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Abstract 

Autoencoders are frequently used to embed molecules for training of downstream deep learning models. However, 
evaluation of the chemical information quality in the latent spaces is lacking and the model architectures are often 
arbitrarily chosen. Unoptimized architectures may not only negatively affect latent space quality but also increase 
energy consumption during training, making the models unsustainable. We conducted systematic experiments 
to better understand how the autoencoder architecture affects the reconstruction and latent space quality 
and how it can be optimized towards the encoding task as well as energy consumption. We can show that optimiz-
ing the architecture allows us to maintain the quality of a generic architecture but using 97% less data and reducing 
energy consumption by around 36%. We additionally observed that representing the molecules as SELFIES reduced 
the reconstruction performance compared to SMILES and that training with enumerated SMILES drastically improved 
latent space quality. Scientific Contribution: This work provides the first comprehensive systematic analysis 
of how choosing the autoencoder architecture affects the reconstruction performance of small molecules, the chemi-
cal information content of the latent space as well as the energy required for training. Demonstrated on the MOSES 
benchmarking dataset it provides first valuable insights into how autoencoders for the embedding of small molecules 
can be designed to optimize their utility and simultaneously become more sustainable, both in terms of energy 
consumption as well as the required amount of training data. All code, data and model checkpoints are made avail-
able on Zenodo (Oestreich et al. Small molecule autoencoders: architecture engineering to optimize latent space 
utility and sustainability. Zenodo, 2024). Furthermore, the top models can be found on GitHub with scripts to encode 
custom molecules: https://​github.​com/​Marie​Oestr​eich/​small-​molec​ule-​autoe​ncode​rs.
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Graphical Abstract

Introduction
The application of deep learning strategies on molecular 
data has drawn an increasing amount of attention in the 
last years [2–13]. The driving force behind this interest 
is the vastness of the chemical space and the impossible 
endeavor of exploring it manually [6, 14, 15]. Identifying 
a set of candidate molecules suitable for a given task is a 
slow process which usually only investigates fragments of 
the chemical space. Additionally, the areas that are inves-
tigated are typically selected in a highly biased manner 
by researchers. While an expert’s experience and knowl-
edge are highly valuable resources during evaluation and 
finetuning of candidate molecules, the proposal of such 
candidates benefits from a computer’s capacity to trav-
erse the entire molecule space in reasonable time. Thus, 
to move past selective exploration and to unlock the full 
potential of the chemical space, machine support, par-
ticularly deep learning, is appealing.

In order to train models on molecular data, suitable 
molecule representations are needed. Many formats exist 
to digitally represent molecules. One category of repre-
sentations are string-based representations such as the 
simplified molecular-input line-entry system (SMILES) 
[16] and self-referencing embedded strings (SELFIES) 
[17].

SMILES were introduced in 1988 and are ubiquitously 
found in molecular databases. They are generated by tra-
versing the molecular graph in a depth-first manner and 
denoting encountered atoms, bonds and other, higher-
order structures with characters. However, the starting 
point for the traversal is not fixed and therefore various 
different SMILES can represent the same molecule. Like 
languages, SMILES not only have a defined vocabulary, 
but also a distinct grammar that regulates the token 
sequences. Hence, much like the human languages, a ran-
dom combination of tokens is unlikely to result in a valid 

molecule. While the grammatical rules improve readabil-
ity of this molecule representation, the invalidity of many 
token combinations has been stated as an issue in the 
context of generative machine learning applications [18]. 
Learning the underlying chemistry rather than focussing 
on the grammar of SMILES may be further facilitated by 
enumeration. Enumeration utilizes the mentioned fea-
ture that there exists not one but many SMILES for the 
same molecule. [12, 19].

Another string-based representation was introduced 
in 2020: SELFIES [17]. SELFIES guarantee validity by 
removing any kind of paired tokens as they exist in 
SMILES. Furthermore, the SELFIES format assures that 
every molecule can be represented and that any random 
combination of SELFIES tokens is valid. Like SMILES, 
also SELFIES are not not unique per molecule and can be 
enumerated.

However, these string-based representations are dis-
crete and non-numeric, which stands in contrast to the 
continuous, numeric input preferred for use with deep-
learning models.

As an alternative solution, autoencoders have been suc-
cessfully used to first embed molecules and subsequently 
use the embeddings as molecular representations for 
downstream deep learning tasks [7–13, 20]. However, 
the architectures used are numerous and arbitrary. This 
makes the comparison of embeddings and quality con-
trol of the embedding space in general difficult, if not 
impossible.

Here, we systematically explore the impact of archi-
tectural changes on the performance of molecule 
autoencoders. Understanding the connection between 
architecture and performance is not only important for 
maximizing embedding quality, but also for optimiz-
ing the training procedure with respect to resource 
consumption. Training AI models requires increasingly 
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specialized hardware and long training times. With 
growing model sizes it becomes incredibly expensive and 
thus almost exclusively accessible to large companies and 
wealthy countries. Additionally, the carbon dioxide foot-
print of AI models is alarmingly high: Strubell et al. [21] 
estimate that the emissions when training a large trans-
former network with neural architecture search amount 
to approximately 600 k pounds, which is 5-times as much 
as the emissions of an average car including fuel over its 
entire lifespan. In light of this, researchers are demand-
ing solutions for greener and more publicly available AI 
models [21, 22]. We therefore assess how different archi-
tectural choices can affect the utility of the latent space 
generated by small molecule autoencoders, how this 
compares to the latent space of variational autoencoders 
(VAEs), and by what means these insights can be utilized 
to optimize the model architecture for high-quality small 
molecule embeddings while simultaneously reducing the 
resources spent on training. All models are made publicly 
available including open-source scripts to test and evalu-
ate them as well as the option to train and evaluate cus-
tom architectures.

