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Abstract 

Developing machine learning models with high generalization capability for predicting chemical reaction yields 
is of significant interest and importance. The efficacy of such models depends heavily on the representation 
of chemical reactions, which has commonly been learned from SMILES or graphs of molecules using deep neural 
networks. However, the progression of chemical reactions is inherently determined by the molecular 3D geometric 
properties, which have been recently highlighted as crucial features in accurately predicting molecular properties 
and chemical reactions. Additionally, large-scale pre-training has been shown to be essential in enhancing 
the generalization capability of complex deep learning models. Based on these considerations, we propose 
the Reaction Multi-View Pre-training (ReaMVP) framework, which leverages self-supervised learning techniques 
and a two-stage pre-training strategy to predict chemical reaction yields. By incorporating multi-view learning 
with 3D geometric information, ReaMVP achieves state-of-the-art performance on two benchmark datasets. 
Notably, the experimental results indicate that ReaMVP has a significant advantage in predicting out-of-sample data, 
suggesting an enhanced generalization ability to predict new reactions. Scientific Contribution: This study presents 
the ReaMVP framework, which improves the generalization capability of machine learning models for predicting 
chemical reaction yields. By integrating sequential and geometric views and leveraging self-supervised learning 
techniques with a two-stage pre-training strategy, ReaMVP achieves state-of-the-art performance on benchmark 
datasets. The framework demonstrates superior predictive ability for out-of-sample data and enhances the prediction 
of new reactions.
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Introduction
The prediction of chemical reaction yields, which refer 
to the percentage of product formed in relation to the 
reactant consumed, is an important research topic in 

organic chemistry [1, 2]. In the field of organic synthesis, 
chemists often synthesize a target molecule through 
several or a dozen reaction steps [3]. Consequently, 
low-yield reactions in the intermediate steps can have a 
negative impact on the total yield of the synthesis route 
due to the cumulative effect of each step. The estimation 
of chemical reaction yields plays an important role 
in guiding synthetic chemists to choose appropriate 
molecular synthesis routes, particularly in the case of 
identifying highly active and selective catalysts efficiently. 
Traditionally, chemists depend on empirical predictions 
or specific wet experiments to determine yields, which 
require extensive domain knowledge and are both time-
consuming and labor-intensive. Therefore, data-driven 
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machine learning techniques are needed to provide an 
efficient alternative.

It remains a great challenge to accurately predict 
chemical reaction yields due to the complexity of reaction 
space and the diverse factors that influence chemical 
experiments [4, 5]. To develop machine learning-based 
approaches, it is crucial to establish effective methods 
for representing chemical reactions. Conventional 
studies typically rely on feature engineering to represent 
chemical reactions using fingerprints or descriptors. 
This involves creating customized descriptors based 
on domain expertise to capture molecular, atomic, 
vibrational, or physicochemical properties [6–12]. 
Some researchers derived descriptors from circular 
substructures present in the simplified molecular-input 
line-entry system (SMILES) [13] strings of the reactions 
[14]. Chemical reactions can be perceived as sequences 
or collections of molecules. Therefore, the traditional 
practice of concatenating molecular fingerprints or 
descriptors at the molecule level is commonly employed 
[15–18]. However, this concatenation approach is 
typically suitable only for reactions with a fixed number 
of molecules, posing limitations on their ability to 
generalize to downstream tasks.

In recent years, deep learning (DL) models have gained 
popularity and have led to significant advancements in 
the representation and prediction of chemical reactions. 
Some studies utilized SMILES as input and employed 
well-established models from the field of natural language 
processing (NLP) to encode the SMILES notations of 
chemical reactions into continuous vectors. These studies 
employed either pre-trained Transformer-based models 
[19–21] or Recurrent Neural Network (RNN) models [22, 
23] on large-scale datasets, and fine-tuned their models 
[3, 24] with downstream tasks to capture task-specific 
representations of chemical reactions. Other studies 
incorporated molecular graph structures to represent 
chemical reactions. Recent approaches include adding 
[25] or concatenating [26] molecular features learned 
from graph neural networks, encoding the condensed 
graph of chemical reactions [27], and learning organic 
reactivity based on generalized reaction templates [28].

While the YieldGNN model [12] attempts to combine 
2D chemical reaction graphs with 1D descriptors, most 
of the aforementioned studies have focused solely on a 
specific perspective of chemical information, namely, 1D 
sequences or 2D graphs. By contrast, multi-view learning 
methods for molecular representation learning [29–33] 
have achieved success by incorporating multiple views of 
molecules with different dimensional inputs.

However, due to the difficulty in extracting effec-
tive features from molecular geometry, only a few mol-
ecule prediction methods [30, 34–37] have leveraged 3D 

spatial structure information of molecules, which is criti-
cal for determining molecular properties and reaction 
outcomes. Although these studies have demonstrated 
the potential of 3D geometric information in providing 
comprehensive and complementary insights into chemi-
cal reactions, to further enhance the accuracy of reaction 
prediction, there is a need to explore more effective and 
efficient algorithms for handling the high dimensionality 
of 3D molecular structures.

In this study, we propose a large-scale Reaction Multi-
View Pre-training framework, named ReaMVP, to 
represent chemical reactions and predict their yields. 
ReaMVP utilizes a two-stage approach that involves the 
pre-training of a sequence encoder and a conformer 
encoder. In the first stage, ReaMVP aims to capture the 
consistency of chemical reactions from different views 
via distribution alignment and contrastive learning. 
In the second stage, ReaMVP further enhances the 
representation of chemical reactions through supervised 
learning using reaction data with known yields. By 
incorporating this additional information, the model 
can improve its performance on downstream prediction 
tasks. The contributions of this work are summarized as 
follows: 

(1) We model chemical reactions through both 
sequential and geometric views, which enables 
the model to capture more abundant and 
comprehensive structural information. Additionally, 
we propose a simple yet effective approach to 
encode chemical reactions in the geometric view.

(2) We propose a novel self-supervised pre-training 
method based on distribution alignment and 
contrastive learning using multiple views of 
chemical reactions, which has advantages in 
capturing the consistency between pairs of 
chemical reactions.

