition to the high 
level of flexibility necessary to navigate through the vari-
ous data processing steps. It further needs augmentation 
with titles, annotations, and descriptions to guide users 
through the process.

The KNIME analytics platform is a free and open 
source software platform that fits these requirements by 
providing a flexible environment that can be extended 
with third party tool integrations and allows for step-by-
step documentation in great detail, all by graphical inter-
face that can be customized as needed [19, 42]. KNIME’s 
modular setup enables users to assemble and modify the 
analysis flow through a visual interface using standard-
ized building blocks called nodes. These nodes are con-
nected by pipes that transfer data and/or instructions and 
can be manipulated with minimal to no programming 
experience. KNIME boasts a broad range of capabilities 
allowing users to develop workflows for different fields, 
but the platform has a specific focus on cheminformatics 
and bioinformatics with a thriving community continu-
ously developing and updating nodes. In addition to the 
ability to execute different external free/open source and 
commercial/proprietary software with no need for data 
formatting or calling for dependencies, KNIME also inte-
grates multiple programming languages allowing users to 
run existing scripts. The resulting workflows developed 
in KNIME can be executed either locally on a desktop 
using the platform’s graphical or command line inter-
faces, as well as using the KNIME server WebPortal that 
offers a user-friendly web application experience. Unlike 
the desktop version of KNIME that is downloadable for 
free, the server version requires a license. The workflows 
can also be shared in various ways to enable collaboration 
and reusability among users, which is crucial for effective 
data analysis. The KNIME Server offers a programmable 
interface, known as the KNIME Server API, that allows 
developers to interact with the platform. This API con-
sists of RESTful web services that enable users to execute 
workflows, manage workflows and jobs, retrieve work-
flow and job information, access data, and more. With 
the KNIME Server API, users can automate, integrate, 
and customize workflows and services provided by the 
server. The API supports standard HTTP methods (GET, 
POST, PUT, DELETE) and facilitates data exchange in 
various formats like JSON and XML. Additionally, it pro-
vides comprehensive error messages and status codes for 



Page 6 of 18Mansouri et al. Journal of Cheminformatics           (2024) 16:19 

effective error handling and troubleshooting. By utilizing 
the KNIME Server API, developers can seamlessly inte-
grate KNIME Server functionality into their own applica-
tions, automate workflow and job management, process 
data, and create tailored solutions that interact with the 
server [43, 44].

The KNIME platform is particularly well-suited for the 
QSAR-ready workflow due to its software stability and 
backward compatibility. Unlike other software, old nodes 
in KNIME are not removed but rather deprecated, allow-
ing workflows created using previous versions to be exe-
cuted with the same level of reliability.

Since the workflows can get complicated when per-
forming multiple tasks (e.g., database queries, data analy-
sis, modeling, visualization), KNIME provides the option 
to annotate the different steps and add documentation 
when necessary. This is important for sharing and col-
laboration among teams of developers or between the 
developers and users.

Automation and input/output interfaces
To make the most of the features that the KNIME plat-
form offers in terms of automation, user-friendliness, 
sharing, and flexibility, a QSAR-ready standardiza-
tion workflow was developed and equipped with all the 
required components. In addition to the standard pos-
sibility to configure nodes independently and run the 
workflow step-by-step, the workflow includes different 
components that allow the user to configure the entire 
workflow at once, and then run it with the push of a 
button.

This is made possible with an input window that 
prompts the user to browse for the input file (MOL, SDF 
or SMILES) and select the different options for running 
the workflow (i.e., aromaticity, 2D/3D, size limit). These 
parameters are carried through the entire workflow as 
local “flow variables” to automatically configure the dif-
ferent nodes without further user interaction.

Although the workflow is thoroughly documented at 
the node level and the different steps annotated, the user 
interface remains a much easier way to run the workflow 
and is extremely useful given this workflow contains hun-
dreds of nodes and multiple layers of encapsulation. The 
flow variables carry the input file name and path, auto-
matically name the output files accordingly, and exports 
them to the same input path.

In addition to the flow variables, the workflow is estab-
lished with global variables that allow the user to pro-
grammatically interact with and run the workflow in 
a batch mode behind the scenes without opening the 
KNIME platform graphical interface. This option is use-
ful for running a KNIME workflow via command line 

or for integration with other tools running outside the 
KNIME environment.