Results
We have defined a base model architecture to serve as a 
reference throughout our experiments. This base model 
was implemented once as a Gated Recurrent Unit (GRU) 
and once as a Long Short-Term Memory (LSTM, for 
details see methods section) and they each comprised 

one layer, had a hidden size of 64, a latent size of 64 and 
did not use attention. The performances of the different 
architectures were then compared to these base models. 
Architectural parameters such as latent size, hidden size, 
number of layers and the use of attention were then sys-
tematically changed in separate experiments to evaluate 
their impact on the model’s performance in comparison 
to the base models. A general architectural overview 
including changeable parameters is given in Fig.  1. All 
models were trained on the MOSES [23] benchmarking 
dataset, both on the full set with 1.5 million training and 
170,000 test molecules as well as on a small, random sub-
set with 50,000 training and 12,500 test molecules which 
we will refer to as the 50  k subset. Choosing a subset 
was motivated by investigating the model’s performance 
when being provided substantially less training data and 
thus requiring less resources in terms of hardware and 
training time.

Full reconstruction rate
The models were first assessed under data abundant 
conditions, i.e. trained on the full MOSES set and sub-
sequently the performance was compared to the mod-
els trained on the much smaller subset. Specifically, we 
first assessed the Full Reconstruction rate, which is the 
percentage of test molecules that were correctly recon-
structed in their entirety. Details on this metric can be 
found in the methods section.

Fig. 1  Architecture Overview. Illustration of the general autoencoder architecture used throughout the experiments. Molecules are provided 
and reconstructed as one-hot encodings of SMILES or SELFIES. The encoder and decoder are either GRUs or LSTMs. In case of GRUs (blue), 
the encoder returns the hidden state hT  (after processing the last token of the input molecule), the size of which is controlled by the hidden size. If 
latent size and hidden size are not the same, an additional linear layer (dashed black rectangle) is introduced after the encoder GRU and before the 
decoder GRU. If latent size and hidden size are identical, then z = hT  . If the model is LSTM-based (orange), the encoder not only returns the last 
hidden state hT  but also the last cell state cT  . They are concatenated and adapted to the latent size with an additional linear layer and to reconstruct 
hidden and cell state from the latents, two linear layers are introduced before the decoder (black rectangles). Both encoder and decoder may have 
additional layers and the encoder may further have an attention layer added to it (as illustrated in insets)
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Full set
As shown in Fig. 2A, across all models trained on the full 
set, GRUs generally outperform LSTMs in terms of Full 
Reconstruction.

When jointly adjusting hidden and latent size, both in 
SMILES and SELFIES, the GRU’s performance increased 
steadily, reaching around 90% in the biggest model 
assessed, while the LSTM performance stayed low, with 
only a slight improvement when pairing SMILES input 
with the biggest model of hidden and latent size 128.

The latent size limits the amount of information 
that can be carried in the latent space. Reducing it has 

memory-favorable effects but too small sizes might not 
hold enough information for reconstruction. To inves-
tigate whether the base model’s latent size of 64 can be 
further reduced without performance losses, it was 
decreased to 32 and 16. For GRUs with SMILES input, 
reduction to 32 reduced performance by 13%, but a fur-
ther reduction to 16 only reduced performance slightly. 
In GRUs with SELFIES input on the other hand, reduc-
tion to 32 and 16 both lead to a total loss in Full Recon-
struction. LSTMs had a poor starting performance on 
both input types so reducing the latent size further had 
barely any impact.

Fig. 2  The effect of systematic adjustments of single architectural parameters on the Full Reconstruction rate. Shown is the Full Reconstruction 
on the test split achieved by models trained on the full set A and the 50 k subset B when adjusting hidden & latent size, only latent size, the number 
of layers and when adding attention. Each model was trained using three different seeds. The metric is presented as the mean of these seeds 
with error bars indicating the highest and lowest value. The performance of the base model (hidden and latent size of 64, one layer, no attention) 
is always shown as a reference to the modified architectures. GRU = Gated Recurrent Unit, LSTM = Long Short-Term Memory
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The next type of architectural modification that we 
investigated was the number of layers. When training 
GRUs on SMILES, performance drastically increased 
when adding a second layer, coming close to 100%. There-
fore, adding a third layer had no further impact. When 
training GRUs on SELFIES, a second layer was also ben-
eficial, but adding a third one reduced performance again 
to that of the base model. LSTMs trained on SMILES 
only benefitted from a third layer, while LSTMs trained 
on SELFIES did not show any improvement when adding 
a second or a third layer.

Lastly, when trained on SMILES, both GRUs and 
LSTMs increased performance when adding attention. 
When training on SELFIES, attention was not beneficial 
neither in GRUs nor LSTMs.

50 k subset
As one of our leading questions was how the models 
compare in reconstruction performance when trained 
on a much smaller set, we assessed the Full Reconstruc-
tion rate of the same models trained on the 50 k subset. 
As illustrated in Fig.  2B, the Full Reconstruction rate 
dropped to zero or near zero across all scenarios.

