
Oestreich et al. Journal of Cheminformatics (2024) 16:26
https://doi.org/10.1186/s13321-024-00817-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

Small molecule autoencoders: architecture
engineering to optimize latent space utility
and sustainability
Marie Oestreich1   , Iva Ewert1 and Matthias Becker1*    

Abstract 

Autoencoders are frequently used to embed molecules for training of downstream deep learning models. However,
evaluation of the chemical information quality in the latent spaces is lacking and the model architectures are often
arbitrarily chosen. Unoptimized architectures may not only negatively affect latent space quality but also increase
energy consumption during training, making the models unsustainable. We conducted systematic experiments
to better understand how the autoencoder architecture affects the reconstruction and latent space quality
and how it can be optimized towards the encoding task as well as energy consumption. We can show that optimiz-
ing the architecture allows us to maintain the quality of a generic architecture but using 97% less data and reducing
energy consumption by around 36%. We additionally observed that representing the molecules as SELFIES reduced
the reconstruction performance compared to SMILES and that training with enumerated SMILES drastically improved
latent space quality. Scientific Contribution: This work provides the first comprehensive systematic analysis
of how choosing the autoencoder architecture affects the reconstruction performance of small molecules, the chemi-
cal information content of the latent space as well as the energy required for training. Demonstrated on the MOSES
benchmarking dataset it provides first valuable insights into how autoencoders for the embedding of small molecules
can be designed to optimize their utility and simultaneously become more sustainable, both in terms of energy
consumption as well as the required amount of training data. All code, data and model checkpoints are made avail-
able on Zenodo (Oestreich et al. Small molecule autoencoders: architecture engineering to optimize latent space
utility and sustainability. Zenodo, 2024). Furthermore, the top models can be found on GitHub with scripts to encode
custom molecules: https://​github.​com/​Marie​Oestr​eich/​small-​molec​ule-​autoe​ncode​rs.

Keywords  Molecular autoencoders, Latent space optimization, Sustainability, Resource optimization

*Correspondence:
Matthias Becker
Matthias.Becker@dzne.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00817-0&domain=pdf
https://orcid.org/0000-0002-4754-1301
https://orcid.org/0000-0002-7120-4508
https://github.com/MarieOestreich/small-molecule-autoencoders

Page 2 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

Graphical Abstract

Introduction
The application of deep learning strategies on molecular
data has drawn an increasing amount of attention in the
last years [2–13]. The driving force behind this interest
is the vastness of the chemical space and the impossible
endeavor of exploring it manually [6, 14, 15]. Identifying
a set of candidate molecules suitable for a given task is a
slow process which usually only investigates fragments of
the chemical space. Additionally, the areas that are inves-
tigated are typically selected in a highly biased manner
by researchers. While an expert’s experience and knowl-
edge are highly valuable resources during evaluation and
finetuning of candidate molecules, the proposal of such
candidates benefits from a computer’s capacity to trav-
erse the entire molecule space in reasonable time. Thus,
to move past selective exploration and to unlock the full
potential of the chemical space, machine support, par-
ticularly deep learning, is appealing.

In order to train models on molecular data, suitable
molecule representations are needed. Many formats exist
to digitally represent molecules. One category of repre-
sentations are string-based representations such as the
simplified molecular-input line-entry system (SMILES)
[16] and self-referencing embedded strings (SELFIES)
[17].

SMILES were introduced in 1988 and are ubiquitously
found in molecular databases. They are generated by tra-
versing the molecular graph in a depth-first manner and
denoting encountered atoms, bonds and other, higher-
order structures with characters. However, the starting
point for the traversal is not fixed and therefore various
different SMILES can represent the same molecule. Like
languages, SMILES not only have a defined vocabulary,
but also a distinct grammar that regulates the token
sequences. Hence, much like the human languages, a ran-
dom combination of tokens is unlikely to result in a valid

molecule. While the grammatical rules improve readabil-
ity of this molecule representation, the invalidity of many
token combinations has been stated as an issue in the
context of generative machine learning applications [18].
Learning the underlying chemistry rather than focussing
on the grammar of SMILES may be further facilitated by
enumeration. Enumeration utilizes the mentioned fea-
ture that there exists not one but many SMILES for the
same molecule. [12, 19].

Another string-based representation was introduced
in 2020: SELFIES [17]. SELFIES guarantee validity by
removing any kind of paired tokens as they exist in
SMILES. Furthermore, the SELFIES format assures that
every molecule can be represented and that any random
combination of SELFIES tokens is valid. Like SMILES,
also SELFIES are not not unique per molecule and can be
enumerated.

However, these string-based representations are dis-
crete and non-numeric, which stands in contrast to the
continuous, numeric input preferred for use with deep-
learning models.

As an alternative solution, autoencoders have been suc-
cessfully used to first embed molecules and subsequently
use the embeddings as molecular representations for
downstream deep learning tasks [7–13, 20]. However,
the architectures used are numerous and arbitrary. This
makes the comparison of embeddings and quality con-
trol of the embedding space in general difficult, if not
impossible.

Here, we systematically explore the impact of archi-
tectural changes on the performance of molecule
autoencoders. Understanding the connection between
architecture and performance is not only important for
maximizing embedding quality, but also for optimiz-
ing the training procedure with respect to resource
consumption. Training AI models requires increasingly

Page 3 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

specialized hardware and long training times. With
growing model sizes it becomes incredibly expensive and
thus almost exclusively accessible to large companies and
wealthy countries. Additionally, the carbon dioxide foot-
print of AI models is alarmingly high: Strubell et al. [21]
estimate that the emissions when training a large trans-
former network with neural architecture search amount
to approximately 600 k pounds, which is 5-times as much
as the emissions of an average car including fuel over its
entire lifespan. In light of this, researchers are demand-
ing solutions for greener and more publicly available AI
models [21, 22]. We therefore assess how different archi-
tectural choices can affect the utility of the latent space
generated by small molecule autoencoders, how this
compares to the latent space of variational autoencoders
(VAEs), and by what means these insights can be utilized
to optimize the model architecture for high-quality small
molecule embeddings while simultaneously reducing the
resources spent on training. All models are made publicly
available including open-source scripts to test and evalu-
ate them as well as the option to train and evaluate cus-
tom architectures.