For example, this option was used to embed the QSAR-
ready workflow within the OPERA suite [21]. OPERA is a 
free and open-source data and QSAR modeling software 
described in detail later in the Applications section. Since 
all OPERA models employ this same QSAR-ready work-
flow to standardize the training set chemical structures 
prior to modeling, it is crucial to use the same process to 
standardize user input chemical structures during pre-
diction. The general command to run the workflow in 
command line is as follows:

“knime-nosplash-application org.knime.product.
KNIME_BATCH_APPLICATION [options]”. For addi-
tional information about the structure of the batch mode 
commands, refer to the KNIME website (https:// www. 
knime. com/).

Setting up the workflow with flow and global variables 
is necessary before deploying to the KNIME server. These 
variables specify the choices of the user through the dif-
ferent steps of the standardization process. However, for 
the workflow to be server ready, it is required to include 
specific components encapsulating relevant interactive 
widgets (https:// hub. knime. com/ knime/ exten sions/ org. 
knime. featu res. js. views/ latest) into “quickform” metan-
odes that display the choices on the KNIME WebPortal 
and allows for interactivity with users. This step is called 
“workflow abstraction” and is necessary to display the dif-
ferent interactive webpages on the WebPortal. The latest 
version of the QSAR-ready workflow (as of August 2023) 
includes two levels of interaction with a user-dependent 
input format that can be either an uploaded file (MOL, 
SDF, SMILES), or direct input structures on the WebPor-
tal, by either pasting SMILES or drawing the structures 
using the implemented rendering tool. At the end of the 
execution of the workflow, the resulting structures are 
displayed on the WebPortal, and output files provided for 
download.

The KNIME server version of the workflow can also be 
accessed and executed via the server’s RESTful API. The 
chemical structure information (MOL, SDF, SMILES) can 
be sent and received in a wrapped JSON format through 
standard HTTP methods such as GET, POST, PUT, and 
DELETE [43, 44].

Sharing options
KNIME provides several ways for users to share their 
workflows with others, including the KNIME Hub, 
GitHub, Docker containers, and KNIME Server. These 
platforms enable collaboration and reusability among 
users, streamline data analysis workflows, and make it 

https://www.knime.com/
https://www.knime.com/
https://hub.knime.com/knime/extensions/org.knime.features.js.views/latest
https://hub.knime.com/knime/extensions/org.knime.features.js.views/latest
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easier for organizations to manage their data science 
resources.

One way to share KNIME workflows is through the 
KNIME Hub, which is a community-driven platform that 
allows users to share, discover, and collaborate on work-
flows. Users can upload their workflows to the platform 
and make them either public or private. Other users can 
then download and use these workflows or contribute to 
them by adding comments or making improvements. The 
QSAR-ready workflow is available on the KNIME Hub at: 
https:// kni. me/w/ 5TRvn GfMJs gTkcZu.

Users can also share KNIME workflows through 
GitHub, a web-based platform for software version con-
trol and collaboration. This enables multiple users to 
work on the same workflow simultaneously and track 
changes over time. GitHub also supports integration with 
other tools such as continuous integration and deliv-
ery tools. The QSAR-ready workflow is available on the 
NIEHS GitHub repository: https:// github. com/ NIEHS/ 
QSAR- ready.

Another way to share KNIME workflows is through 
Docker containers. Docker is a platform for develop-
ing, shipping, and running applications using contain-
ers. By creating a container image that includes the 
KNIME workflow and all the dependencies required to 
run it, users can share their workflows with others and 
run them on any machine that supports Docker, regard-
less of the underlying operating system or hardware. The 
QSAR-ready workflow is available as a docker container 
at: https:// hub. docker. com/r/ kamel manso uri/ qsar- ready. 
The docker file is available on GitHub at: https:// github. 
com/ kmans ouri/ QSAR- ready which is built on a KNIME 
base image developed by: https:// github. com/ ibisba/ 
knime- workfl ow- base.

Finally, KNIME Server provides a web-based plat-
form for centralized management of workflows, data, 
and users. By deploying their workflows to the server, 
users can share them with other users in their organiza-
tion, run them remotely, schedule them to run at specific 
times, and monitor their execution. The QSAR-ready 
workflow is available on NIEHS’ KNIME server WebPor-
tal at: knime.niehs.nih.gov/knime/.