Mean similarity and Levenshtein distance
Measuring a model by only its fraction of perfectly 
reconstructed molecules is a harsh assessment, given 
that a single incorrect atom or bond would immediately 
lead to a Full Reconstruction rate of zero. Hence, a more 
detailed performance analysis is required in addition. 
Choosing the right metric for this depends strongly on 
the aspect to be assessed: From a molecular perspective, 
looking at the average number of correctly reconstructed 
tokens (Mean Similarity) between input molecule and 
the reconstructed molecule can provide meaningful 
insight. From a model perspective, a metric such as the 
Levenshtein Distance is of more interest. The reason is 
that RNNs generate their outputs sequentially based on 
previously observed tokens. For example, the insertion 
of an additional token that was not present in the origi-
nal sequence would render all following tokens incor-
rect when measuring the Mean Similarity. Even if the 
sequence that follows the insertion is entirely correct and 
only shifted by one. The Levenshtein Distance, however, 
recognizes the correct reconstruction of the rest of the 
sequence and only penalizes the one incorrectly inserted 
token. For more details of these metrics, please refer to 
the methods.

In a first step, we assessed how much the Mean Simi-
larity and Levenshtein Distance differed in the trained 
models. Here, for each trained model we computed both 
metrics between all test molecules and their reconstruc-
tions and averaged the metrics across all test molecules. 

We then compared the metrics across all models. Notice-
ably, Mean Similarity and Levenshtein Distance largely 
concur. Hence, the insights described for the Mean Simi-
larity in the following are also mirrored in the Leven-
shtein Distance assessments (Additional file 1: Figure S1). 
Analogously to the previous section, we first evaluated 
the models trained on the full dataset (Fig. 3A) and then 
compared to those trained on the 50 k subset (Fig. 3B).

Full set
When modifying both hidden and latent size, GRUs 
trained on the full set show near perfect Mean Similarity 
both when trained on SMILES and SELFIES for the base 
model and the larger model with hidden- and latent-size 
of 128. LSTMs show comparable results as GRUs when 
trained on SMILES, however, when trained on SELFIES 
their performance is lower and there was no benefit from 
the larger architecture with hidden- and latent-size of 
128.

When reducing the latent size only, GRUs trained on 
SMILES showed high Mean Similarity close to 100% on 
the base model and the models with reduced latent sizes. 
When training the GRUs on SELFIES, reducing latent 
size had a clear detrimental effect. LSTM performance 
slightly decreases when reducing latent size on both 
input representations.

Given the already outstanding performance in Mean 
Similarity of the GRU base model, GRUs trained on both 
input representations only benefited slightly from add-
ing additional layers, however that slight improvement 
was clearly sufficient to push the number of correct Full 
Reconstructions as elaborated on above. LSTMs trained 
on SMILES had generally high scores in Mean Simi-
larity with little benefit from adding additional layers. 
When LSTMs were trained on SELFIES, Mean Similarity 
reduced when a second or third layer was added.

GRUs and LSTMs trained on SMILES showed minimal 
improvements in Mean Similarity when adding attention, 
no positive effect was observed when both architectures 
were trained on SELFIES.

50 k subset
Unlike what was observed in the Full Reconstruction rate, 
the Mean Similarity of the models trained on the 50  k 
subset was much more comparable to that of the mod-
els trained on the full set. Generally, the metric was high 
across models and molecular representations, approxi-
mating performance of the models trained on full set.

When changing both hidden and latent size, both GRUs 
and LSTMs trained on SMILES and SELFIES showed 
small improvements for the larger architecture and slight 
deterioration with the smaller architecture. Reductions 
in latent size had detrimental effects for GRU and LSTM 
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trained on both SMILES and SELFIES, however, effects 
were minimal. Increasing the number of layers or adding 
attention had a minimal positive effect for both architec-
tures and on both molecular representations.

In summary, the observations of the different metrics 
indicated that GRUs generally outperform LSTMs and 
SMILES were easier for the models to reconstruct than 
SELFIES. Additionally, while the Full Reconstruction 
drops drastically when training only on the 50 k subset, 

the Mean Similarity remains high in those models. Lastly, 
there is a strong agreement between the Mean Similar-
ity, which only considers substitutions of tokens, and the 
Levenshtein metric which additionally considers inser-
tions and deletions.

Latent space utilization
Small latent sizes make it more difficult to store all the 
information required for reconstruction of the molecule. 

Fig. 3  The effect of systematic adjustments of single architectural parameters on the Mean Similarity. Shown is the Mean Similarity reached 
on the test split achieved by models trained on the full set A and the 50 k subset B when adjusting hidden & latent size, only latent size, the number 
of layers and when adding attention. Each model was trained using three different seeds. The metric is presented as the mean of these seeds 
with error bars indicating the highest and lowest value. The performance of the base model (hidden and latent size of 64, one layer, no attention) 
is always shown as a reference to the modified architectures. GRU = Gated Recurrent Unit, LSTM = Long Short-Term Memory
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Increasing the latent size, however, inflates the size of 
the model and the memory needed during training and 
deployment, while not necessarily increasing model 
performance due to information saturation in the latent 
space. To assess how much the latent space of the mod-
els with varying latent sizes is utilized, a set of 12,500 test 
molecules was encoded by each of the models. For the 
50 k subset, these comprised the entire 12,500 test mol-
ecules, while for the full set, where more than 170,000 
test molecules were available, a subset of 12,500 was ran-
domly sampled to make the results more comparable.