Results
We have defined a base model architecture to serve as a
reference throughout our experiments. This base model
was implemented once as a Gated Recurrent Unit (GRU)
and once as a Long Short-Term Memory (LSTM, for
details see methods section) and they each comprised

one layer, had a hidden size of 64, a latent size of 64 and
did not use attention. The performances of the different
architectures were then compared to these base models.
Architectural parameters such as latent size, hidden size,
number of layers and the use of attention were then sys-
tematically changed in separate experiments to evaluate
their impact on the model’s performance in comparison
to the base models. A general architectural overview
including changeable parameters is given in Fig. 1. All
models were trained on the MOSES [23] benchmarking
dataset, both on the full set with 1.5 million training and
170,000 test molecules as well as on a small, random sub-
set with 50,000 training and 12,500 test molecules which
we will refer to as the 50 k subset. Choosing a subset
was motivated by investigating the model’s performance
when being provided substantially less training data and
thus requiring less resources in terms of hardware and
training time.

Full reconstruction rate
The models were first assessed under data abundant
conditions, i.e. trained on the full MOSES set and sub-
sequently the performance was compared to the mod-
els trained on the much smaller subset. Specifically, we
first assessed the Full Reconstruction rate, which is the
percentage of test molecules that were correctly recon-
structed in their entirety. Details on this metric can be
found in the methods section.

Fig. 1  Architecture Overview. Illustration of the general autoencoder architecture used throughout the experiments. Molecules are provided
and reconstructed as one-hot encodings of SMILES or SELFIES. The encoder and decoder are either GRUs or LSTMs. In case of GRUs (blue),
the encoder returns the hidden state hT (after processing the last token of the input molecule), the size of which is controlled by the hidden size. If
latent size and hidden size are not the same, an additional linear layer (dashed black rectangle) is introduced after the encoder GRU and before the
decoder GRU. If latent size and hidden size are identical, then z = hT  . If the model is LSTM-based (orange), the encoder not only returns the last
hidden state hT but also the last cell state cT  . They are concatenated and adapted to the latent size with an additional linear layer and to reconstruct
hidden and cell state from the latents, two linear layers are introduced before the decoder (black rectangles). Both encoder and decoder may have
additional layers and the encoder may further have an attention layer added to it (as illustrated in insets)

Page 4 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

Full set
As shown in Fig. 2A, across all models trained on the full
set, GRUs generally outperform LSTMs in terms of Full
Reconstruction.

When jointly adjusting hidden and latent size, both in
SMILES and SELFIES, the GRU’s performance increased
steadily, reaching around 90% in the biggest model
assessed, while the LSTM performance stayed low, with
only a slight improvement when pairing SMILES input
with the biggest model of hidden and latent size 128.

The latent size limits the amount of information
that can be carried in the latent space. Reducing it has

memory-favorable effects but too small sizes might not
hold enough information for reconstruction. To inves-
tigate whether the base model’s latent size of 64 can be
further reduced without performance losses, it was
decreased to 32 and 16. For GRUs with SMILES input,
reduction to 32 reduced performance by 13%, but a fur-
ther reduction to 16 only reduced performance slightly.
In GRUs with SELFIES input on the other hand, reduc-
tion to 32 and 16 both lead to a total loss in Full Recon-
struction. LSTMs had a poor starting performance on
both input types so reducing the latent size further had
barely any impact.

Fig. 2  The effect of systematic adjustments of single architectural parameters on the Full Reconstruction rate. Shown is the Full Reconstruction
on the test split achieved by models trained on the full set A and the 50 k subset B when adjusting hidden & latent size, only latent size, the number
of layers and when adding attention. Each model was trained using three different seeds. The metric is presented as the mean of these seeds
with error bars indicating the highest and lowest value. The performance of the base model (hidden and latent size of 64, one layer, no attention)
is always shown as a reference to the modified architectures. GRU = Gated Recurrent Unit, LSTM = Long Short-Term Memory

Page 5 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

The next type of architectural modification that we
investigated was the number of layers. When training
GRUs on SMILES, performance drastically increased
when adding a second layer, coming close to 100%. There-
fore, adding a third layer had no further impact. When
training GRUs on SELFIES, a second layer was also ben-
eficial, but adding a third one reduced performance again
to that of the base model. LSTMs trained on SMILES
only benefitted from a third layer, while LSTMs trained
on SELFIES did not show any improvement when adding
a second or a third layer.

Lastly, when trained on SMILES, both GRUs and
LSTMs increased performance when adding attention.
When training on SELFIES, attention was not beneficial
neither in GRUs nor LSTMs.

50 k subset
As one of our leading questions was how the models
compare in reconstruction performance when trained
on a much smaller set, we assessed the Full Reconstruc-
tion rate of the same models trained on the 50 k subset.
As illustrated in Fig. 2B, the Full Reconstruction rate
dropped to zero or near zero across all scenarios.

Mean similarity and Levenshtein distance
Measuring a model by only its fraction of perfectly
reconstructed molecules is a harsh assessment, given
that a single incorrect atom or bond would immediately
lead to a Full Reconstruction rate of zero. Hence, a more
detailed performance analysis is required in addition.
Choosing the right metric for this depends strongly on
the aspect to be assessed: From a molecular perspective,
looking at the average number of correctly reconstructed
tokens (Mean Similarity) between input molecule and
the reconstructed molecule can provide meaningful
insight. From a model perspective, a metric such as the
Levenshtein Distance is of more interest. The reason is
that RNNs generate their outputs sequentially based on
previously observed tokens. For example, the insertion
of an additional token that was not present in the origi-
nal sequence would render all following tokens incor-
rect when measuring the Mean Similarity. Even if the
sequence that follows the insertion is entirely correct and
only shifted by one. The Levenshtein Distance, however,
recognizes the correct reconstruction of the rest of the
sequence and only penalizes the one incorrectly inserted
token. For more details of these metrics, please refer to
the methods.

In a first step, we assessed how much the Mean Simi-
larity and Levenshtein Distance differed in the trained
models. Here, for each trained model we computed both
metrics between all test molecules and their reconstruc-
tions and averaged the metrics across all test molecules.