Results and discussion
Workflow overview
The QSAR-ready workflow described above, and illus-
trated in Fig. 1, comprises eight major steps: (1) input and 
structure parsing, (2) inorganics filter, (3) salts, counte-
rions and mixtures processing, (4) structure standardi-
zation, (5) ring processing, (6) duplicates processing, (7) 
3-dimensional structure processing, (8) output. Each 
of these steps is annotated on the workflow with a dif-
ferent color and consists of several sub-steps executed 
by various nodes and metanodes. Additional notes and 
documentation are available in the metanodes to provide 
more detailed explanations of the process, particularly 
for advanced KNIME users and workflow developers 
who wish to modify or reconfigure the workflow. These 
notes and documentation are only visible when access-
ing the workflow in the KNIME desktop user interface. 
Alternatively, the KNIME server WebPortal provides a 
distinct form of documentation that is designed to guide 
users through the different interactive steps requiring 
their input.

Input and workflow execution
This is the most crucial step in running the workflow 
interactively. In the KNIME environment, the user must 
double-click on the input component after loading the 
workflow. This action will open a pop-up window where 
the user can browse for the input file and configure the 
workflow parameters, as shown in Fig.  2. The user can 
then execute the workflow by clicking the green double 
arrow which automatically configures all the subsequent 
nodes with the selected parameters as variables. Simi-
larly, when using the WebPortal, the landing page will 
provide some initial information (Fig.  3), and the user 
will subsequently be directed to the configuration page 
(Fig.  4). However, unlike the KNIME environment, on 
the WebPortal, the user can input structures by past-
ing SMILES strings or drawing a structure in addition 
to loading an input file. Currently, the NIEHS KNIME 
server is only available within the NIH network at https:// 
knime. niehs. nih. gov/ knime/. Although running times 
are hardware dependent, a stress test performed on the 
NIEHS server revealed an average of 0.017 s/2D structure 

Fig. 1 KNIME QSAR‑ready chemical structure standardization workflow organized by sections of the process

https://kni.me/w/5TRvnGfMJsgTkcZu
https://github.com/NIEHS/QSAR-ready
https://github.com/NIEHS/QSAR-ready
https://hub.docker.com/r/kamelmansouri/qsar-ready
https://github.com/kmansouri/QSAR-ready
https://github.com/kmansouri/QSAR-ready
https://github.com/ibisba/knime-workflow-base
https://github.com/ibisba/knime-workflow-base
https://knime.niehs.nih.gov/knime/
https://knime.niehs.nih.gov/knime/
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and 0.038  s/3D structure. The details of the stress test 
and the server configuration are provided in the Addi-
tional file 1: S2.

After the user uploads the input file to be processed, 
the first step of the workflow will vary based on the file 
format (MOL, SDF, or SMILES). The workflow will then 
execute a distinct set of actions to extract the struc-
ture information and other pertinent data, including 
the compound identifiers  (CASRN®) where applicable. 
Since SMILES encode chemical structure information 
in an ASCII string format, they can be either stored in a 
standard “.smi” text file or in spreadsheets such as “.csv” 
and Excel files. The workflow supports all these for-
mats except that, in the case of a spreadsheet, the user 

will be asked to confirm or identify the correct table col-
umn containing the structural information and the cor-
responding unique identifier. After parsing the input 
file, the workflow will perform a series of initial steps to 
verify the integrity of the structure(s), check/correct their 
valence and eliminate any corrupt entries.

When running the workflow in command line, or using 
the Dockerized version, the user can either leave the 
default parameters as is or populate the desired variables 
to configure the workflow differently.

In addition to the WebPortal, the user can also run the 
QSAR-ready workflow through the KNIME Server API 
using a tool such as Postman (Fig. 5). The user needs to 
launch the Postman application and create a new request. 