Depending on how the latent space is utilized, differ-
ent utilization patterns can be observed that are visual-
ized by a heatmap (Additional file 2: Figure S2A). Three 
utilization types can be observed in the models tested 
here: (1) posterior collapse [9]: Latent representations 
that look highly similar for a range of different molecules 
with low variance across latent dimensions; (2) high uti-
lization represented by high variance in all dimensions, 
or (3) Selective utilization [9]: A blend of highly utilized 
latent dimensions and dimensions that are rarely utilized 
at all, which indicates that there are more dimensions 
available than necessary to store the information for 
reconstruction.

The GRU base model shows selective utilization on the 
subset and the full set, for both SMILES and SELFIES 
(Additional file  2: Figure S2B). GRU models with lower 
latent dimensions, i.e. 32 and 16, exhibit the high utiliza-
tion latent space structure. On the other hand, none of 
the LSTM models trained on the subset exhibit high uti-
lization: The base models exhibit selective utilization like 
their GRU counterparts but reducing the latent size shifts 
it towards posterior collapse, although small variances are 
still visible despite the prominent striping pattern of the 
heatmap (Additional file  2: Figure S2B). When trained 
on the full set, LSTM base models do not exhibit selec-
tive utilization (as the LSTM base model on the subset 
and the GRU base model on both sets), instead it dem-
onstrates high utilization. Decreasing the latent sizes of 
these models prompts characteristics of posterior col-
lapse as well as high utilization memory types and rather 
strong differences can be observed between the different 
seeds. The fact that the baseline model does not exhibit 
a selective memory structure indicates that increasing 
the latent size for these models may offer further room 
for improvement. Indeed, when increasing the latent size 
further to 128, the selective utilization structure becomes 
apparent (Additional file  2: Figure S2C). The posterior 
collapse of the LSTMs trained on the subset is less prom-
inent when training on the full set.

Subset‑training optimization through increased 
training‑time
The experiments above illustrated general inferiority of 
the models trained on the 50 k subset in comparison to 
the full set. However, this deficit was mostly rooted in the 
much poorer Full Reconstruction rate while the Mean 
Similarity was comparable. We therefore investigated if 
training the models on the 50 k subset for more epochs 
could rescue the Full Reconstruction metric in a simi-
lar way as training it on the full dataset. We selected the 
three best performing models in both metrics and both 
string representations: [1] GRU, latent size 128, hid-
den size 128, one layer, no attention; [2] GRU, latent size 
64, hidden size 64, three layers, no attention; [3] GRU, 
latent size 64, hidden size 64, two layers, no attention. 
We then trained them on the 50 k subset for 1000 epochs 
in order to assess whether the performance issues can 
be mitigated by longer training. Longer training indeed 
improved the models drastically, boosting all their Full 
Reconstruction rates beyond 70%, while reaching near 
perfect Mean Similarity (Fig. 4A). Although most of the 
models trained on the full dataset remained slightly bet-
ter than those trained on the 50 k subset for 1000 epochs, 
longer training clearly compensated for the much lower 
sample size (97% less data than in the full set). It is note-
worthy that the training on the full set for 50 epochs con-
sumed around 8.5 kWh for all three architectures, while 
training on the 50  k subset for 1000 epochs—and thus 
reaching a comparable final performance—required only 
around 5.4 kWh (Fig. 4B). In comparison, the energy con-
sumption of a household’s washing machine per month 
in Europe is approximately 10 kWh [24]. In terms of pro-
duced CO2, in Germany 8.5 kWh equate to 3.7 kg of CO2 
using emissions of energy production in 2022 [25].

Subset‑training optimization through additive 
optimization
Following the results from the previous experiments, 
the next step was to assess if the observations made in 
the separate experiments allow for an additive optimi-
zation of the architecture. We selected the best setting 
from each experiment for SMILES and SELFIES and 
built a model combining all these architectural choices. 
We then tested, if the performance of those inferred 
best models outperformed the three best models in the 
singular experiments (1) GRU, latent size 128, hidden 
size 128, one layer, no attention; (2) GRU, latent size 
64, hidden size 64, three layers, no attention; (3) GRU, 
latent size 64, hidden size 64, two layers, no attention). 
For SMILES, GRUs outperformed LSTMs, a hidden and 
latent size of 128 performed best, three layers were better 
than one or two layers and attention improved the per-
formance. Thus, the inferred best model for SMILES was: 
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GRU, latent size 128, hidden size 128, three layers, with 
attention.

For SELFIES, GRUs also outperformed LSTMs and the 
same hidden and latent size as in the SMILES experiment 
achieved the best performance. However, three layers 
either brought only small improvements or even signifi-
cantly decreased the performance for some of the cases. 
Like in the SMILES case, attention slightly improved the 
performance in the 50 k subset. Hence, the inferred best 
model chosen for SELFIES was: GRU, latent size 128, 
hidden size 128, two layers, with attention.