We then compared the metrics across all models. Notice-
ably, Mean Similarity and Levenshtein Distance largely
concur. Hence, the insights described for the Mean Simi-
larity in the following are also mirrored in the Leven-
shtein Distance assessments (Additional file 1: Figure S1).
Analogously to the previous section, we first evaluated
the models trained on the full dataset (Fig. 3A) and then
compared to those trained on the 50 k subset (Fig. 3B).

Full set
When modifying both hidden and latent size, GRUs
trained on the full set show near perfect Mean Similarity
both when trained on SMILES and SELFIES for the base
model and the larger model with hidden- and latent-size
of 128. LSTMs show comparable results as GRUs when
trained on SMILES, however, when trained on SELFIES
their performance is lower and there was no benefit from
the larger architecture with hidden- and latent-size of
128.

When reducing the latent size only, GRUs trained on
SMILES showed high Mean Similarity close to 100% on
the base model and the models with reduced latent sizes.
When training the GRUs on SELFIES, reducing latent
size had a clear detrimental effect. LSTM performance
slightly decreases when reducing latent size on both
input representations.

Given the already outstanding performance in Mean
Similarity of the GRU base model, GRUs trained on both
input representations only benefited slightly from add-
ing additional layers, however that slight improvement
was clearly sufficient to push the number of correct Full
Reconstructions as elaborated on above. LSTMs trained
on SMILES had generally high scores in Mean Simi-
larity with little benefit from adding additional layers.
When LSTMs were trained on SELFIES, Mean Similarity
reduced when a second or third layer was added.

GRUs and LSTMs trained on SMILES showed minimal
improvements in Mean Similarity when adding attention,
no positive effect was observed when both architectures
were trained on SELFIES.

50 k subset
Unlike what was observed in the Full Reconstruction rate,
the Mean Similarity of the models trained on the 50 k
subset was much more comparable to that of the mod-
els trained on the full set. Generally, the metric was high
across models and molecular representations, approxi-
mating performance of the models trained on full set.

When changing both hidden and latent size, both GRUs
and LSTMs trained on SMILES and SELFIES showed
small improvements for the larger architecture and slight
deterioration with the smaller architecture. Reductions
in latent size had detrimental effects for GRU and LSTM

Page 6 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

trained on both SMILES and SELFIES, however, effects
were minimal. Increasing the number of layers or adding
attention had a minimal positive effect for both architec-
tures and on both molecular representations.

In summary, the observations of the different metrics
indicated that GRUs generally outperform LSTMs and
SMILES were easier for the models to reconstruct than
SELFIES. Additionally, while the Full Reconstruction
drops drastically when training only on the 50 k subset,

the Mean Similarity remains high in those models. Lastly,
there is a strong agreement between the Mean Similar-
ity, which only considers substitutions of tokens, and the
Levenshtein metric which additionally considers inser-
tions and deletions.

Latent space utilization
Small latent sizes make it more difficult to store all the
information required for reconstruction of the molecule.

Fig. 3  The effect of systematic adjustments of single architectural parameters on the Mean Similarity. Shown is the Mean Similarity reached
on the test split achieved by models trained on the full set A and the 50 k subset B when adjusting hidden & latent size, only latent size, the number
of layers and when adding attention. Each model was trained using three different seeds. The metric is presented as the mean of these seeds
with error bars indicating the highest and lowest value. The performance of the base model (hidden and latent size of 64, one layer, no attention)
is always shown as a reference to the modified architectures. GRU = Gated Recurrent Unit, LSTM = Long Short-Term Memory

Page 7 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

Increasing the latent size, however, inflates the size of
the model and the memory needed during training and
deployment, while not necessarily increasing model
performance due to information saturation in the latent
space. To assess how much the latent space of the mod-
els with varying latent sizes is utilized, a set of 12,500 test
molecules was encoded by each of the models. For the
50 k subset, these comprised the entire 12,500 test mol-
ecules, while for the full set, where more than 170,000
test molecules were available, a subset of 12,500 was ran-
domly sampled to make the results more comparable.

Depending on how the latent space is utilized, differ-
ent utilization patterns can be observed that are visual-
ized by a heatmap (Additional file 2: Figure S2A). Three
utilization types can be observed in the models tested
here: (1) posterior collapse [9]: Latent representations
that look highly similar for a range of different molecules
with low variance across latent dimensions; (2) high uti-
lization represented by high variance in all dimensions,
or (3) Selective utilization [9]: A blend of highly utilized
latent dimensions and dimensions that are rarely utilized
at all, which indicates that there are more dimensions
available than necessary to store the information for
reconstruction.

The GRU base model shows selective utilization on the
subset and the full set, for both SMILES and SELFIES
(Additional file 2: Figure S2B). GRU models with lower
latent dimensions, i.e. 32 and 16, exhibit the high utiliza-
tion latent space structure. On the other hand, none of
the LSTM models trained on the subset exhibit high uti-
lization: The base models exhibit selective utilization like
their GRU counterparts but reducing the latent size shifts
it towards posterior collapse, although small variances are
still visible despite the prominent striping pattern of the
heatmap (Additional file 2: Figure S2B). When trained
on the full set, LSTM base models do not exhibit selec-
tive utilization (as the LSTM base model on the subset
and the GRU base model on both sets), instead it dem-
onstrates high utilization. Decreasing the latent sizes of
these models prompts characteristics of posterior col-
lapse as well as high utilization memory types and rather
strong differences can be observed between the different
seeds. The fact that the baseline model does not exhibit
a selective memory structure indicates that increasing
the latent size for these models may offer further room
for improvement. Indeed, when increasing the latent size
further to 128, the selective utilization structure becomes
apparent (Additional file 2: Figure S2C). The posterior
collapse of the LSTMs trained on the subset is less prom-
inent when training on the full set.