(3) Leveraging the advantages of large-scale pre-
training, the proposed ReaMVP provides high 
generalization capability in predicting chemical 
reaction yields. It outperforms the baseline models 
by a considerable margin under out-of-sample 
conditions where certain molecules are not seen in 
the training set.

Materials and methods
Data preparation
Pre‑training datasets
Two large-scale datasets are utilized for the first and 
second stages of pre-training, respectively. Figure  1 
illustrates the data preparation pipeline.

The United States Patent and Trademark Office 
(USPTO) from 1976 to September 2016 [38] is a large 
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database of reactions. The original dataset contains over 
1.8 million chemical reactions stored in the form of 
SMILES arbitrary target specification (SMARTS) [39]. 
We remove duplicate records and invalid reactions that 
RDKit [40] fails to recognize, and then transform the 
remaining reactions into SMILES to obtain the dataset 
USPTO-1. Subsequently, we retain reactions in which 
RDKit is able to generate geometric information for all 
molecules to obtain the dataset USPTO-2, which is used 
in the first stage of pre-training.

For the second stage of pre-training, we select reac-
tions from USPTO-2 that possess known and valid 
yields. However, the yield distribution in USPTO-2 is 
highly biased since it contains only a few reactions with 
low yields (the detailed distribution is present in Addi-
tional file  1: Figure S4), which potentially limits the 
model’s generalization ability. To address this issue, we 
augment USPTO-2 by adding more reactions with low 
yields from the Chemical Journals with High Impact 
Factor (CJHIF) [23] dataset to cover a wider range of 
values. The original CJHIF dataset includes over 3.2 
million chemical reactions in the form of SMARTS 
extracted from chemistry journals by Chemical.AI 
[41], which only considers the reactants and products. 
However, additional compounds such as catalysts and 
solvents are represented using plain English names or 
abbreviations that cannot be directly recognized and 
processed by computers. To convert these names into 
RDKit-recognizable formats, we utilize both the open 
parser for systematic IUPAC nomenclature (OPSIN) 

[42] and the chemical identifier resolver (CIR) [43] to 
obtain their corresponding SMILES representations. 
Similar to the processing pipeline for USPTO, we fur-
ther remove duplicate and invalid reactions and con-
vert the remaining reactions into SMILES to obtain the 
dataset CJHIF-1. Subsequently, we retain reactions with 
known and valid yields and sample reactions whose 
yields are lower than 50% . The combination of chemical 
reactions with known yields from USPTO-2 and CJHIF 
forms the dataset USPTO-CJHIF, which is used in the 
second stage of pre-training.

Note that the conformer encoder necessitates 
the atom coordinates of each molecule. However, 
generating a dataset comprising millions of 
transition state reactions is exceedingly intricate and 
computationally demanding [44]. As a substitute, we 
employ molecular conformers to depict the geometric 
structures of reactions. Experimental determination of 
conformers involves resource-intensive physical and 
chemical experiments. Hence, we rely on computational 
chemistry, employing simulation software and 
algorithms to model molecule conformers. Specifically, 
we utilize the ETKDG algorithm [45] provided by 
RDKit with default parameters to compute one 
conformer for each molecule.

USPTO-2 is randomly divided into training, validation, 
and test sets in an 18:1:1 ratio. Similarly, USPTO-CJHIF 
is divided in a stratified way according to the yields of 
reactions in the same ratio as USPTO-2. Table 1 presents 
an overview of the datasets for pre-training.

Fig. 1 Overview of the data preparation process. We remove duplicate reactions and retain reactions with valid SMILES and conformers. We use 
USPTO-2 and USPTO-CJHIF for the first stage and the second stage of pre-training, respectively

Table 1 Overview of the pre-training datasets

Dataset # Reactions # Training # Validation # Test Task type

USPTO-2 1055411 949869 52771 52771 Self-supervised

USPTO-CJHIF 646631 581967 32332 32332 Supervised



Page 4 of 16Shi et al. Journal of Cheminformatics           (2024) 16:22 

Downstream datasets
We fine-tune and assess ReaMVP on two benchmark 
datasets for the prediction of chemical reaction yields. 
Table 2 presents the data statistics.

It is noteworthy that, when predicting chemical 
reaction yields, chemists are often able to select 
appropriate reactants guided by the desired product. 
However, selecting influential precursors, such as 
additives and catalysts, that have a significant impact 
on yields poses a considerable challenge. This challenge 
necessitates the exploration of numerous unobserved 
alternative molecules, demanding a machine learning 
model with high generalization capability under out-
of-sample conditions. Specifically, the model must be 
capable of accurately predicting yields of reactions that 
involve molecules not included in the training set.

The Buchwald-Hartwig dataset was released by Ahne-
man et  al. [8]. They conducted high-throughput experi-
ments (HTEs) with 1536-well plates on the class of 
Pd-catalyzed Buchwald-Hartwig C-N cross-coupling 
reactions. They experimented on the combinations of 15 
aryl halides, four ligands, three bases, and 23 additives. 
A total of 3955 reactions were reported with their meas-
ured yields. Ahneman et al. and Sandfort et al. [15] split 
the dataset into eight representative training and test sets 
according to isoxazole additives as out-of-sample condi-
tions. We further split the dataset based on reactants to 

construct five out-of-sample conditions (detailed split 
groups are shown in Additional file 1: Figure S1). We also 
apply the same random 70/30 split as reported in Sand-
fort et al. to get training and test sets.

The Suzuki-Miyaura dataset was released by Perera 
et al. [46]. They conducted high-throughput experiments 
on the class of Suzuki-Miyaura cross-coupling reactions. 
Discarding water (H2O), 15 couplings of electrophiles 
and nucleophiles across combinations of 12 ligands 
(with a blank one), eight bases (with a blank one), and 
four solvents were considered, resulting in measured 
yields for a total of 5760 reactions. To evaluate the model 
under out-of-sample conditions similar to the Buchwald-
Hartwig dataset, we further split the Suzuki-Miyaura 
dataset into four representative training and test sets 
according to ligands (detailed split groups are shown 
in Additional file  1: Figure S3). We also apply the same 
random 70/30 split as reported in Philippe et al. [3] to get 
training and test sets.