Fig. 2 Input and workflow settings
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In the new request tab, the user must set the HTTP 
method (GET, POST, PUT, DELETE) and enter the API 
URL (https:// ehsnt pvlp03. niehs. nih. gov: 8443/ knime/ 
rest/ v4/ repos itory/ NICEA TM- prod/ QSAR- ready_2. 5S_ 
batch: opena pi? showI nUI= true) in the address bar. The 
API currently works only within the NIH network (and 
will possibly be made public in the future), so the user 
will need to add authentication in the request headers 
by navigating to the "Headers" tab. Then, the API request 
body needs to be populated with the input structure(s) in 
the appropriate format (e.g., JSON, XML). Once every-
thing is set, the "Send" button will send the API request 
to the KNIME Server. The server’s response, including 
headers, body, and status code, will be displayed in the 
"Response" section of the Postman window. The request 
parameters, headers, or body can be modified as needed 
and the process repeated by clicking the "Send" but-
ton again. It is important to refer to the KNIME Server 
API documentation for specific details on request for-
mats, authentication methods, and other relevant infor-
mation for the API (https:// www. knime. com/ blog/ 
the- knime- server- rest- api).

Intermediary steps
Once the user clicks on the green double arrow within 
the KNIME graphical interface, or the “Next” button 
on the WebPortal, the workflow will automatically exe-
cute the above mentioned seven steps. The initial user-
selected parameters are translated into variables that are 

used to configure the “if” statement nodes to go in one 
direction or another when it comes to choosing between 
Kekulé and aromatic forms, or whether to deduplicate, 
filter based on size, or generate 3D structures. The long-
est step and core of the workflow is the standardization 
and neutralization metanode. This is performed using a 
series of transformation rules that are implemented as 
reactions as depicted in Fig.  6. These transformations 
follow a specific order so that certain rules do not can-
cel those that precede them. First, the tautomeric forms 
are standardized. This includes the nitro- and azide-
mesomers, keto-enol, enamine-imine, ynol-ketene tau-
tomers, and other conversions [41, 45, 46]. Additional 
possible tautomeric rules are also provided in separate 
nodes for expert users to adapt for specific needs. These 
transformations are then followed by neutralization of 
the charged structures, when possible, and removing the 
stereochemistry information. Explicit hydrogen atoms 
are then added and structures aromatized according to 
Hückel’s rule [38, 39, 47].

At each one of these steps, the workflow will carry the 
processed structures and their related information and 
will discard the failed structures. However, the latter are 
not dropped, but rather collected separately with a tag for 
each one specifying the issue with the structure that led 
to the failure of the standardization process.

Fig. 3 Workflow landing page on the KNIME Server

https://ehsntpvlp03.niehs.nih.gov:8443/knime/rest/v4/repository/NICEATM-prod/QSAR-ready_2.5S_batch:openapi?showInUI=true
https://ehsntpvlp03.niehs.nih.gov:8443/knime/rest/v4/repository/NICEATM-prod/QSAR-ready_2.5S_batch:openapi?showInUI=true
https://ehsntpvlp03.niehs.nih.gov:8443/knime/rest/v4/repository/NICEATM-prod/QSAR-ready_2.5S_batch:openapi?showInUI=true
https://www.knime.com/blog/the-knime-server-rest-api
https://www.knime.com/blog/the-knime-server-rest-api
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Output
At the end of its execution, the workflow generates 
different files as a result of the process. The standard-
ized QSAR-ready structures are saved in two formats, 
an SDF file (v2000) and a SMILES file. If the 3D struc-
tures were requested, the 3D atom coordinates will 

be saved in the SDF file. A summary file in CSV for-
mat will include the structure identifier, if provided in 
the input, the original and standardized structures in 
SMILES format, the standard InChI code and hashed 
InChI key, as well as the counter ion or salt/solvent, if 
any. For chemicals with a salt/solvent that was stripped 

Fig. 4 Workflow configuration options on the KNIME Server. A File input. B Drawing input
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during the process, another CSV file with this informa-
tion is generated containing an additional generic iden-
tifier for the salt or solvent. This information is useful 
when modeling certain endpoints, where the salt or sol-
vent is relevant. For example, OPERA uses this generic 

identifier as an additional descriptor for the octanol–
water partition coefficient (logKOW), boiling point, 
melting point, and water-solubility. Any failed struc-
tures are collected in a separate CSV file containing the 
structure identifier (if provided) the original structure 

Fig. 5 API configuration. A On the server. B In postman
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and the error that led to the failure of the standardiza-
tion process. In case the deduplication step is requested 
by the user, the duplicates will also be provided in the 
same file with the discarded structures.