For both SMILES and SELFIES, the inferred best model 
trained on the subset for 50 epochs outperformed the 
top 3 models from the singular experiments, especially 
in terms of Full Reconstruction rate (Fig. 5). When con-
tinuing the training of the inferred best models for a total 
of 200 epochs for the best performing seed, both Full 
Reconstruction rate and Mean Similarity approached 
or surpassed those of the top 3 models from the singu-
lar experiments that were trained on the full set. This 

demonstrates that performance gain is possible by addi-
tive optimization.

Latent space evaluation
While the models achieve high reconstruction perfor-
mance in both Mean Similarity and Full Reconstruc-
tion after additive optimization, they are not variational 
autoencoders (VAEs) and therefore do not apply any 
explicit constraints onto the latent space. We thus ana-
lyzed how well chemical similarity is reflected in their 
latent spaces and how that compares to the latent space 
of a VAE. For the non-variational autoencoders, we addi-
tionally investigated the effect of enumeration of the 
input or the target molecule, motivated by the obser-
vations that SMILES enumeration enhances the latent 
space of autoencoders [12]. Here, enumeration effects 
were also investigated for SELFIES. We analyzed the 
latent space of eight models (Table 1).

Fig. 4  Subset performance optimization through train-time. A: Shown is the improvement of the models trained on the 50 k subset 
when increasing the training epochs from 50 to 1000 epochs and comparing to the performance of models trained on the full data set. The 
three architectures illustrated here were chosen because they were the best performing architectures in the experiments illustrated in Figs. 2, 3. 
Architectures are all GRUs without attention and model abbreviations follow the scheme “latent size—hidden size—number of layers”. Shown 
are Mean Similarity (gray) and Full Reconstruction (blue) on the test split. The metrics are presented as the mean of three seeds with error bars 
indicating the highest and lowest value. B: Energy consumption of the three models trained on the full set for 50 epochs and the 50 k subset 
for 1000 epochs, which achieved comparable reconstruction performance on the test set. *The average energy consumption of using a washing 
machine in Europe is estimated at 120 kWh per year [24], i.e., 10 kWh per month
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All models were trained for 200 epochs and on the 50 k 
subset. For details on the evaluation, please refer to the 
methods section. As illustrated in Fig. 6, the SMILES-AE-
can2can model’s latent space poorly reflected molecu-
lar similarity. Enumerated versions of the same SMILES 
were mapped to vastly different areas of the latent space 
and did not cluster with the canonical SMILES of the 
same molecule. The latent space showed low coherence, 
an issue associated with non-variational autoencod-
ers which can often be mitigated by using VAEs. The 
homogeneity of the latent space increased when train-
ing the model with enumerated SMILES as input and 
canonical SMILES as targets, nonetheless it is separated 
into two high-density areas and not fully homogeneous. 
While the embedding overall remains poor, the embed-
dings of the enumerations co-located more than in the 
can2can model. Training on canonical SMILES as input 
and enumerating the target SMILES improved this, with 

the enumerations now clustering closely to the canonical 
representations of the same molecules. Implementing the 
model as a VAE (SMILES-VAE-can2can) instead of an AE 
(SMILES-AE-can2can) expectedly lead to a more consist-
ent latent space, nonetheless, some of the enumerations 
scatter away from their canonical counterparts.

Much like in the SMILES case, the latent space of the 
AE trained on canonical SELFIES only was incoher-
ent and enumerations were located far apart from their 
canonical counterparts. Unlike in the SMILES case, 
training the SELFIES-based models on enumerations did 
not benefit the co-localization of enumerated SELFIES. 
However, the latent space did become more coherent, 
especially in the enum2can model.

In the SELFIES VAE, the latent space expectedly 
becomes more regular and while the enumerations of the 
three test molecules are not overlapping each other, co-
localization of canonical SELFIES and their enumerations 

Fig. 5  Effect of additive optimization. Shown on the left and right as a reference are the best performing architectures identified 
during the systematic adjustment of single architectural parameters, once trained on the 50 k subset (left) and the full set (right). The center 
shows the performance of the additively optimized models, for each SMILES and SELFIES trained on the 50 k subset for 50 epochs as well as 200 
epochs (the latter only for the best performing seed from the 50 epoch experiments). Architectures are all GRUs and model abbreviations follow 
the scheme “latent size—hidden size—number of layers—use of attention”. Shown are Mean Similarity (gray) and Full Reconstruction (blue) 
on the test split

Table 1  Model architectures considered for latent space evaluation

Architectures are chosen based on the results of the additive optimisation for SMILES and SELFIES

Name Variational 
autoencoder

Architecture Molecule 
representation

Enumerated

SMILES-AE-can2can No GRU, 128 hidden and latent size, 3 layers, attention SMILES No

SMILES-AE-enum2can No GRU, 128 hidden and latent size, 3 layers,
attention

SMILES Yes (input)

SMILES-AE-can2enum No GRU, 128 hidden and latent size, 3 layers, attention SMILES Yes (output)

SMILES-VAE-can2can Yes GRU, 128 hidden and latent size, 3 layers, attention SMILES No

SELFIES-can2can No GRU, 128 hidden and latent size, 2 layers, attention SELFIES No

SELFIES-enum2can No GRU, 128 hidden and latent size, 2 layers, attention SELFIES Yes (input)

SELFIES-can2enum No GRU, 128 hidden and latent size, 2 layers, attention SELFIES Yes (output)

SELFIES-VAE Yes GRU, 128 hidden and latent size, 2 layers, attention SELFIES No
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is not optimal. However, while the latent space of the 
VAEs is shaped more favorably, their stochastic nature 
leads to low reconstruction performance: a Mean Simi-
larity of 77.3% for SMILES and 79.3% for SELFIES, as 
well as a 0% Full Reconstruction for SMILES and 0% for 
SELFIES, with the Kullback–Leibler divergence-term 
weighted with 0.3 and therefore already favoring recon-
struction accuracy.