Problem formulation
Suppose that a chemical reaction contains a total of 
n molecules, including reactants, catalysts, products, 
and other relevant compounds. Each reaction is 
associated with a yield value, and the value of n may 
vary across different reactions. We denote each 
sample as (Ms,Mc, y) , where Ms = {S1, . . . , Sn} and 
Mc = {C1, . . . ,Cn} represent the set of n molecules in 
sequence format and conformer format, respectively, 
and y refers to the reaction yield. For the i-th molecule 
within a reaction, Si represents its molecular sequence, 
and Ci = {V ,R} represents its corresponding molecular 
conformer, where V = {v1, . . . , vm} and R = {r1, . . . , rm} 
denote the set of atoms and their spatial coordinates, 
respectively.

Given a reaction (M′
s,M

′
c, y

′) where y′ is unknown, the 
task of predicting reaction yields aims to find a mapping 
function that can be defined as follows:

where φ(·) represents the desired mapping function and 
yp denotes the predicted yield.

Model architecture
Figure 2 shows the basic structure of ReaMVP. As a generic 
self-supervised learning pipeline, the proposed model, 
ReaMVP, consists of two phases: pre-training and fine-
tuning. The pre-training phase consists of two stages. 
In stage I, we map multiple views of reactions into the 
representation space via sequence (1D) and conformer 
(3D) encoders, respectively. The mapped representations 
are then projected into the alignment space where we 

(1)yp = φ
(

M
′
s,M

′
c

)

,

Table 2 Overview of the downstream datasets

Dataset Split type # Training # Test Out-of-sample 
type

Buchwald-
Hartwig

Test 1 3057 898 Ligand-based

(3955 reactions) Test 2 3055 900 Ligand-based

Test 3 3058 897 Ligand-based

Test 4 3055 900 Ligand-based

Plate 1 2880 1075 Ligand-based

Plate 2 2515 1440 Lligand-based

Plate 3 2515 1440 Ligand-based

Plate 2 new 2515 1440 Ligand-based

Halide Br 2636 1319 Reactant-based

Halide Cl 2637 1318 Reactant-based

Halide I 2637 1318 reactant-based

Pyridyl 2372 1583 Reactant-based

Nonpyridyl 1583 2372 Reactant-based

random 2768 1187 None

Suzuki-Miyaura Test 1 4320 1440 Ligand-based

(5760 reactions) Test 2 4320 1440 Ligand-based

Test 3 4320 1440 Ligand-based

Test 4 4320 1440 Ligand-based

Random 4032 1728 None
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conduct self-supervised pre-training. In stage II, we carry 
out supervised pre-training in the representation space.

Pre‑training stage I
In the pre-training stage I, we aim to improve the repre-
sentation of chemical reactions by conducting distribution 
alignment (Align) and contrastive learning (Contrast) using 
data collections that provide both sequential and geomet-
ric structures. To achieve this, ReaMVP utilizes the 1D 
sequence and the 3D conformer as complementary views 
for each reaction. We employ a sequence encoder φs(·) and 
a conformer encoder φc(·) to learn the representations of 
reactions. Subsequently, a projection head [47] g(·) (also 
called a projector) is applied to map the learned represen-
tations to the alignment space as follows:

where φs(·) and φc(·) represent the sequence encoder 
and the conformer encoder, hs and hc denote the learned 
representation of the corresponding encoders, and 

(2)
hs = φs(Ms), hc = φc(Mc),

xs = g(hs), xc = g(hc),

xs and xc are the output in the alignment space of the 
sequence encoder and the conformer encoder, respec-
tively. Given a batch of N inputs Xs = {xs1 , . . . , xsN } and 
Xc = {xc1 , . . . , xcN } , ReaMVP aims to align the represen-
tations of the two views for the same reaction, i.e., push-
ing xsi and xci as close as possible. Hence we apply the 

Jeffreys divergence [48] to achieve this in a distribution-
like format as follows:

where D denotes the Kullback–Leibler divergence [49], 
d denotes the dimension of features, zsi denotes the i-
th input of Zs , z

j
si denotes the j-th logit of zsi , and zci 

and Zj
ci are defined in a similar way. Furthermore, we 

want to separate the outputs from distinct views for 
different sample pairs as far as possible to enhance the 
representation ability of chemical reactions. Thus, we 
adopt contrastive learning based on InfoNCE [50] to 
maximize the mutual information between Xs and Xc as 
follows:

where f(x,  y) equals exp(x · y/τ) , τ denotes a hyper-
parameter called temperature, xs′ and xc′ represent the 
sequence and conformer views of other reactions within 
the same batch, relative to positive pair (xs, xc) , and 
(xsi , xck ) denotes the feature of the sequence encoder and 
the conformer encoder, respectively. The pair (xsi , xck ) 

(3)
Zs = LogSoftmax(Xs),

Zc = LogSoftmax(Xc),

(4)

LKL =
1

2
Ep(zs ,zc)[D(Zs � Zc)+ D(Zc � Zs)]

= −
1

2N

N
∑

i=1

d
∑

j=1

(

z
j
si log

z
j
ci

z
j
si

+ z
j
ci log

z
j
si

z
j
ci

)

,

(5)

LInfoNCE = −
1

2
Ep(xs ,xc)

�

log
f (xs, xc)

f (xs, xc)+
�

f (xs′ , xc)
+ log

f (xc , xs)

f (xc , xs)+
�

f (xc′ , xs)

�

= −
1
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Fig. 2 Overview of the model
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comes from different reactions when i is not equal to 
k (negative pairs) and vice versa (positive pairs). To 
combine the distribution alignment and contrastive 
learning objectives, we formulate the overall loss 
function for the pre-training stage I as a combination of 
the distribution alignment loss in Equation  (4) and the 
contrastive learning loss in Equation (5) as follows:

where � denotes the weighting coefficient to balance the 
contributions of these two objectives.

Pre‑training stage II
Focusing on the prediction of chemical reaction yields, 
we aim to improve the generalization capability of 
ReaMVP by leveraging supervised learning techniques 
(see  “Both self-supervised and supervised pre-training 
enhance prediction performance” Section for details). 
Despite the inherent dissimilarity among various types 
of chemical reactions, we adopt the large-scale dataset 
USPTO-CJHIF for pre-training to capture the shared and 
common characteristics between chemical reactions and 
their corresponding yields.