On the WebPortal, the original structures and result-
ing standardized structures are first displayed for the user 
prior to the final step where the resulting files are pro-
vided for download (Fig. 7). The WebPortal also provides 
the option to get notified by email when the results are 
available for download. This option is particularly useful 
when the input file contains a large number of structures 

requiring a long time so that the user can even close the 
browser after launching the workflow. When using the 
KNIME environment graphical interface or the com-
mand line, the output files are written directly to the 
same folder containing the input file. All resulting files 
are named using the input file name and adding a speci-
fication (such as _Summary_file or _DiscardedStruc-
tures) distinguishing the type of information contained 
in each of the output files. Sample output files are pro-
vided on the workflow’s repository page on GitHub: 
https:// github. com/ NIEHS/ QSAR- ready and examples 

Fig. 6 Standardization and neutralization metanode

Fig. 7 Output files download page

https://github.com/NIEHS/QSAR-ready
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of standardization transformations are provided in Addi-
tional file 3.

Upon the initiation of workflow execution using the 
KNIME Server API by sending a request with the nec-
essary parameters to the appropriate endpoint, the job 
progress can be monitored. This monitoring capabil-
ity facilitates the retrieval of essential job information, 
including status, logs, and results. Once the job execution 
is complete, the output results, such as structure data 
files, can be retrieved through the API endpoints in the 
desired format. The processed structures can be parsed 
and analyzed according to the specific requirements. 
Post-processing actions, such as generating reports, trig-
gering notifications, integrating with other systems, or 
updating databases, can be performed based on the pro-
cessed results using the preferred programming language 
or tools. The KNIME Server API provides a flexible and 
programmatic means to interact with the KNIME Server 
and automate various data processing tasks. The official 
KNIME Server API documentation should be consulted 
for detailed information on API endpoints, request for-
mats, and available functionalities [43, 44].

Applications
International collaborative modeling projects
This workflow was initially developed for the Collabo-
rative Estrogen Receptor Activity Prediction Project 
(CERAPP), an international modeling initiative designed 
to forecast the estrogenic activity of chemicals and 
organized by the National Center for Computational 
Toxicology at the U.S. EPA, in support of its Endocrine 
Disruptor Screening Program (EDSP) [4, 48]. This col-
laborative project, involving 17 research groups, included 
chemical structures collected from different public 
sources that contained many duplicates and inconsisten-
cies. Such issues can alter the molecular descriptor cal-
culation procedure and, subsequently, the quality of the 
derived QSAR models in terms of accuracy and repeat-
ability. Hence, a structure curation process was required 
to derive a unique set of QSAR-ready structures that all 
participating groups could use to have consistent sets 
of structures for both training and prediction steps. The 
participants used data from the US ToxCast™ and Tox21 
programs [49–51] as a training set to develop and opti-
mize their models. These programs produced concen-
tration–response data for 1812 chemicals, obtained 
from a collection of 18 in vitro high-throughput screen-
ing (HTS) assays that explored multiple sites in the 
mammalian estrogen receptor (ER) pathway [52]. For 
the purposes of prioritizing further testing and regula-
tory measures, we assembled a virtual screening library 
containing more than 50,000 chemicals identified by 
their CASRN. This extensive set, gathered from diverse 

sources, aimed to encompass a substantial proportion of 
all human-exposed man-made chemicals, and comprised 
various classes such as consumer products, food addi-
tives, and human and veterinary drugs, with significant 
overlap. Both the training and prediction sets underwent 
the same structure standardization workflow, resulting 
in the retention of unique QSAR-ready structures: 1677 
in the training set and 32,464 in the prediction set. The 
participating groups submitted about 50 models using 
different QSAR and structure-based approaches. These 
models were then combined into a consensus model that 
was used to screen the ~ 32 k prediction set.