These observations are further supported when look-
ing at Euclidean distances between latent representations 
of molecules within a group, i.e. the reference molecule 
and its four enumerations, compared to that of random 
molecules (Additional file  3: Figure S3). The distinction 
is particularly prominent for the SMILES-AE-can2enum 
model.

Discussion
In this work, we systematically assessed how model 
architecture as well as molecular input format impact 
not only the reconstruction performance of a molecu-
lar autoencoder, but also the organization and quality 
of its latent space. This was motivated by the need for a 
better understanding of how we can carefully engineer 
and optimize the architecture to reduce the resources 
required during training while simultaneously maximiz-
ing encoding quality. The experiments have shown that 
when comparing RNNs, GRUs generally outperform 

LSTMs when encoding and reconstructing string repre-
sentations of molecules. While in another work, Chung 
et  al. [26] found no difference in performance between 
GRUs and LSTMs when encoding and decoding audio 
sequences, their models were designed such that despite 
the different number of gates, they had approximately the 
same number of parameters, which was neither done, nor 
desired in this work. Models with more parameters are 
known to be more prone to overfitting when trained on 
the same set as a model with less parameters. This could 
explain the LSTM’s inferiority in our case. Addition-
ally, Chung et al. [26] trained on much longer sequences 
than the SMILES and SELFIES used here and therefore 
illustrate the behavior of GRUs and LSTMs for different 
length categories. As a future direction, graph neural net-
works (GNNs) should be included in this comparison, 
utilizing molecular graphs as input rather than string for-
mulations of molecules. However, while more and more 
architectures for GNNs are being explored, high-quality 
end-to-end solutions that not only allow encoding but 
also decoding of graphs including all the essential chemi-
cal properties such as atom- and bond-types, chemical 
rules and charges are yet missing.

We also observed that SELFIES were harder to cor-
rectly reconstruct than SMILES for most of the models 
tested here. While this may be surprising at first given 
their proposed advantages for deep learning, upon 

Fig. 6  Latent space evaluation for chemical similarity. The PCAs show the latent representations of 10,000 random molecules (gray) and three 
test molecules (coloured dots). Enumerated versions of the test molecules are represented as crosses. Every panel represents a different model 
as indicated above. The percentages of each principal component indicate the amount of variance that they represent
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further consideration it is plausible: SELFIES are per defi-
nition always valid, even when constructed at random, 
which does not provide the model any syntactic rules 
to learn. In SMILES, on the other hand, there are some 
token combinations that the model would never encoun-
ter because they simply do not represent valid chemistry. 
Additionally, unlike in SMILES, the tokens that make up 
SELFIES do not always have the same meaning. Instead, 
they are rules that represent which bonds, atoms, rings 
or branches are valid next pieces given what the mol-
ecule looks like so far. The mentioned absence of invalid 
examples paired with this equivocality of the tokens may 
explain why it is harder for the models to reconstruct 
SELFIES than it is to reconstruct SMILES. The lack of 
coherent grammar may also explain why enumeration 
does not have the rescuing effect observed in SMILES 
in terms of latent space organization. Other works have 
pointed out that the encoding system of SELFIES with its 
roots in theoretical computer science in some application 
scenarios makes them more easily understandable for 
computers than other string formats [27, 28]. However, 
in the particular scenario investigated in this study, asides 
from their guaranteed validity, SELFIES do not outper-
form SMILES. Nonetheless, the evaluation of the models 
as performed here has a strong statistical focus. Future 
investigations with a focus on chemistry may help evalu-
ate the models further. Particularly, how well suited are 
the latent spaces to train for instance QSAR models and 
how present are undesired chemical structures in mol-
ecules sampled from the latent space.

The combined results in the models trained on the 
50  k subset, where the Full Reconstruction was near 
zero but the Mean Similarity was distinctively high and 
comparable to that of the models trained on the full set, 
demonstrate that the extremely low Full Reconstruc-
tion in the subset is due to few incorrectly reconstructed 
tokens rather than complete reconstruction failure. The 
experiments also showed that careful architecture design 
strongly impacts both reconstruction performance and 
resource consumption, specifically, that when optimiz-
ing the architecture, good reconstruction performance 
could be achieved using only 3% of the data and reducing 
energy consumption by around 36% compared to a non-
optimized architecture trained on the full set. This firstly 
implies that the concerningly high resource consumption 
of training machine learning models can be counteracted 
by careful architecture design offering a step towards 
realizing green AI. And secondly, achieving comparable 
results on much less data when carefully designing the 
model’s architecture allows training on less specialized 
hardware. This is an important step towards making AI 
broadly available and therefore enabling the democrati-
zation of AI.