Subset‑training optimization through increased
training‑time
The experiments above illustrated general inferiority of
the models trained on the 50 k subset in comparison to
the full set. However, this deficit was mostly rooted in the
much poorer Full Reconstruction rate while the Mean
Similarity was comparable. We therefore investigated if
training the models on the 50 k subset for more epochs
could rescue the Full Reconstruction metric in a simi-
lar way as training it on the full dataset. We selected the
three best performing models in both metrics and both
string representations: [1] GRU, latent size 128, hid-
den size 128, one layer, no attention; [2] GRU, latent size
64, hidden size 64, three layers, no attention; [3] GRU,
latent size 64, hidden size 64, two layers, no attention.
We then trained them on the 50 k subset for 1000 epochs
in order to assess whether the performance issues can
be mitigated by longer training. Longer training indeed
improved the models drastically, boosting all their Full
Reconstruction rates beyond 70%, while reaching near
perfect Mean Similarity (Fig. 4A). Although most of the
models trained on the full dataset remained slightly bet-
ter than those trained on the 50 k subset for 1000 epochs,
longer training clearly compensated for the much lower
sample size (97% less data than in the full set). It is note-
worthy that the training on the full set for 50 epochs con-
sumed around 8.5 kWh for all three architectures, while
training on the 50 k subset for 1000 epochs—and thus
reaching a comparable final performance—required only
around 5.4 kWh (Fig. 4B). In comparison, the energy con-
sumption of a household’s washing machine per month
in Europe is approximately 10 kWh [24]. In terms of pro-
duced CO2, in Germany 8.5 kWh equate to 3.7 kg of CO2
using emissions of energy production in 2022 [25].

Subset‑training optimization through additive
optimization
Following the results from the previous experiments,
the next step was to assess if the observations made in
the separate experiments allow for an additive optimi-
zation of the architecture. We selected the best setting
from each experiment for SMILES and SELFIES and
built a model combining all these architectural choices.
We then tested, if the performance of those inferred
best models outperformed the three best models in the
singular experiments (1) GRU, latent size 128, hidden
size 128, one layer, no attention; (2) GRU, latent size
64, hidden size 64, three layers, no attention; (3) GRU,
latent size 64, hidden size 64, two layers, no attention).
For SMILES, GRUs outperformed LSTMs, a hidden and
latent size of 128 performed best, three layers were better
than one or two layers and attention improved the per-
formance. Thus, the inferred best model for SMILES was:

Page 8 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

GRU, latent size 128, hidden size 128, three layers, with
attention.

For SELFIES, GRUs also outperformed LSTMs and the
same hidden and latent size as in the SMILES experiment
achieved the best performance. However, three layers
either brought only small improvements or even signifi-
cantly decreased the performance for some of the cases.
Like in the SMILES case, attention slightly improved the
performance in the 50 k subset. Hence, the inferred best
model chosen for SELFIES was: GRU, latent size 128,
hidden size 128, two layers, with attention.

For both SMILES and SELFIES, the inferred best model
trained on the subset for 50 epochs outperformed the
top 3 models from the singular experiments, especially
in terms of Full Reconstruction rate (Fig. 5). When con-
tinuing the training of the inferred best models for a total
of 200 epochs for the best performing seed, both Full
Reconstruction rate and Mean Similarity approached
or surpassed those of the top 3 models from the singu-
lar experiments that were trained on the full set. This

demonstrates that performance gain is possible by addi-
tive optimization.

Latent space evaluation
While the models achieve high reconstruction perfor-
mance in both Mean Similarity and Full Reconstruc-
tion after additive optimization, they are not variational
autoencoders (VAEs) and therefore do not apply any
explicit constraints onto the latent space. We thus ana-
lyzed how well chemical similarity is reflected in their
latent spaces and how that compares to the latent space
of a VAE. For the non-variational autoencoders, we addi-
tionally investigated the effect of enumeration of the
input or the target molecule, motivated by the obser-
vations that SMILES enumeration enhances the latent
space of autoencoders [12]. Here, enumeration effects
were also investigated for SELFIES. We analyzed the
latent space of eight models (Table 1).

Fig. 4  Subset performance optimization through train-time. A: Shown is the improvement of the models trained on the 50 k subset
when increasing the training epochs from 50 to 1000 epochs and comparing to the performance of models trained on the full data set. The
three architectures illustrated here were chosen because they were the best performing architectures in the experiments illustrated in Figs. 2, 3.
Architectures are all GRUs without attention and model abbreviations follow the scheme “latent size—hidden size—number of layers”. Shown
are Mean Similarity (gray) and Full Reconstruction (blue) on the test split. The metrics are presented as the mean of three seeds with error bars
indicating the highest and lowest value. B: Energy consumption of the three models trained on the full set for 50 epochs and the 50 k subset
for 1000 epochs, which achieved comparable reconstruction performance on the test set. *The average energy consumption of using a washing
machine in Europe is estimated at 120 kWh per year [24], i.e., 10 kWh per month

Page 9 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

All models were trained for 200 epochs and on the 50 k
subset. For details on the evaluation, please refer to the
methods section. As illustrated in Fig. 6, the SMILES-AE-
can2can model’s latent space poorly reflected molecu-
lar similarity. Enumerated versions of the same SMILES
were mapped to vastly different areas of the latent space
and did not cluster with the canonical SMILES of the
same molecule. The latent space showed low coherence,
an issue associated with non-variational autoencod-
ers which can often be mitigated by using VAEs. The
homogeneity of the latent space increased when train-
ing the model with enumerated SMILES as input and
canonical SMILES as targets, nonetheless it is separated
into two high-density areas and not fully homogeneous.
While the embedding overall remains poor, the embed-
dings of the enumerations co-located more than in the
can2can model. Training on canonical SMILES as input
and enumerating the target SMILES improved this, with

the enumerations now clustering closely to the canonical
representations of the same molecules. Implementing the
model as a VAE (SMILES-VAE-can2can) instead of an AE
(SMILES-AE-can2can) expectedly lead to a more consist-
ent latent space, nonetheless, some of the enumerations
scatter away from their canonical counterparts.

Much like in the SMILES case, the latent space of the
AE trained on canonical SELFIES only was incoher-
ent and enumerations were located far apart from their
canonical counterparts. Unlike in the SMILES case,
training the SELFIES-based models on enumerations did
not benefit the co-localization of enumerated SELFIES.
However, the latent space did become more coherent,
especially in the enum2can model.