The CERAPP project demonstrated the effective 
screening of a large number of environmentally relevant 
chemicals in a fast and accurate manner by combining 
multiple modeling approaches in an ensemble method 
that overcame the limitations of individual models [4]. 
The project provided valuable data and a screened a list 
of chemicals. It also served as a successful collaboration 
example, showcasing the utilization of large amounts of 
high-quality data in model fitting and rigorous proce-
dures for the development, validation, and use of effi-
cient and accurate methods in predicting human or 
environmental toxicity while reducing animal testing. 
The resulting project’s workflows including the QSAR-
ready standardization were applied to other collabora-
tive modeling projects targeting different toxicological 
endpoints such as the androgen receptor (AR) activity 
and acute oral toxicity. The AR modeling project (Col-
laborative Modeling Project for Androgen Receptor 
Activity: CoMPARA) adopted the template established 
by CERAPP and focused on virtually screening chemi-
cals for their potential AR pathway activity based on 11 
HTS assays, also in support of the EPA’s EDSP [53]. These 
assays were conducted on the same initial library of 1855 
ToxCast™ chemicals used for ER assays, and the result-
ing AR pathway activity cores were utilized as a train-
ing set in the CoMPARA modeling consortium [25]. A 
total of 91 qualitative and quantitative predictive QSAR 
models for binding, agonist, and antagonist AR activities 
were contributed by collaborators from 25 international 
research groups. The combined list of chemicals screened 
by CoMPARA participants using their models included 
55,450 chemical structures, comprising both CERAPP 
chemicals and generated metabolites [54, 55]. The result-
ing predictions were evaluated using curated literature 
datasets and subsequently combined into binding, ago-
nist, and antagonist consensus models. The chemical 
structures from all three datasets for the CoMPARA 
project (training set, prediction set and evaluation set) 
were processed using the QSAR-ready standardization 
workflow prior to modeling and predictions. Both the 
CERAPP and CoMPARA projects fostered collaboration 
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among participants, aiming to build the best collective 
consensus rather than competing for the best individ-
ual model. Further, the predictions from CERAPP and 
CoMPARA were accepted by the U.S. EPA as useful for 
prioritization under the EDSP and for consideration in 
weight-of-evidence evaluations of endocrine disruption 
potential [56].

The third crowdsourcing collaborative project that 
used the QSAR-ready workflow to standardize all used 
chemical structures was the Collaborative Acute Toxicity 
Modeling Suite (CATMoS) [26]. Acute systemic toxicity 
testing is crucial for regulatory hazard classification, labe-
ling, and risk management [57]. However, assessing all 
new and existing chemicals using traditional rodent acute 
toxicity tests is time-consuming and expensive. In silico 
models built using existing data offer a rapid and animal-
free approach for predicting acute toxicity. To develop in 
silico models for predicting acute oral toxicity, the U.S. 
Interagency Coordinating Committee on the Validation 
of Alternative Methods (ICCVAM) Acute Toxicity Work-
group organized an international collaboration [58]. 
The collaboration focused on five different endpoints: 
Lethal Dose 50 (LD50 value), U.S. Environmental Pro-
tection Agency hazard categories (four), Globally Har-
monized System for Classification and Labeling hazard 
categories (five), very toxic chemicals (LD50 ≤ 50  mg/
kg), and non-toxic chemicals (LD50 > 2000  mg/kg). An 
inventory of acute oral toxicity data for 11,992 chemicals 
was compiled, divided into training and evaluation sets, 
and shared with 35 participating international research 
groups. These groups submitted a total of 139 predic-
tive models that were applied on a prediction set that 
included 48,137 chemical structures, including a hold-
out evaluation set of 3000 chemicals. Predictions falling 
within the applicability domains of the submitted mod-
els were evaluated using the external evaluation set and 
combined to create consensus models that leverage the 
strengths of individual approaches. The resulting consen-
sus predictions, forming CATMoS, exhibit high accuracy 
and robustness when compared to in vivo results [26, 59]. 
Regulatory agencies are currently evaluating CATMoS 
for its utility and applicability as a potential replacement 
for in vivo rat acute oral toxicity studies.

These successful collaborative projects support inter-
national cooperation, exemplify the collaborative resolu-
tion of toxicological challenges through computational 
approaches, establish a legacy of freely available open-
source code and workflows, and contribute to the grow-
ing recognition and acceptance of non-animal methods 
by regulatory authorities.

OPERA models
CERAPP, CoMPARA and CATMoS consensus models 
were implemented in OPERA, a free and open source/
open data suite of over twenty QSAR models. OPERA 
models possess the capability to assess chemicals for 
toxicity endpoints, as well as predict physicochemi-
cal, environmental fate, and ADME properties. These 
models adhere to the five OECD principles for QSAR 
modeling, ensuring scientific validity and high accuracy 
while minimizing complexity [60]. The models are built 
on thoroughly curated experimental data and standard-
ized chemical structures using the QSAR-ready work-
flow. The workflow is also embedded in OPERA so that 
input chemical structures are standardized in a manner 
consistent with the training sets of the models prior to 
prediction.