In the pre-training stage II, we concatenate the learned 
representations from both the sequence encoder and the 
conformer encoder. The fused representations are then 
used for supervised pre-training, where a predictor is 
introduced to further improve performance on reaction 
yield prediction tasks. The loss function of the pre-
training stage II is,

(6)LI = LKL + � · LInfoNCE,

(7)LII =

N
∑

i=1

(

yi − p(hsi ⊕ hci)
)2
,

where ⊕ denotes the concatenation operation and p(·) 
denotes the predictor.

Fine‑tuning
The learned concatenated representations can be fixed 
as reaction descriptors or further trained during fine-
tuning. In this study, we fine-tune the entire ReaMVP 
model along with the predictor for the problem of 
predicting reaction yields. We adopt the model on the 
Buchwald-Hartwig dataset and the Suzuki-Miyaura 
dataset, respectively.

Reaction sequence encoding
SMILES is a well-designed and widely-used sequence 
format to represent molecules, which has demonstrated 
its effectiveness in various chemistry-related tasks [3, 
19–24]. Hence we adopt a multi-layer bidirectional gated 
recurrent unit (GRU) model [51] as the sequence encoder 
to process SMILES input as follows:

where Bi-GRU denotes a multi-layer bidirectional gated 
recurrent unit model and hti(1 ≤ i ≤ n) denotes the 
embedding of the i-th token. Figure 3a presents the basic 
structure of the sequence encoder.

Similar to natural language processing problems, 
tokenization is a key technology for the sequence 
encoder, and the level of granularity has a great 
impact on model performance [52]. Existing works 
for SMILES representation apply either a coarse-
grained tokenization method [23] based on the 
statistical probability of characters or fields in the 
dataset, or a fine-grained tokenization method at the 
character level [3, 53, 54]. Considering the versatility 

(8)hs = Bi - GRU
({

ht1 , . . . ,htn
})

,

Fig. 3 Structure of a one-layer bidirectional GRU as an example of the sequence encoder a and the conformer encoder b 
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of tokenization, we employ a fine-grained tokenization 
approach adapted from Xue et  al. [54] based on the 
character level to ensure a high frequency of each 
token, except that the symbol “%” followed by two 
digits is segmented as one word. It is worth noting that 
aromatic elements are represented in lowercase when 
forming chemical bonds in the SMILES representation. 
Hence it is necessary to distinguish between cases 
such as “[cs]” and “cs”. The former is the representation 
of the lowercase element “Cs” in the aromatic bond, 
while the latter is the bond representation of the two 
elements “c” and “s”. In addition to the elements or 
other characters obtained from tokenization, we 
introduce five special characters to construct the pre-
training task. The “[PAD]” symbol is used for aligning 
the length of input SMILES; the “[CLS]” symbol is used 
for recording classification information or indicating 
the start position of a SMILES string; the “[SEP]” 
symbol is used for separating reactants, catalysts, 
products, etc.; and the “[UNK]” symbol is used for 
representing characters that are either unknown or 
have a frequency less than ten. Consequently, the final 
corpus consists of 115 valid tokens (111 original tokens 
plus the additional 4 tokens).

Reaction conformer encoding
Although numerous studies have explored the use 
of 3D conformers to predict molecular properties 
[30, 34–37], there has been a notable dearth in 
the development of reaction representations and 
architectures that incorporate geometric information. 
In addition, models need to be rotational and 
translational invariant since conformers are generally 
described by atomic coordinates and are not fixed 
in the Cartesian or spherical coordinate systems. In 
light of these considerations, we propose a simple 
yet effective approach to capturing spatial features of 
reactions by utilizing sequential molecular conformers, 
as illustrated in Fig.  3b. The conformer encoder 
is composed of a SchNet [34] model that satisfies 
rotational and translational invariance to embed 
molecules and a multi-layer bidirectional GRU to 
aggregate molecular representations as follows:

where hmi denotes the feature of the i-th molecule 
extracted from its conformer Ci , and SchNet is a variant 
of Deep Tensor Neural Network (DTNN). The SchNet 
model incorporates a continuous-filter convolution layer, 
which is particularly well-suited for molecular dynamics 
simulations aimed at predicting potential energy surfaces 

(9)
hmi = SchNet(Ci),

hc = Bi - GRU
({

hm1
, . . . ,hmn

})

,

and energy-conserving force fields. A SchNet model can 
be formulated as follows:

where Iu denotes the input feature of atom u for the 
embedding layer, eℓu denotes the output at layer ℓ 
( 0 < ℓ < K  ) for atom u, r denotes the spatial coordinate 
of the corresponding atom, MLP denotes the multi-layer 
perceptron, K denotes the number of hidden layers, and

is the continuous-filter convolution layer that captures 
continuous coordinates of atoms instead of discrete ones 
using different hyper-parameters γ and µk.

Results and discussion
Experimental settings
ReaMVP is implemented in Python (version 3.10). It uses 
RDKit (version 2022.9.5) [40] for reaction preprocessing 
and SMILES validation, and employs Pytorch (version 
2.0.0) [55] and DGL (version 1.0.2) [56] for sequence and 
conformer modeling.

