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Abstract 

Graph neural networks (GNNs) have proven to be effective in the prediction of chemical reaction yields. However, 
their performance tends to deteriorate when they are trained using an insufficient training dataset in terms 
of quantity or diversity. A promising solution to alleviate this issue is to pre‑train a GNN on a large‑scale molecular 
database. In this study, we investigate the effectiveness of GNN pre‑training in chemical reaction yield prediction. 
We present a novel GNN pre‑training method for performance improvement.Given a molecular database consisting 
of a large number of molecules, we calculate molecular descriptors for each molecule and reduce the dimensionality 
of these descriptors by applying principal component analysis. We define a pre‑text task by assigning a vector 
of principal component scores as the pseudo‑label to each molecule in the database. A GNN is then pre‑trained 
to perform the pre‑text task of predicting the pseudo‑label for the input molecule. For chemical reaction yield 
prediction, a prediction model is initialized using the pre‑trained GNN and then fine‑tuned with the training 
dataset containing chemical reactions and their yields. We demonstrate the effectiveness of the proposed method 
through experimental evaluation on benchmark datasets.
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Introduction
A chemical reaction is a process in which reactants are 
changed into products through chemical transforma-
tions. The percentage of products obtained relative to 
the reactants consumed is referred to as the chemical 
reaction yield. The prediction of the chemical reaction 
yields provides clues for exploring high-yield chemical 
reactions without the need for conducting direct experi-
ments. This is crucial for accelerating synthesis planning 
in organic chemistry by significantly reducing time and 

cost. Machine learning has been actively utilized for the 
fast and accurate prediction of chemical reaction yields 
in a data-driven manner [1–8].

Recently, deep learning has shown remarkable per-
formance in predicting chemical reaction yields by 
effectively modeling the intricate relationships between 
chemical reactions and their yields using neural net-
works. Schwaller et  al. [6, 7] represented a chemical 
reaction as a series of simplified molecular-input line-
entry system (SMILES) strings and built a bidirectional 
encoder representations from transformers (BERT) 
as the prediction model. Kwon et  al. [8] represented a 
chemical reaction as a set of molecular graphs and built 
a graph neural network (GNN) that operates directly on 
the molecular graphs as the prediction model. The use of 
GNNs led to a significant improvement in the predictive 
performance owing to their high expressive power on 
molecular graphs [9, 10].

Despite its effectiveness, the predictive performance 
of a GNN can suffer when it is trained on an insufficient 
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training dataset in terms of quantity or diversity. For 
example, a GNN may not generalize well to query reac-
tions involving substances that are not considered in 
the training dataset. Although the performance can be 
significantly improved by securing a large-scale train-
ing dataset, this is difficult in practice because of the 
high cost associated with conducting direct experi-
ments to acquire the yields for a large number of chem-
ical reactions.
To alleviate this issue, a promising solution is to pre-
train a GNN on a large-scale molecular database and 
use it to adapt to chemical reaction yield prediction. 
Various pre-training methods have been studied in 
the literature, which can be categorized into contras-
tive learning and pre-text task approaches [11, 12]. The 
contrastive learning approach pre-trains a GNN by 
learning molecular representations such that different 
views of the same molecule are mapped close together, 
and views of different molecules are mapped far apart 
[13–18]. Most existing methods based on this approach 
have utilized data augmentation techniques to generate 
different views of each molecule. Data augmentation 
may potentially alter the properties of the molecules 
being represented [19, 20]. The pre-text task approach 
acquires the pseudo-labels of molecules and pre-trains 
a GNN to predict them [21–25]. Existing methods have 
attempted to define appropriate pre-text tasks in vari-
ous ways to effectively learn molecular representations. 
The process of acquiring pseudo-labels can be costly 
and time-consuming depending on how the pre-text 
task is defined. Since both approaches have their own 
advantages and drawbacks, it is important to choose 
the most suitable pre-training method that best aligns 
with the objective of a specific downstream task that 
needs to be addressed.

In this study, we propose a novel pre-training method, 
MolDescPred, to improve the performance in predict-
ing chemical reaction yields. MolDescPred is based on 
the pre-text task approach to pre-train a GNN. Given a 
molecular database containing a substantial number of 
molecules, we calculate the molecular descriptors for the 
molecules and reduce their dimensionality by applying 
principal component analysis (PCA). Each molecule is 
then pseudo-labeled with a vector of its principal compo-
nent scores. The GNN is then pre-trained to predict the 
pseudo-label of its input molecule. For chemical reaction 
yield prediction, a prediction model is initialized using 
the pre-trained GNN and then is fine-tuned with a train-
ing dataset composed of chemical reactions and their 
corresponding yields. Through experiments on bench-
mark datasets, we demonstrate the effectiveness of the 
proposed method compared to existing methods, espe-
cially when the training dataset is insufficient.