In the SELFIES VAE, the latent space expectedly
becomes more regular and while the enumerations of the
three test molecules are not overlapping each other, co-
localization of canonical SELFIES and their enumerations

Fig. 5  Effect of additive optimization. Shown on the left and right as a reference are the best performing architectures identified
during the systematic adjustment of single architectural parameters, once trained on the 50 k subset (left) and the full set (right). The center
shows the performance of the additively optimized models, for each SMILES and SELFIES trained on the 50 k subset for 50 epochs as well as 200
epochs (the latter only for the best performing seed from the 50 epoch experiments). Architectures are all GRUs and model abbreviations follow
the scheme “latent size—hidden size—number of layers—use of attention”. Shown are Mean Similarity (gray) and Full Reconstruction (blue)
on the test split

Table 1  Model architectures considered for latent space evaluation

Architectures are chosen based on the results of the additive optimisation for SMILES and SELFIES

Name Variational
autoencoder

Architecture Molecule
representation

Enumerated

SMILES-AE-can2can No GRU, 128 hidden and latent size, 3 layers, attention SMILES No

SMILES-AE-enum2can No GRU, 128 hidden and latent size, 3 layers,
attention

SMILES Yes (input)

SMILES-AE-can2enum No GRU, 128 hidden and latent size, 3 layers, attention SMILES Yes (output)

SMILES-VAE-can2can Yes GRU, 128 hidden and latent size, 3 layers, attention SMILES No

SELFIES-can2can No GRU, 128 hidden and latent size, 2 layers, attention SELFIES No

SELFIES-enum2can No GRU, 128 hidden and latent size, 2 layers, attention SELFIES Yes (input)

SELFIES-can2enum No GRU, 128 hidden and latent size, 2 layers, attention SELFIES Yes (output)

SELFIES-VAE Yes GRU, 128 hidden and latent size, 2 layers, attention SELFIES No

Page 10 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

is not optimal. However, while the latent space of the
VAEs is shaped more favorably, their stochastic nature
leads to low reconstruction performance: a Mean Simi-
larity of 77.3% for SMILES and 79.3% for SELFIES, as
well as a 0% Full Reconstruction for SMILES and 0% for
SELFIES, with the Kullback–Leibler divergence-term
weighted with 0.3 and therefore already favoring recon-
struction accuracy.

These observations are further supported when look-
ing at Euclidean distances between latent representations
of molecules within a group, i.e. the reference molecule
and its four enumerations, compared to that of random
molecules (Additional file 3: Figure S3). The distinction
is particularly prominent for the SMILES-AE-can2enum
model.

Discussion
In this work, we systematically assessed how model
architecture as well as molecular input format impact
not only the reconstruction performance of a molecu-
lar autoencoder, but also the organization and quality
of its latent space. This was motivated by the need for a
better understanding of how we can carefully engineer
and optimize the architecture to reduce the resources
required during training while simultaneously maximiz-
ing encoding quality. The experiments have shown that
when comparing RNNs, GRUs generally outperform

LSTMs when encoding and reconstructing string repre-
sentations of molecules. While in another work, Chung
et al. [26] found no difference in performance between
GRUs and LSTMs when encoding and decoding audio
sequences, their models were designed such that despite
the different number of gates, they had approximately the
same number of parameters, which was neither done, nor
desired in this work. Models with more parameters are
known to be more prone to overfitting when trained on
the same set as a model with less parameters. This could
explain the LSTM’s inferiority in our case. Addition-
ally, Chung et al. [26] trained on much longer sequences
than the SMILES and SELFIES used here and therefore
illustrate the behavior of GRUs and LSTMs for different
length categories. As a future direction, graph neural net-
works (GNNs) should be included in this comparison,
utilizing molecular graphs as input rather than string for-
mulations of molecules. However, while more and more
architectures for GNNs are being explored, high-quality
end-to-end solutions that not only allow encoding but
also decoding of graphs including all the essential chemi-
cal properties such as atom- and bond-types, chemical
rules and charges are yet missing.

We also observed that SELFIES were harder to cor-
rectly reconstruct than SMILES for most of the models
tested here. While this may be surprising at first given
their proposed advantages for deep learning, upon

Fig. 6  Latent space evaluation for chemical similarity. The PCAs show the latent representations of 10,000 random molecules (gray) and three
test molecules (coloured dots). Enumerated versions of the test molecules are represented as crosses. Every panel represents a different model
as indicated above. The percentages of each principal component indicate the amount of variance that they represent

Page 11 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

further consideration it is plausible: SELFIES are per defi-
nition always valid, even when constructed at random,
which does not provide the model any syntactic rules
to learn. In SMILES, on the other hand, there are some
token combinations that the model would never encoun-
ter because they simply do not represent valid chemistry.
Additionally, unlike in SMILES, the tokens that make up
SELFIES do not always have the same meaning. Instead,
they are rules that represent which bonds, atoms, rings
or branches are valid next pieces given what the mol-
ecule looks like so far. The mentioned absence of invalid
examples paired with this equivocality of the tokens may
explain why it is harder for the models to reconstruct
SELFIES than it is to reconstruct SMILES. The lack of
coherent grammar may also explain why enumeration
does not have the rescuing effect observed in SMILES
in terms of latent space organization. Other works have
pointed out that the encoding system of SELFIES with its
roots in theoretical computer science in some application
scenarios makes them more easily understandable for
computers than other string formats [27, 28]. However,
in the particular scenario investigated in this study, asides
from their guaranteed validity, SELFIES do not outper-
form SMILES. Nonetheless, the evaluation of the models
as performed here has a strong statistical focus. Future
investigations with a focus on chemistry may help evalu-
ate the models further. Particularly, how well suited are
the latent spaces to train for instance QSAR models and
how present are undesired chemical structures in mol-
ecules sampled from the latent space.