We use three metrics, namely mean absolute error 
(MAE), root mean squared error (RMSE), and coefficient 
of determination (R2 ), to assess the performance of 
yield prediction. The sequence encoder comprises an 
embedding layer with a dimensionality of 256, followed 
by a two-layer bidirectional GRU model with a hidden 
layer of 128-D and a dropout ratio of 0.3. The conformer 
encoder employs a SchNet model (detailed initial features 
of atoms are provided in Additional file 1: Table S7) with 
four interaction blocks, 64 Gaussian filters, a molecular 
radius threshold of ten, and all hidden layers and 
filters with a dimension of 128. Similarly, a two-layer 
bidirectional GRU model is employed with a hidden 
layer of 128-D and a dropout ratio of 0.3. We use the 
Adam [57] optimizer with default parameters during the 
training process. In the pre-training stage I, we set � to 
1.0 after exploring values in {0.1, 0.5, 1.0} (see “Both Align 
and Contrast operations are indispensable for the self-
supervised pre-training” Section for details). In the pre-
training stage II, we use a regression head that takes the 
concatenation of the outputs from the sequence encoder 

(10)

e0u = embedding(Iu),

eℓu = MLP

(

∑

v

f
(

eℓ−1

v , ru, rv

)

)

,

eKu = MLP
(

eK−1

u

)

,

hmi =
1

n

∑

u

eKu ,

(11)
f (ev , ru, rv) = ev · exp

(

−γ ��rv − ru�2 − µk�
2
2

)
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and conformer encoder (see  “Multi-view learning excels 
over single-view methods on most splits” Section for 
details). During the fine-tuning stage, we perform a grid 
search for hyper-parameters, including the learning rate 
in {3e–4, 1e–3, 3e–3}, the dropout ratio in {0.1, 0.3}, the 
weight decay in {0, 1e–4, 1e–5}, and the loss function in 
{MSE, MAE}.

ReaMVP demonstrates superior generalization capability 
compared to SOTA models
To evaluate the effectiveness of ReaMVP, we compare 
its performance with three state-of-the-art DL yield 
prediction methods as listed below.

• YieldBERT [3] adapts a pre-trained BERT encoder 
[19] to predict chemical reaction yields via reaction 
SMILES.

• YieldBERT-DA [24] is an extension of YieldBERT, 
which uses the same pre-trained BERT encoder and 
adds SMILES randomization and permutation as 
data augmentation.

• UA-GNN [25] aggregates molecular embeddings 
learned by graph neural networks using a set of 
molecular graphs with permutation invariance and 
utilizes uncertainty-aware learning and inference.

To perform a rigorous assessment of model 
generalization capability to unseen data, we experiment 
with the out-of-sample splits (as described in  
“Downstream datasets” Section), i.e., the reactions for 
test include molecules that are not present in the training 
set. The Buchwald-Hartwig (BH) dataset has eight ligand-
based splits (Tests 1–4, Plates 1–3, and Plate 2 new) and 
five reactant-based splits (Halide Br, Halide Cl, Halide I, 
Pyridyl, and Nonpyridyl), while the Suzuki-Miyaura (SM) 
dataset has four ligand-based splits (Tests 1–4).

Tables  3, 4 present the average results from ligand-
based splits across five random runs for the BH and SM 
datasets, respectively. The results of Tests 1–4 for the 
BH dataset are as reported in the original papers of the 
three baseline models; while the results of other splits are 
not available, thus we reproduce the three models using 
their released codes and conduct the experiments. To 

Table 3 Results of the Buchwald-Hartwig dataset under ligand-based out-of-sample conditions 

Bold entries highlight the best performance

Split type Measure YieldBERT YieldBERT-DA UA-GNN ReaMVP

Test 1 MAE 7.351± 0.099 7.015± 0.758 8.082± 0.827 7.276± 0.124

RMSE 11.441± 0.342 11.761± 1.398 13.746± 1.175 10.768± 0.136

R2 0.824± 0.010 0.811± 0.047 0.744± 0.042 0.844± 0.004

Test 2 MAE 7.266± 0.724 6.588± 0.328 6.300± 0.647 6.078± 0.149

RMSE 11.144± 1.267 9.886± 0.741 9.476± 1.027 8.722± 0.179

R2 0.829± 0.037 0.866± 0.020 0.876± 0.026 0.896± 0.004

Test 3 MAE 9.129± 0.745 11.052± 0.950 8.986± 0.314 8.969± 0.491

RMSE 14.276± 0.820 18.041± 1.395 14.939± 0.622 12.791± 0.769

R2 0.741± 0.030 0.585± 0.067 0.717± 0.024 0.792± 0.025

Test 4 MAE 13.671± 1.067 18.422± 0.620 13.190± 0.754 10.605± 0.656

RMSE 19.679± 1.397 24.279± 0.494 18.774± 0.566 14.618± 0.932

R2 0.444± 0.077 0.157± 0.034 0.496± 0.031 0.693± 0.038

Plate 1 MAE 10.036± 0.300 8.880± 0.552 10.981± 0.624 9.576± 0.299

RMSE 14.832± 0.367 13.697± 0.432 15.467± 1.045 13.808± 0.372

R2 0.752± 0.012 0.789± 0.013 0.730± 0.037 0.785± 0.011

Plate 2 MAE 16.822± 1.988 14.449± 0.375 15.547± 1.004 14.651± 1.777

RMSE 21.711± 2.283 19.682± 0.342 21.479± 1.617 19.356± 2.003

R2 0.181± 0.171 0.334± 0.023 0.202± 0.121 0.349± 0.129

Plate 3 MAE 9.932± 0.287 10.796± 1.016 8.163± 0.570 8.855± 0.537

RMSE 13.714± 0.341 14.788± 1.287 11.901± 0.635 12.139± 0.479

R2 0.718± 0.014 0.669± 0.056 0.787± 0.023 0.779± 0.017

Plate 2 new MAE 12.629± 1.259 11.521± 0.495 12.546± 1.071 10.322± 0.556

RMSE 17.509± 1.917 16.540± 0.271 18.568± 1.387 13.987± 0.583

R2 0.508± 0.106 0.566± 0.014 0.451± 0.083 0.689± 0.026
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reproduce YieldBERT and YieldBERT-DA, we employ 
the pre-trained model labeled as “pre-trained” instead 
of “ft”. During the fine-tuning, we determine the hyper-
parameters via a grid-search, including the learning rate 
in {5e-6, 1e-5, 5e-5, 1e-4} and the dropout ratio in {0.3, 
0.4, 0.5, 0.6, 0.7}. For the augmentation hyper-parameters 
of YieldBERT-DA, we adopt the fixed random order with 
a random type of “rotated” and conduct ten permutations 
for training and testing the model. To reproduce UA-
GNN, we maintain the same set of hyper-parameters as 

specified in the original paper to ensure consistency and 
comparability.