In the latest version, several OPERA models, including 
physicochemical properties and ADME parameters, have 
been updated with the latest publicly available datasets. 
These updates enhance predictivity, expand the applica-
bility domain coverage, and consider extensively stud-
ied groups of chemicals like polyfluorinated substances 
(PFAS). The suite allows predictions to be generated for 
individual chemicals or in batch mode, and input chemi-
cal structures can be processed using OPERA’s internal 
QSAR-ready standardization workflow or provided via 
structure identifiers from EPA’s DSSTox database, which 
comprises over 1 million curated chemical structures [23, 
61].

OPERA provides comprehensive prediction reports 
that include accuracy estimates, applicability domain 
assessments, confidence ranges, and, whenever pos-
sible, experimental values. Technical and performance 
details are presented in OECD-compliant QSAR model 
reporting format (QMRF) reports. The predictions gen-
erated by OPERA on the whole DSSTox database can be 
accessed through EPA’s CompTox Chemicals Dashboard, 
the National Toxicology Program’s (NTP) Integrated 
Chemical Environment (ICE), and recently through 
FDA’s Precision Platform [24, 27, 62].

OPERA can be downloaded as a standalone command-
line or graphical user interface compatible with Windows 
and Linux operating systems from the NIEHS GitHub 
repository (https:// github. com/ NIEHS/ OPERA). It can 
also be used as a plugin within the OECD’s QSAR Tool-
box (https:// repos itory. qsart oolbox. org/ Tools/ Detai ls/ 
6703a b01- 9529- 4f86- 814f- 6efc4 9e1f5 9c) and is available 
as Python, C/C++, and Java libraries that can be inte-
grated into other applications.

Modeling and database search
The standardization workflow was used to generate 
QSAR-ready structures for the over 1  M chemicals of 

https://github.com/NIEHS/OPERA
https://repository.qsartoolbox.org/Tools/Details/6703ab01-9529-4f86-814f-6efc49e1f59c
https://repository.qsartoolbox.org/Tools/Details/6703ab01-9529-4f86-814f-6efc49e1f59c
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the EPA’s DSSTox database. These structures were made 
available for single and batch mode download on the 
EPA’s CompTox Chemicals Dashboard as well as through 
its API webservice. Consequently, the standardized 
structures are being used for different levels of mappings 
and facilitate searching of related compounds on both 
the EPA’s dashboard and NTP’s ICE dashboard [24, 27].

Additionally, the online availability of this large number 
of QSAR-ready structures, linked to their related chemi-
cal identifiers (CASRN, DTXSID, names), facilitated the 
progress on several other projects and modeling studies 
such as NTA [22, 63]. Chemical database searching has 
become an integral part of non-targeted identification 
workflows using HRMS. However, the observed form 
of a chemical structure in HRMS may not always match 
the form stored in a database, such as the neutral form 
versus a salt or a component of a mixture rather than the 
mixture form found in consumer products. To address 
this, a KNIME workflow has been developed to link the 
observed HRMS structures ("MS-Ready structures") 
to their corresponding forms stored in a database [22]. 
These MS-Ready structures, along with their mappings 
to full chemical representations, are accessible through 
the US EPA’s CompTox Chemicals Dashboard.

To establish connections between specific forms of 
a substance and their structure components (e.g., salts 
and mixtures) as well as their related MS-Ready forms, 
structure standardization is necessary. Since the require-
ments for MS-Ready structures are similar, and due to 
the flexibility of KNIME workflows, the previously devel-
oped QSAR-Ready workflow was modified to produce 
MS-Ready chemical structure forms suitable for database 
searching. The resulting KNIME workflow, rule set, and 
software processing module for generating MS-Ready 
structures are publicly available for download from 
GitHub (https:// github. com/ kmans ouri/ MS- ready).