The combined results in the models trained on the
50 k subset, where the Full Reconstruction was near
zero but the Mean Similarity was distinctively high and
comparable to that of the models trained on the full set,
demonstrate that the extremely low Full Reconstruc-
tion in the subset is due to few incorrectly reconstructed
tokens rather than complete reconstruction failure. The
experiments also showed that careful architecture design
strongly impacts both reconstruction performance and
resource consumption, specifically, that when optimiz-
ing the architecture, good reconstruction performance
could be achieved using only 3% of the data and reducing
energy consumption by around 36% compared to a non-
optimized architecture trained on the full set. This firstly
implies that the concerningly high resource consumption
of training machine learning models can be counteracted
by careful architecture design offering a step towards
realizing green AI. And secondly, achieving comparable
results on much less data when carefully designing the
model’s architecture allows training on less specialized
hardware. This is an important step towards making AI
broadly available and therefore enabling the democrati-
zation of AI.

Conclusion
The results of this work demonstrate that high model
quality and low resource consumption are not mutually
exclusive, but that they can be harmonized by careful
architecture design. It is clearly illustrated that the chem-
ical information content of autoencoder latent spaces can
be maximized to provide more chemically meaningful
input to downstream applications, while simultaneously
moving towards greener AI models that use significantly
fewer data points and consume less energy during train-
ing. This in turn makes the development of these mod-
els less dependent on highly specialized hardware and
contributes to the democratization of AI. However,
more research is required with regards to how this can
be done efficiently. The computational overhead of train-
ing the variety of models presented here to engineer an
optimized architecture does not go hand in hand with
the idea of saving resources. A better understanding of
the systematic connections between architecture and the
machine learning task must be acquired and additionally
translated to other model types to make this optimiza-
tion process efficient and sustainable in the future. This
falls into the field of explainable AI and is a crucial step
towards saving energy and democratizing AI by building
a suitable model for a specific task rather than the fre-
quently encountered approach of compensating generic
model design with larger data and longer training.

Methods
Datasets and molecule representations
To train our models, we used the benchmarking dataset
molecular sets (MOSES) [23]. This benchmarking set
comes with a provided train-test-split of approximately
1.5 million molecules for training and approximately
170,000 molecules for testing. The dataset is based on
the ZINC Clean Leads which were then filtered further
for different criteria such as contained atom types, maxi-
mum allowed ring sizes and charges, as described in the
original paper [23].

Given the large amount of energy that is consumed
when training machine learning models and the devastat-
ing impact it has on the environment, energy-conscious
or—in the best case—green computing is an important
topic. To this end we created an additional, much smaller
random subset of the MOSES dataset, comprising only
50,000 training molecules and 12,500 test molecules. We
then used this subset to compare the achieved model
qualities to those trained with the full dataset in order to
explore the trade-off between smaller training time with
the subset and performance boost with the full set. The
token frequencies and string length distribution of the
subset are representative of that of the full set (Additional
file 4: Figure S4).

Page 12 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

In order to explore the impact that different molecule
representations have on the embedding quality of the
autoencoders, we selected two different string represen-
tations: SMILES and SELFIES. The SMILES representa-
tions were obtained directly from the MOSES dataset.
For the enumeration experiments, we used a 5x-enu-
meration (one canonical, four non-canonical SMILES)
based on the enumeration method provided by https://​
github.​com/​EBjer​rum/​SMILES-​enume​ration. SELFIES
were constructed from SMILES (and their enumerations)
using the selfies python library (version 2.1.1).

Models
The models used here are recurrent neural network
(RNN)-based models with string input. More specifically,
we compared gated recurrent unit (GRU) and long short-
term memory (LSTM) architectures. For each, GRU and
LSTM, we chose a base architecture to which we itera-
tively applied changes and investigated their impact. The
base architectures were 1) GRU, one layer, hidden size 64,
latent size 64, no attention and 2) LSTM, one layer, hid-
den size 64, latent size 64, no attention. 64 was chosen as
the latent and hidden size in the base model because it
exceeds the maximum sequence length in the dataset and
therefore does not require any dimensionality reduction
by the model. We then investigated the impact of jointly
changing the hidden and latent size. For that we explored
a reduction in size (32 hidden size, 32 latent size) as well
as an increase (128 hidden size, 128 latent size). To fur-
ther unravel the impact of each, we then added experi-
ments where the hidden size was fixed to that of the base
model and only the latent size was altered to either 32 or
16. Additionally, we inspected the impact of adding addi-
tional layers, comparing RNNs of each category with one,
two and three layers. Lastly, the impact of attention on
the model performance was examined in both the GRU
as well as the LSTM case. See Additional file 5: Table S1
for a comprehensive list of experiments.

If not explicitly stated otherwise, the models were
trained for at least 50 epochs. Early stopping was set up
to act after the minimum of 50 epochs were reached and
limited to a maximum of 500 epochs. The early stopping
was configured to a minimum delta in validation loss of
0.01 with a patience of 5. An adam optimizer with learn-
ing rate of 0.005 was used. Teacher forcing was applied
to avoid accumulative errors when predicting incorrect
tokens. We used a cross-entropy loss and all models were
trained for three different seeds and the seeds were the
same across models. The reported results are mean val-
ues from these three runs.

For GRUs, the latent representation is the model’s hid-
den state after processing the last input token. However,
since LSTMs return not only the hidden but also the cell

state, they were first concatenated and then passed to a
linear layer to create the latent representation in order
to avoid a doubling in size. The decoder’s hidden state
was initialized with the latent representation in case of
GRUs. For LSTMs, two linear layers were implemented
to reconstruct the hidden and the cell state from the
latent representation, which then initialized the LSTM’s
decoder.

Evaluation metrics
Mean Similarity
For all input and subsequently reconstructed molecules,
the average number of correctly reconstructed tokens is
calculated. Concisely, the Mean Similarity of a molecule
to its reconstruction is.

Mean Similarity = 1
n

n
∑

i=1

f
(

s
input
i , sreconstructedi

)

,

with n the string length in tokens and sinput , sreconstructed
the input and reconstructed string, respectively.
f (s

input
i , sreconstructedi) = 1 if sinputi = sreconstructedi and 0

otherwise. The Mean Similarity across all test molecules
is then averaged for each model.

This is the easier metric, since rare and difficult to
reconstruct tokens do not impact this metric severely.