Remarkably, we observe that ReaMVP demonstrates 
superior performance under various evaluation metrics 
in most cases, except for the BH Plate 1 split and the BH 
Plate 3 split. The proposed model exhibits outstanding 
performance in out-of-sample yield prediction tasks. For 
instance, the R 2 value of ReaMVP increases by approxi-
mately 40% under the BH Test 4 split, by approximately 
22% under the BH Plate 2 new split, and by approxi-
mately 24% under the SM Test 1 split. These substantial 

Table 4 Results of the Suzuki-Miyaura dataset under ligand-based out-of-sample conditions 

Bold entries highlight the best performance

Split type Measure YieldBERT YieldBERT-DA UA-GNN ReaMVP

Test 1 MAE 19.357± 0.174 19.813± 0.177 16.328± 0.588 15.186± 0.492

RMSE 25.000± 0.095 24.975± 0.210 21.996± 0.818 19.564± 0.742

R2 0.306± 0.005 0.307± 0.012 0.462± 0.400 0.574± 0.033

Test 2 MAE 14.845± 0.364 15.777± 0.239 15.587± 0.356 13.905± 0.286

RMSE 19.592± 0.386 19.639± 0.264 20.485± 0.391 18.357± 0.349

R2 0.469± 0.021 0.467± 0.014 0.420± 0.022 0.534± 0.018

Test 3 MAE 15.438± 0.286 15.235± 0.492 13.624± 0.119 13.518± 0.284

RMSE 20.051± 0.371 19.455± 0.389 19.090± 0.342 18.236± 0.294

R2 0.357± 0.024 0.395± 0.025 0.417± 0.021 0.468± 0.017

Test 4 MAE 18.862± 0.095 18.644± 0.082 15.613± 0.382 15.985± 0.615

RMSE 23.114± 0.119 23.726± 0.141 22.176± 0.270 21.796± 0.700

R2 0.239± 0.008 0.229± 0.010 0.299± 0.017 0.323± 0.043

Table 5 Results of the Buchwald-Hartwig dataset under reactant-based out-of-sample conditions 

Bold entries highlight the best performance

Split type Measure YieldBERT YieldBERT-DA UA-GNN ReaMVP

Halide Br MAE 7.882± 0.311 8.431± 0.415 7.336± 0.824 7.118± 0.873

RMSE 11.180± 0.379 12.457± 0.508 10.185± 1.334 10.034± 1.126

R2 0.803± 0.013 0.756± 0.020 0.834± 0.044 0.840± 0.037

Halide Cl MAE 18.727± 2.130 17.769± 0.735 26.822± 1.243 21.664± 1.588

RMSE 25.184± 2.781 21.253± 0.571 33.169± 0.783 25.881± 0.936

R2 −0.434± 0.316 −0.010± 0.054 −1.459± 0.117 −0.498± 0.107

Halide I MAE 10.359± 0.422 9.201± 0.419 15.950± 2.924 8.877± 0.254

RMSE 14.388± 0.398 12.419± 0.631 20.793± 3.359 13.084± 0.314

R2 0.676± 0.018 0.758± 0.025 0.307± 0.225 0.732± 0.013

Pyridyl MAE 17.443± 1.009 18.406± 0.480 16.946± 0.214 17.172± 0.833

RMSE 23.904± 1.126 26.300± 0.328 24.819± 0.632 21.401± 1.147

R2 0.350± 0.060 0.215± 0.020 0.301± 0.035 0.479± 0.056

Nonpyridyl MAE 14.143± 0.684 15.043± 0.351 18.802± 1.216 17.259± 1.320

RMSE 19.075± 0.751 18.580± 0.244 23.610± 2.059 21.171± 1.141

R2 0.308± 0.055 0.344± 0.017 −0.067± 0.188 0.146± 0.090
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improvements in prediction performance highlight the 
effectiveness of distribution alignment during the pre-
training stage, which enhances the generalization capa-
bility of models. ReaMVP demonstrates a more balanced 
representation of isoxazole additives in the BH dataset 
and ligands in the SM dataset, as evidenced by its con-
sistent performance across these different categories.

In addition to the ligand-based splits, we experiment 
with five reactant-based splits of the BH dataset. Table 5 
presents the average results along with the corresponding 
standard deviations of five random runs. ReaMVP yields 
the best performance on the Halide Br and Pyridyl 
splits, while also attaining a top 2 position (on par with 
YieldBERT-DA) for the Halide I split.

We also apply the random forest (RF) models and 
support vector machines (SVMs) on the BH dataset under 
out-of-sample conditions to offer a better understanding 
of comparisons between different methods (detailed 
values are shown in Additional file 1: Table S5). Reaction 
features are adopted from Mandana Saebi et al. [12]. We 
observe that non-DL methods perform worse in most 
cases and have a higher risk of overfitting, especially for 
reactant-based splits.

Notably, both the DL and non-DL methods underper-
form on the Halide Cl split with negative values of R 2 . 
In contrast, most models obtain meaningful predictions 
for the Halide Br and Halide I splits. To further inves-
tigate the inferior performance for the Halide Cl split 
among three halide-based splits, we analyze the yield 
distributions of the training dataset alongside the corre-
sponding test dataset (detailed distributions are present 
in Additional file 1: Figure S2). Three histogram metrics 
are computed to quantify the dissimilarity between these 
distributions (detailed values are present in Additional 
file 1: Table S1). The results reveal a substantial dissimi-
larity in yield distributions between the training and test 
datasets for the Halide Cl split. For instance, the normal-
ized histogram intersection decreases by roughly 33%, 

the chi-squared distance increases by around 91%, and 
the Jeffreys divergence increases by approximately 216% 
in comparison with the Halide I split. Such a distribution 
shift poses a great challenge for machine learning models 
to accurately predict reaction yields.

Additionally, as many previous studies reported results 
under random conditions, here we also compare the 
results obtained by random splitting. Table  6 presents 
the averaged results with standard deviations for ten 
random 70/30 splits. To ensure a fair comparison, 
all methods utilize the same random splits. ReaMVP 
exhibits competitive performance compared to the 
state-of-the-art method by a slight margin. YieldBERT, 
YieldBERT-DA, and ReaMVP all utilize large-scale 
pre-training strategies followed by fine-tuning on 
downstream tasks. These methods are supposed to have 
a higher generalization capability than those without 
pre-training. ReaMVP generally achieves the best 
performance among them, except for MAE in the BH 
dataset. It suggests that considering more dimensional 
information during pre-training is an effective approach 
to improving model performance.