Conclusion
The results of this work demonstrate that high model 
quality and low resource consumption are not mutually 
exclusive, but that they can be harmonized by careful 
architecture design. It is clearly illustrated that the chem-
ical information content of autoencoder latent spaces can 
be maximized to provide more chemically meaningful 
input to downstream applications, while simultaneously 
moving towards greener AI models that use significantly 
fewer data points and consume less energy during train-
ing. This in turn makes the development of these mod-
els less dependent on highly specialized hardware and 
contributes to the democratization of AI. However, 
more research is required with regards to how this can 
be done efficiently. The computational overhead of train-
ing the variety of models presented here to engineer an 
optimized architecture does not go hand in hand with 
the idea of saving resources. A better understanding of 
the systematic connections between architecture and the 
machine learning task must be acquired and additionally 
translated to other model types to make this optimiza-
tion process efficient and sustainable in the future. This 
falls into the field of explainable AI and is a crucial step 
towards saving energy and democratizing AI by building 
a suitable model for a specific task rather than the fre-
quently encountered approach of compensating generic 
model design with larger data and longer training.

Methods
Datasets and molecule representations
To train our models, we used the benchmarking dataset 
molecular sets (MOSES) [23]. This benchmarking set 
comes with a provided train-test-split of approximately 
1.5 million molecules for training and approximately 
170,000 molecules for testing. The dataset is based on 
the ZINC Clean Leads which were then filtered further 
for different criteria such as contained atom types, maxi-
mum allowed ring sizes and charges, as described in the 
original paper [23].

Given the large amount of energy that is consumed 
when training machine learning models and the devastat-
ing impact it has on the environment, energy-conscious 
or—in the best case—green computing is an important 
topic. To this end we created an additional, much smaller 
random subset of the MOSES dataset, comprising only 
50,000 training molecules and 12,500 test molecules. We 
then used this subset to compare the achieved model 
qualities to those trained with the full dataset in order to 
explore the trade-off between smaller training time with 
the subset and performance boost with the full set. The 
token frequencies and string length distribution of the 
subset are representative of that of the full set (Additional 
file 4: Figure S4).
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In order to explore the impact that different molecule 
representations have on the embedding quality of the 
autoencoders, we selected two different string represen-
tations: SMILES and SELFIES. The SMILES representa-
tions were obtained directly from the MOSES dataset. 
For the enumeration experiments, we used a 5x-enu-
meration (one canonical, four non-canonical SMILES) 
based on the enumeration method provided by https://​
github.​com/​EBjer​rum/​SMILES-​enume​ration. SELFIES 
were constructed from SMILES (and their enumerations) 
using the selfies python library (version 2.1.1).

Models
The models used here are recurrent neural network 
(RNN)-based models with string input. More specifically, 
we compared gated recurrent unit (GRU) and long short-
term memory (LSTM) architectures. For each, GRU and 
LSTM, we chose a base architecture to which we itera-
tively applied changes and investigated their impact. The 
base architectures were 1) GRU, one layer, hidden size 64, 
latent size 64, no attention and 2) LSTM, one layer, hid-
den size 64, latent size 64, no attention. 64 was chosen as 
the latent and hidden size in the base model because it 
exceeds the maximum sequence length in the dataset and 
therefore does not require any dimensionality reduction 
by the model. We then investigated the impact of jointly 
changing the hidden and latent size. For that we explored 
a reduction in size (32 hidden size, 32 latent size) as well 
as an increase (128 hidden size, 128 latent size). To fur-
ther unravel the impact of each, we then added experi-
ments where the hidden size was fixed to that of the base 
model and only the latent size was altered to either 32 or 
16. Additionally, we inspected the impact of adding addi-
tional layers, comparing RNNs of each category with one, 
two and three layers. Lastly, the impact of attention on 
the model performance was examined in both the GRU 
as well as the LSTM case. See Additional file 5: Table S1 
for a comprehensive list of experiments.

If not explicitly stated otherwise, the models were 
trained for at least 50 epochs. Early stopping was set up 
to act after the minimum of 50 epochs were reached and 
limited to a maximum of 500 epochs. The early stopping 
was configured to a minimum delta in validation loss of 
0.01 with a patience of 5. An adam optimizer with learn-
ing rate of 0.005 was used. Teacher forcing was applied 
to avoid accumulative errors when predicting incorrect 
tokens. We used a cross-entropy loss and all models were 
trained for three different seeds and the seeds were the 
same across models. The reported results are mean val-
ues from these three runs.

For GRUs, the latent representation is the model’s hid-
den state after processing the last input token. However, 
since LSTMs return not only the hidden but also the cell 

state, they were first concatenated and then passed to a 
linear layer to create the latent representation in order 
to avoid a doubling in size. The decoder’s hidden state 
was initialized with the latent representation in case of 
GRUs. For LSTMs, two linear layers were implemented 
to reconstruct the hidden and the cell state from the 
latent representation, which then initialized the LSTM’s 
decoder.

Evaluation metrics
Mean Similarity
For all input and subsequently reconstructed molecules, 
the average number of correctly reconstructed tokens is 
calculated. Concisely, the Mean Similarity of a molecule 
to its reconstruction is.

Mean Similarity = 1
n

n
∑

i=1

f
(

s
input
i , sreconstructedi

)

,

with n the string length in tokens and sinput , sreconstructed 
the input and reconstructed string, respectively. 
f (s

input
i , sreconstructedi ) = 1 if sinputi = sreconstructedi  and 0 

otherwise. The Mean Similarity across all test molecules 
is then averaged for each model.

This is the easier metric, since rare and difficult to 
reconstruct tokens do not impact this metric severely.