Furthermore, the adapted workflow was used to gen-
erate MS-Ready forms for all chemicals in the DSSTox 
database, enabling access via the US EPA’s CompTox 
Chemicals Dashboard. The Dashboard provides func-
tionalities such as searching, exporting, and down-
loading MS-Ready structures. The value of MS-Ready 
structures is demonstrated through several examples, 
including their integration with the in silico fragmenter 
MetFrag for identification in NTA [64]. By offering access 
to MS-Ready structures and facilitating integration with 
MetFrag, these resources contribute to the structural 
identification of chemicals, including mixtures and salts, 
for the wider scientific community.

Currently, the EPA is in process of replicating the 
QSAR-ready and MS-ready standardization workflows to 
fully embed and integrate them in the chemical curation 
and registration process of DSSTox database. This will 

not only benefit the different mappings and search func-
tionalities of the dashboard, but also ongoing and future 
modeling and NTA studies.

Limitations and improvements
KNIME is a popular open-source data analytics platform 
that provides a wide range of functionalities for data pro-
cessing, modeling, and visualization. While KNIME is a 
versatile and flexible platform, it does have some limi-
tations that users should be aware of. One of the most 
significant limitations is its steep learning curve, which 
can be challenging for users new to data analytics or 
programming. KNIME’s extensive range of features and 
capabilities can be overwhelming, and users may require 
significant time and effort to master the platform’s 
functionalities. Additionally, KNIME can be resource-
intensive, depending on the size of the datasets and 
complexity of the workflows. Users may need to invest 
in high-performance hardware or cloud-based solutions 
to run workflows efficiently. While KNIME’s visualiza-
tion capabilities are not as advanced as some other data 
analytics tools, its compatibility with other software 
solutions makes it a valuable resource for researchers 
and data scientists. KNIME can integrate with various 
data visualization tools, such as Tableau and Qlik, allow-
ing users to create more advanced visualizations [65, 
66]. While KNIME does offer a wide range of machine 
learning algorithms, some users may find that the plat-
form’s machine learning libraries are limited compared to 
other tools. Users who require access to more advanced 
machine learning algorithms may need to use other soft-
ware solutions in combination with KNIME.

Overall, while KNIME has some limitations, its flex-
ibility, versatility, and compatibility with other tools make 
it a valuable resource for researchers and data scientists 
working in various domains. Also, most of the limitations 
related only concern workflow developers. Once at the 
expert level, the developers can simplify running their 
workflows for users by either adding a user-friendly con-
figuration window using the graphical interface or pack-
aging the workflow within another application. These two 
options were provided to the users of the QSAR-ready 
workflow as mentioned above on the one-step configu-
ration window and running the workflow within OPERA 
without requiring installation of KNIME.

Conclusion
The QSAR-ready chemical structure standardization 
workflow in KNIME offers a wide range of features 
and capabilities that make it an ideal choice for differ-
ent cheminformatic applications. With its flexible and 
extendable nature, the workflow can be used for a variety 

https://github.com/kmansouri/MS-ready
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of modeling projects and collaborations, providing users 
with the ability to work on different tasks within the same 
platform.

KNIME offers a stable and backward-compatible plat-
form for QSAR-related chemical structure standardiza-
tion. This stability ensures that old nodes are deprecated 
rather than removed, allowing previous workflows to be 
reliably executed even with newer versions. This facili-
tates smooth software upgrades without workflow dis-
ruptions. Additionally, KNIME’s standalone version 
seamlessly integrates with tools like OPERA, the Dash-
board, and ICE, expanding its functionality. This inte-
gration enables users to perform various tasks within 
a unified environment. KNIME boasts a user-friendly 
interface with drag-and-drop features for convenient data 
interaction.

Thanks to KNIME flexibility, the QSAR-ready chemical 
structure standardization workflow is designed to handle 
various data formats and is easily scalable and expand-
able to meet different cheminformatic needs beyond 
QSARs (such as database search and exploration, simi-
larity search, read-across…). The platform offers a wide 
range of functionalities, including data preprocessing, 
feature selection, model training, and evaluation, all of 
which can be easily customized to suit the user’s needs.

Overall, the QSAR-ready chemical structure standardi-
zation workflow in KNIME provides a comprehensive 
and reliable solution for researchers and data scientists 
working in the field of QSAR. Its flexibility, stability, and 
backward compatibility, as well as its seamless integra-
tion with other tools, make it an invaluable resource for 
anyone seeking an efficient and reliable platform for their 
data analytics work.
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