Under random splits, UA-GNN, the model without 
pre-training, outperforms the three models with pre-
training, which may be attributed to the presence of data 
leakage in the datasets. Both the BH and SM datasets 
are characterized by a relatively small number of unique 
molecules, consisting of only 51 and 36 molecules, 
respectively. Hence the training set is likely to contain 
all molecules at least once under the random 70/30 split 
setting [15]. Overlapping data between the training and 
test sets poses significant challenges in accurately evalu-
ating a model’s generalization ability. As can be seen from 
Table  6, the models exhibit notably better performance 
under random conditions compared to out-of-sample 
conditions. Specifically, the BH dataset shows exception-
ally high R 2 values exceeding 0.95, which is remarkably 
high in practical scenarios. This suggests that the model 

Table 6 Results of the Buchwald-Hartwig and Suzuki-Miyaura datasets with random splits

Bold entries highlight the best performance

Dataset Measure YieldBERT YieldBERT-DA UA-GNN ReaMVP

Buchwald-Hartwig MAE 3.990± 0.153 3.090± 0.118 2.920± 0.056 3.108± 0.071

RMSE 6.014± 0.272 4.799± 0.261 4.433± 0.085 4.626± 0.139

R2 0.951± 0.005 0.969± 0.004 0.974± 0.001 0.971± 0.002

Suzuki-Miyaura MAE 8.128± 0.344 6.598± 0.270 6.116± 0.223 6.587± 0.195

RMSE 12.073± 0.463 10.524± 0.482 9.467± 0.459 10.367± 0.423

R2 0.815± 0.013 0.859± 0.012 0.886± 0.010 0.864± 0.010
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performance may be overestimated when using random 
splits, potentially leading to misleading conclusions.

Multi-view learning excels over single-view methods 
on most splits
ReaMVP utilizes both the 1D sequential and 3D geomet-
ric information of molecules to learn the representation 
of chemical reactions. To investigate the impact of the 
data view for the predictor, we set � (in Eq. 6) to 1.0 and 
examine the performance when considering the sequence 
encoder alone, the conformer encoder alone, and the 
concatenation of their outputs both during the pre-train-
ing stage II and the fine-tuning stage.

Figure 4 (detailed values are shown in Additional file 1: 
Table S2) depicts the results. Taking the concatenation of 
outputs from each encoder yields the best performance 
against others in six out of eight splits, with the 
remaining two splits showing very close results to the 
best ones. Notably, on Plate 2 and Plate 2 new, the ‘1D+
3D’ approach substantially improves performance, with 
an increase of over 0.14 and 0.07 in R 2 against 1D- and 
3D-only methods, respectively.

The results highlight the efficacy of integrating 
information from multiple views to enhance model 
performance. Interestingly, the method using 3D 
information exhibits inferior performance compared 
to its 1D counterpart, possibly because some 3D 
coordinates of molecules generated by the ETKDG 
algorithm in RDKit are inaccurate. Obtaining precise 3D 
geometric information is a challenging task. Nonetheless, 

the simulated 3D information can still provide valuable 
supplementary information to the 1D sequence and 
ultimately improve the accuracy.

Additionally, we further investigate the influence of 
multi-view choices. The ReaMVP model includes a 
sequence encoder and a conformer encoder to encode 
chemical reactions during the pre-training phase. The 
model allows for various data views, including 1D 
sequential, 2D topologic, and 3D geometric data struc-
tures. We replace the sequence encoder with a graph 
encoder (the graph neural network model GIN [58]) to 
include 2D features from consideration. This adjustment 
transforms the input into molecular graph structures, 
where atoms and bonds are treated as nodes and edges, 
respectively.

Figure 5 (detailed values are given in Additional file 1: 
Table  S2) presents the results. The ‘1D+3D’ approach 
yields the better performance in seven out of eight 
splits, exhibiting an average increase of about 0.05 in 
R 2 . The superior results of ‘1D+3D’ over ‘2D+3D’ can 
be attributed from complementarity between views and 
the nature of contrastive learning. First, considering the 
differences in these representations, the 1D SMILES and 
3D conformer views could provide more complementary 
information to each other than the 2D and 3D views. 
The 1D SMILES view encapsulates bonding and atomic 
information effectively in a compact form, while the 3D 
conformer view provides spatial information. By contrast, 
there is an overlap between the information provided by 
the 3D and 2D structures, which may lead to shortcut 

Fig. 4 R2 values of the Buchwald-Hartwig dataset under eight out-of-sample conditions based on ligands with different data views for fine-tuning
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learning and reduce the model’s generalization capability. 
Second, in contrastive learning, an essential requirement 
is data variance. It is possible that the combination of 
1D and 3D creates more significant variance, leading 
the contrastive learning models to work more reliably, 
thereby enhancing their overall performance.

Both self-supervised and supervised pre-training enhance 
prediction performance
ReaMVP includes two stages of pre-training. We refer to 
stage I as self-supervised pre-training since the model is 
trained without yield information, and stage II as super-
vised pre-training, as the training data of stage II  does 
not overlap with the downstream datasets (i.e., no shared 

Fig. 5 R2 values of the Buchwald-Hartwig dataset under eight out-of-sample conditions based on ligands with different data views for pre-training 
and fine-tuning

Fig. 6 R2 values of the Buchwald-Hartwig dataset under eight out-of-sample conditions based on ligands with different pre-training strategies



Page 13 of 16Shi et al. Journal of Cheminformatics           (2024) 16:22  

reactions), yet the pre-training task also involves yield 
prediction.

Here, we conduct experiments that only employ the 
first or second stage of pre-training. The results shown 
in Fig.  6 demonstrate the efficacy of pre-training stages 
I  and II. Specifically, it leads to inferior performance in 
seven out of eight splits with only stage I and in six out 
of eight splits with only stage II. Note that since there is 
no overlap between the reactions in the two-stage pre-
training data and the downstream data, we can conclude 
that both the self-supervised and supervised pre-training, 
which primarily include reaction types different from 
those in the downstream data, capture some common 
patterns related to reaction mechanisms. As a result, the 
two-stage pre-training helps improve yield prediction for 
the downstream datasets.