Levenshtein distance
The Levenshtein Distance, also referred to as the edit dis-
tance, states the minimum number of tokens that need
to be changed to transform one string into another [29].
This includes substitutions, insertions and deletions. To
make this comparable to the other two metrics consid-
ered here, which are similarities, we computed 1− LD

n  ,
with n the string length in tokens.

Full reconstruction
For all input and subsequently reconstructed molecules,
the Full Reconstruction rate of a model is the percentage
of test molecules that were perfectly reconstructed, i.e.,
without a single mismatch.

This metric is more difficult since it also captures the
model’s ability to learn rare tokens.

Latent‑Space analysis
If downstream machine learning models are to be trained
on the autoencoder’s latent space, a good reconstruc-
tion accuracy is not the only important factor: The latent
space itself must also reflect chemical similarity with sim-
ilar molecules being located in close proximity and differ-
ent molecules further apart. To evaluate the latent space,
three randomly chosen SMILES from the test set were
enumerated four times, i.e. four other SMILES represent-
ing the same molecule were created, yielding 5 differ-
ent SMILES for each of the three test molecules. For the

https://github.com/EBjerrum/SMILES-enumeration
https://github.com/EBjerrum/SMILES-enumeration

Page 13 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26 	

evaluation of SELFIES-based models, these SMILES were
then translated to yield enumerated SELFIES. They were
then embedded with the model’s encoder. Two tests were
performed: (1) A principal component analysis (PCA)
was performed on the embeddings of the enumerated
SMILES as well as 10,000 random molecules and their
spatial arrangement was visualized based on the first two
principal components. (2) For each of the three test mol-
ecules, the average Euclidean distance of their embed-
dings was calculated. Then, 1000 random molecules were
embedded and their pairwise Euclidean distances were
calculated and plotted as a histogram together with the
mean distances of the test molecules.

Computing resources
All experiments were run using four NVIDIA Tesla V100
GPUs each with 32 GB memory. Energy benchmarking
was performed on the HAICORE@KIT partition using
four NVIDIA A100 GPUs with 40 GB memory each.

Abbreviations
PCA	� Principal component analysis
GRU​	� Gated recurrent unit
LSTM	� Long short-term memory
RNN	� Recurrent neural network
MOSES	� Molecular sets
GNN	� Graph neural network
SMILES	� Simplified molecular-input line-entry system
SELFIES	� Self-referencing embedded strings
VAE	� Variational autoencoder
AE	� Autoencoder

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00817-0.

Additional file 1: Figure S1. The effect of systematic adjustments of
single architectural parameters on the Levenshtein Distance. Shown is
the average Levenshtein Similarity (1—average Levenshtein Distance)
reached on the test split achieved by models trained on the full set A
and the 50 k subset B when adjusting hidden & latent size, only latent
size, the number of layers and when adding attention. Each model was
trained using three different seeds. The metric is presented as the mean
of these seeds with error bars indicating the highest and lowest value. The
performance of the base model (hidden and latent size of 64, one layer,
no attention) is always shown as a reference to the modified architectures.
GRU​ gated recurrent unit, LSTM long short-term memory.

Additional file 2 Figure S2. Latent space utilization. The molecule
encodings were scaled to a range of [0, 1] using min-max scaling, to make
patterns comparable across models when visualized as a heatmap. Rows
represent molecules and columns represent latent dimensions. A Three
types of latent space utilization patterns were found in the models. Left:
posterior collapse type, characterized by low variance in the latent dimen-
sions and encodings that show high resemblance. There is little informa-
tion content for reconstruction. Middle: high utilization type, characterized
by high variance in the latent dimensions, notable differences between
the encodings and high information content. Right: selective type,
characterized by high variance in most but very low variance in some
latent dimensions and showing saturation of carried information content.
B Latent space utilization is visualized as heatmaps when modifying the
size of the latent vector. The top two rows show results when models

were trained on the subset, the bottom two rows show results for the
full MOSES set. The three leftmost columns represent models trained on
SMILES, the three rightmost columns are models trained on SELFIES. Rows
that represent GRU and LSTM models are marked as such on the left.
Latent space sizes are stated on top. For each model, three latent space
utilization plots are shown, representing the three different seeds used
for training. C Latent space utilization of LSTMs trained on the full MOSES
dataset with latent size 128. Three latent space utilization plots are shown
for each SMILES and SELFIES, representing the three different seeds used
for training

Additional file 3 Figure S3. Euclidean distances of latent representations
from similar versus random molecules. For each investigated model, the
Euclidean distances of the latents of 1000 random molecules is illustrated
as a histogram (blue). For the three test molecules, the average Euclidean
distance between the original and its four enumerations are indicated by
coloured vertical lines.

Additional file 4 Figure S4. String length distributions and token
frequencies in the full set and the subset. A shows the string length distri-
bution (left) and the token frequencies (right) of SMILES for both the full
MOSES set (turquoise) and the subset (orange). B illustrates this for SELF-
IES. The token frequencies are normalized to the number of molecules in
the set.

Additional file 5 Table S1. Overview of the experiments used for the sys-
tematic assessment of single architectural parameters. In bold are archi-
tecture features that were modified in comparison to the base models.
Arrows indicate if the feature was increased or decreased in comparison
to the base model.

Acknowledgements
This work was supported by the Helmholtz Association’s Initiative and Net-
working Fund on the HAICORE@KIT partition.

Author contributions
MO, MB and IE conceptualized the study, MO and IE conducted the experi-
ments, MO and MB wrote the manuscript and all authors read the manuscript,
provided feedback and eventually approved it in its final form.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was
funded by the BMBF grant PriSyn (16KISA030) and the HGF Helmholtz AI grant
Pro-Gene-Gen (ZT-I-PF5-23).

Availability of data and materials
All data used in this work comes from publicly available databases. All trained
models including the development code and data are provided at Zenodo:
https://​zenodo.​org/​recor​ds/​10664​803.