Levenshtein distance
The Levenshtein Distance, also referred to as the edit dis-
tance, states the minimum number of tokens that need 
to be changed to transform one string into another [29]. 
This includes substitutions, insertions and deletions. To 
make this comparable to the other two metrics consid-
ered here, which are similarities, we computed 1− LD

n  , 
with n the string length in tokens.

Full reconstruction
For all input and subsequently reconstructed molecules, 
the Full Reconstruction rate of a model is the percentage 
of test molecules that were perfectly reconstructed, i.e., 
without a single mismatch.

This metric is more difficult since it also captures the 
model’s ability to learn rare tokens.

Latent‑Space analysis
If downstream machine learning models are to be trained 
on the autoencoder’s latent space, a good reconstruc-
tion accuracy is not the only important factor: The latent 
space itself must also reflect chemical similarity with sim-
ilar molecules being located in close proximity and differ-
ent molecules further apart. To evaluate the latent space, 
three randomly chosen SMILES from the test set were 
enumerated four times, i.e. four other SMILES represent-
ing the same molecule were created, yielding 5 differ-
ent SMILES for each of the three test molecules. For the 

https://github.com/EBjerrum/SMILES-enumeration
https://github.com/EBjerrum/SMILES-enumeration
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evaluation of SELFIES-based models, these SMILES were 
then translated to yield enumerated SELFIES. They were 
then embedded with the model’s encoder. Two tests were 
performed: (1) A principal component analysis (PCA) 
was performed on the embeddings of the enumerated 
SMILES as well as 10,000 random molecules and their 
spatial arrangement was visualized based on the first two 
principal components. (2) For each of the three test mol-
ecules, the average Euclidean distance of their embed-
dings was calculated. Then, 1000 random molecules were 
embedded and their pairwise Euclidean distances were 
calculated and plotted as a histogram together with the 
mean distances of the test molecules.

Computing resources
All experiments were run using four NVIDIA Tesla V100 
GPUs each with 32  GB memory. Energy benchmarking 
was performed on the HAICORE@KIT partition using 
four NVIDIA A100 GPUs with 40 GB memory each.

Abbreviations
PCA	� Principal component analysis
GRU​	� Gated recurrent unit
LSTM	� Long short-term memory
RNN	� Recurrent neural network
MOSES	� Molecular sets
GNN	� Graph neural network
SMILES	� Simplified molecular-input line-entry system
SELFIES	� Self-referencing embedded strings
VAE	� Variational autoencoder
AE	� Autoencoder
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Additional file 1: Figure S1. The effect of systematic adjustments of 
single architectural parameters on the Levenshtein Distance. Shown is 
the average Levenshtein Similarity (1—average Levenshtein Distance) 
reached on the test split achieved by models trained on the full set A 
and the 50 k subset B when adjusting hidden & latent size, only latent 
size, the number of layers and when adding attention. Each model was 
trained using three different seeds. The metric is presented as the mean 
of these seeds with error bars indicating the highest and lowest value. The 
performance of the base model (hidden and latent size of 64, one layer, 
no attention) is always shown as a reference to the modified architectures. 
GRU​ gated recurrent unit, LSTM long short-term memory.

Additional file 2 Figure S2. Latent space utilization. The molecule 
encodings were scaled to a range of [0, 1] using min-max scaling, to make 
patterns comparable across models when visualized as a heatmap. Rows 
represent molecules and columns represent latent dimensions. A Three 
types of latent space utilization patterns were found in the models. Left: 
posterior collapse type, characterized by low variance in the latent dimen-
sions and encodings that show high resemblance. There is little informa-
tion content for reconstruction. Middle: high utilization type, characterized 
by high variance in the latent dimensions, notable differences between 
the encodings and high information content. Right: selective type, 
characterized by high variance in most but very low variance in some 
latent dimensions and showing saturation of carried information content. 
B Latent space utilization is visualized as heatmaps when modifying the 
size of the latent vector. The top two rows show results when models 

were trained on the subset, the bottom two rows show results for the 
full MOSES set. The three leftmost columns represent models trained on 
SMILES, the three rightmost columns are models trained on SELFIES. Rows 
that represent GRU and LSTM models are marked as such on the left. 
Latent space sizes are stated on top. For each model, three latent space 
utilization plots are shown, representing the three different seeds used 
for training. C Latent space utilization of LSTMs trained on the full MOSES 
dataset with latent size 128. Three latent space utilization plots are shown 
for each SMILES and SELFIES, representing the three different seeds used 
for training

Additional file 3 Figure S3. Euclidean distances of latent representations 
from similar versus random molecules. For each investigated model, the 
Euclidean distances of the latents of 1000 random molecules is illustrated 
as a histogram (blue). For the three test molecules, the average Euclidean 
distance between the original and its four enumerations are indicated by 
coloured vertical lines.

Additional file 4 Figure S4. String length distributions and token 
frequencies in the full set and the subset. A shows the string length distri-
bution (left) and the token frequencies (right) of SMILES for both the full 
MOSES set (turquoise) and the subset (orange). B illustrates this for SELF-
IES. The token frequencies are normalized to the number of molecules in 
the set.

Additional file 5 Table S1. Overview of the experiments used for the sys-
tematic assessment of single architectural parameters. In bold are archi-
tecture features that were modified in comparison to the base models. 
Arrows indicate if the feature was increased or decreased in comparison 
to the base model.
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