Both Align and Contrast operations are indispensable 
for the self-supervised pre-training
During our pre-training stage I, there are two basic 
operations, i.e., Align and Contrast (as shown in Fig. 2). 
The process of distribution alignment (Align), achieved 
through the utilization of Kullback–Leibler divergence, 
primarily focuses on positive pairs that correspond to 
different views of the same reactions. While pulling the 
distributions between positive pairs closer together is a 
crucial aspect, it is equally important to differentiate the 
outputs between distinct views from different sample 
pairs to avoid trivial representations. To investigate the 
impact of distribution alignment and contrastive learning 
using the concatenation of outputs from the sequence 
encoder and the conformer encoder, we experiment with 
different weighting coefficients in Equation (6).

Figure  7c (detailed values are given in Additional 
file  1: Table  S3) presents the R 2 values obtained on 

Fig. 7 Experimental results on investigating the efficacy of the pre-training stage I. a The CDF curves of positive pairs. b The CDF curves of negative 
pairs. c  R 2 values of the Buchwald-Hartwig dataset under eight out-of-sample conditions based on ligands with different weighting coefficients
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downstream datasets under out-of-sample conditions 
when � equals 0.1, 0.5, and 1.0, respectively. We set 
the batch size as 32 and extract reaction pairs from the 
pre-training dataset USPTO-2 to compute the Jeffreys 
divergence of positive and negative pairs. Figure  7a 
and   b reveal the cumulative distribution function 
(CDF) curves for both the positive pairs and the 
negative pairs.

Based on the results, there are some observations 
that can be made: 

(1) The use of distribution alignment via Kullback–
Leibler divergence alone may not produce the 
desired outcome. When the hyper-parameter � is 
set to 0, both the distances between positive and 
negative pairs in the alignment space tend to be 
zero, which can limit the model’s ability to capture 
meaningful patterns in the data.

(2) Using distribution alignment along with contrastive 
learning proves to be an effective approach to 
learning more informative representations that 
yield better performance on downstream tasks, 
especially under out-of-sample conditions.

(3) Different weighting coefficients have a slight 
influence on the Jeffreys divergence between 
positive pairs but exhibit a more significant impact 
on negative pairs.

(4) The trends observed in the CDF curves are generally 
consistent with the downstream performance, 
which indicates that the Jeffreys divergence may 
serve as a criterion for model selection during pre-
training. We notice that it outperforms others in 
all cases when � equals 1.0. This setting effectively 
enforces a notable separation between negative 
pairs and maintains the proximity between positive 
pairs. Meanwhile, results obtained with � equal to 
0.5 tend to surpass those obtained with � equal to 
0.1.

Further investigation on predicting the data 
from electronic laboratory notebooks (ELNs)
The BH dataset and SM dataset are both from high-
throughput experiments (HTE), yet they represent a 
small part of the reaction space due to limited categories 
of molecules. For example, the BH dataset and the 
SM dataset form only five and one different products, 
respectively. Such a low diversity may lead to obstacles 
for a general-purpose reaction yield prediction [59].

To evaluate the model’s performance on previously 
unseen and complex data points, we conduct 
experiments on the ELN BH dataset, which was released 
by Mandana Saebi et  al. [12]. They collected a legacy 

dataset for Buchwald-Hartwig reactions from electronic 
laboratory notebooks with a wide range of substrates, 
ligands, and solvents. The structural diversity of the ELN 
dataset is much higher than that of the HTE dataset. We 
apply the same random 70/30 split as reported in the 
original paper.

The results are present in Additional file 1: Table S6. We 
observe that ReaMVP outperforms other DL methods 
in all metrics, demonstrating a higher generalization 
capability. However, the non-DL model, RF with RDKit 
features, yields the best performance. Besides, none 
of the models provide meaningful predictions. Our 
findings are in agreement with recent studies on reaction 
condition prediction [12, 60]. While DL models excel 
on larger datasets BH and SM, their relatively inferior 
performance on the smaller ELN dataset warrants 
examination. One potential explanation is that DL 
models tend to perform well when trained on larger, 
more comprehensive datasets, which allow them to learn 
representations sufficiently. On smaller datasets like 
ELN BH, they might be overfitting to noise or unable 
to develop a rich representation due to the scarcity of 
data, resulting in suboptimal performance. Moreover, 
the structural diversity introduced by a wide range of 
substrates, ligands, bases, and solvents in the ELN BH 
dataset poses a significant challenge to machine learning 
models. Although the pre-training techniques are 
employed, due to the large gap between the pre-training 
data and the downstream task data, the small amount of 
fine-tuning data leads to poor generalization capability.

Conclusions
In this study, we introduce ReaMVP, a large-scale multi-
view pre-training method with two pre-training stages 
designed to enhance the representation of chemical 
reactions for predicting reaction yields. In the first pre-
training stage, we learn representations of reactions by 
learning the consistency relationship between different 
views of reactions via distribution alignment and 
contrastive learning. In the second pre-training stage, 
we combine the outputs from the sequence encoder 
and conformer encoder and incorporate a predictor for 
supervised pre-training, thereby further refining the 
learned representations for accurate yield prediction.

While the ETKDG algorithm used to obtain molecular 
coordinates may generate inaccurate 3D information, the 
experimental findings demonstrate the effectiveness of 
the incorporation of the 3D view. By combining 1D and 
3D representations, we can capitalize on the strengths 
of both views and mitigate their limitations, leading to 
enhanced performance in predicting chemical reaction 
yields. Notably, even when the algorithm fails to simulate 
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3D structures, ReaMVP’s sequence encoder can still 
effectively predict chemical reaction yields.

ReaMVP stands out from the state-of-the-art methods 
with its exceptional performance in out-of-sample scenarios, 
demonstrating its potential in predicting chemical reaction 
yields involving unseen additives or ligands. Additionally, the 
model can be extended to other prediction tasks related to 
chemical reaction outcomes. With its robust performance 
and versatility, ReaMVP represents a valuable tool for 
chemists and researchers in chemical reaction studies.
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