Code availability
The source code and top models can be found on GitHub with scripts to
encode custom molecules: https://​github.​com/​Marie​Oestr​eich/​small-​molec​
ule-​autoe​ncode​rs.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Modular High‑Performance Computing and Artificial Intelligence, German
Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Received: 7 November 2023 Accepted: 18 February 2024

https://doi.org/10.1186/s13321-024-00817-0
https://doi.org/10.1186/s13321-024-00817-0
https://zenodo.org/records/10664803
https://github.com/MarieOestreich/small-molecule-autoencoders
https://github.com/MarieOestreich/small-molecule-autoencoders

Page 14 of 14Oestreich et al. Journal of Cheminformatics (2024) 16:26

References
	1.	 Oestreich M, Ewert I, Becker M. (2024) Small molecule autoencoders:

architecture engineering to optimize latent space utility and sustainabil-
ity. Zenodo

	2.	 Lamberti MJ, Wilkinson M, Donzanti BA, Wohlhieter GE, Parikh S, Wilkins
RG et al (2019) A study on the application and use of artificial intelligence
to support drug development. Clin Ther 41(8):1414–1426

	3.	 Lind AP, Anderson PC (2019) Predicting drug activity against cancer cells
by random forest models based on minimal genomic information and
chemical properties. PLoS ONE 14(7):e0219774

	4.	 Smalley E (2017) AI-powered drug discovery captures pharma interest.
Nat Biotechnol 35(7):604–605

	5.	 Lee W-Y, Lee C-Y, Kim C-E (2023) Predicting activatory and inhibitory
drug-target interactions based on structural compound representations
and genetically perturbed transcriptomes. PLoS ONE 18(4):e0282042

	6.	 Sadybekov AV, Katritch V (2023) Computational approaches streamlining
drug discovery. Nature 616(7958):673–685

	7.	 Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM,
Sánchez-Lengeling B, Sheberla D et al (2018) Automatic chemical design
using a data-driven continuous representation of molecules. ACS Cent
Sci 4(2):268–276

	8.	 Lim J, Ryu S, Kim JW, Kim WY (2018) Molecular generative model based
on conditional variational autoencoder for de novo molecular design. J
Cheminform 10(1):31

	9.	 Dollar O, Joshi N, Beck DAC, Pfaendtner J (2021) Attention-based genera-
tive models for de novo molecular design. Chem Sci 12(24):8362–8372

	10.	 Méndez-Lucio O, Baillif B, Clevert D-A, Rouquié D, Wichard J (2020) De
novo generation of hit-like molecules from gene expression signatures
using artificial intelligence. Nat Commun 11(1):10

	11.	 Sattarov B, Baskin II, Horvath D, Marcou G, Bjerrum EJ, Varnek A (2019) De
novo molecular design by combining deep autoencoder recurrent neu-
ral networks with generative topographic mapping. J Chem Inf Model
59(3):1182–1196

	12.	 Bjerrum EJ, Sattarov B (2018) Improving chemical autoencoder latent
space and molecular de novo generation diversity with heteroencoders.
Biomolecules. https://​doi.​org/​10.​3390/​biom8​040131

	13.	 Prykhodko O, Johansson SV, Kotsias P-C, Arús-Pous J, Bjerrum EJ, Engkvist
O et al (2019) A de novo molecular generation method using latent vec-
tor based generative adversarial network. J Cheminform 11(1):74

	14.	 Mullard A (2017) The drug-maker’s guide to the galaxy. Nature
549(7673):445–447

	15.	 Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of
drug-like chemical space based on GDB-17 data. J Comput Aided Mol
Des 27(8):675–679

	16.	 Weininger D (1988) SMILES a chemical language and information system
1 Introduction to methodology and encoding rules. J Chem Inf Model
28(1):31–6

	17.	 Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A (2020) Self-
referencing embedded strings (SELFIES): A 100% robust molecular string
representation. Mach Learn: Sci Technol 1(4):045024

	18.	 Krenn M, Ai Q, Barthel S, Carson N, Frei A, Frey NC et al (2022) SELFIES and
the future of molecular string representations. Patterns 3(10):100588

	19.	 Bjerrum EJ. (2017) SMILES Enumeration as Data Augmentation for Neural
Network Modeling of Molecules. ArXiv

	20.	 Jin W, Barzilay R, Jaakkola T. (2018) Junction Tree Variational Autoencoder
for Molecular Graph Generation. Proceedings of the 35th International
Conference on Machine Learning

	21.	 Strubell E, Ganesh A, McCallum A. (2019) Energy and policy considera-
tions for deep learning in NLP. Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Stroudsburg, PA, USA:
Association for Computational Linguistics. p. 3645–50.

	22.	 Schwartz R, Dodge J, Smith NA, Etzioni O (2019) Green AI. ArXiv. https://​
doi.​org/​10.​1145/​33818​31

	23.	 Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O,
Belyaev S et al (2020) Molecular sets (MOSES): a benchmarking platform
for molecular generation models. Front Pharmacol 18(11):565644

	24.	 Schmitz A, Stamminger R (2014) Usage behaviour and related energy
consumption of European consumers for washing and drying. Energ Effi
7(6):937–954

	25.	 Icha P, Lauf T. (2023) Entwicklung der spezifischen Treibhausgas-Emis-
sionen des deutschen Strommix in den Jahren 1990–2022. Umweltbun-
desamt; May.

	26.	 Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv 1412:3555

	27.	 Rajan K, Zielesny A, Steinbeck C (2020) DECIMER: towards deep learning
for chemical image recognition. J Cheminform 12(1):65

	28.	 Rajan K, Zielesny A, Steinbeck C (2020) STOUT: SMILES to IUPAC names
using neural machine translation. J Cheminform 13(1):1

	29.	 Levenshtein VI (1966) Binary codes capable of correcting deletions inser-
tions and reversals. Soviet Phys Doklady 10(8):707

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3390/biom8040131
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831

	Small molecule autoencoders: architecture engineering to optimize latent space utility and sustainability
	Abstract
	Introduction
	Results
	Full reconstruction rate
	Full set
	50 k subset

	Mean similarity and Levenshtein distance
	Full set
	50 k subset

	Latent space utilization
	Subset-training optimization through increased training-time
	Subset-training optimization through additive optimization
	Latent space evaluation

	Discussion
	Conclusion
	Methods
	Datasets and molecule representations
	Models
	Evaluation metrics
	Mean Similarity
	Levenshtein distance
	Full reconstruction

	Latent-Space analysis
	Computing resources

	Acknowledgements
	References