Method
Problem definition
For chemical reaction yield prediction, we aim to build an 
accurate prediction model f which takes a chemical reac-
tion (R,P) as the input to predict the yield y by learning 
from the training dataset D = {(Ri,Pi, yi)}

N
i=1 . Given a 

query chemical reaction (R∗,P∗) , the prediction model f 
can be used to make a prediction for the yield y∗ as:

It should be noted that additional information, such as 
the operating conditions for chemical reactions, can 
be utilized as extra input for the model f. If we denote 
this additional information by Z , the problem can be 
formulated as learning the model f from the dataset 
D′ = {(Ri,Pi,Zi, yi)}

N
i=1 . The input and output of the 

model f can be described as:

The data representation used for the prediction model 
f is as follows. In a chemical reaction (R,P) , R and P 
denote the sets of reactants and products, respectively. 
The set R = {GR,1, . . . ,GR,m} contains m reactant mol-
ecules represented as molecular graphs, where m can 
vary for each reaction. The set P = {GP } contains a sin-
gle molecular graph representing a product molecule. 
Each molecular graph G = (V , E) represents the topology 
of a molecule. Here, V and E are the sets of nodes and 
edges associated with heavy atoms and their chemical 
bonds within the molecule. Hydrogen atoms are implic-
itly handled as node features of their neighboring heavy 
atoms. Each node vector vj ∈ V denotes the node fea-
tures regarding the j-th heavy atom in a molecule, includ-
ing the atom type, formal charge, degree, hybridization, 
number of adjacent hydrogens, valence, chirality, associ-
ated ring sizes, whether it accepts or donates electrons, 
whether it is aromatic, and whether it is in a ring. Each 
edge vector ej,k ∈ E denotes the edge features regarding 
the chemical bond between j-th and k-th heavy atoms, 
including the bond type, stereochemistry, whether it is in 
a ring, and whether it is conjugated.

The objective of this study is to improve the per-
formance of the prediction model f, especially in sce-
narios where the training dataset D lacks sufficient 
quantity or diversity. To achieve this, the proposed 
method MolDescPred employs a three-phase proce-
dure for training the prediction model, as illustrated in 
Fig. 1. In the first phase, we define a pre-text task based 
on molecular descriptors using a large molecular data-
base. In the second phase, we pre-train a GNN from 
the pre-text task. In the third phase, we incorporate the 
pre-trained GNN as part of the model f and fine-tune 

(1)ŷ∗ = f (R∗,P∗).

(2)ŷ∗ = f (R∗,P∗,Z∗).
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the model f using the training dataset D . We provide 
a detailed description of each phase in the following 
subsections.

Pre‑text task based on molecular descriptors
Molecular descriptors are numerical representations of 
the chemical information of a molecule derived through 
logical and mathematical procedures [26]. Molecular 
descriptors have been commonly used as inputs for pre-
diction models in a wide range of molecular property 
prediction tasks [27–30]. In contrast, we utilize molecu-
lar descriptors to define a pre-text task for pre-training a 
GNN. Specifically, molecular descriptors embedded in a 
reduced dimensionality are used as pseudo-labels for the 
molecules. Fig.  2 illustrates the procedure of acquiring 
the pseudo-labels for defining a pre-text task.

Given a molecular database containing a substantial 
number of molecules, denoted as S = {Gi}

M
i=1 , we cal-

culate the molecular descriptors using the Mordred cal-
culator [31]. It was originally designed to generate 1,826 
molecular descriptors per molecule, including 1,613 2D 
and 213 3D descriptors, by leveraging a wide range of 

chemical and structural properties. The detailed infor-
mation about the descriptors can be found in [31]. These 
descriptors can be efficiently calculated at high speed, 
with high scalability to large molecules. We exclude the 
3D descriptors, assuming that molecular geometry infor-
mation is not available for use in the database. For each 
molecular graph G , a p-dimensional vector of molecular 
descriptors d ∈ R

p is obtained as:

The molecular descriptor vector d is high-dimensional 
and contains redundant information and noise. Thus, we 
apply PCA to reduce the dimensionality while preserving 
most of the original information [32]. The primary idea 
of PCA is to create new features, formed through linear 
combinations of the original molecular descriptors, 
with the objective of ensuring that these new features 
explain most of the variance in the molecular descriptors 
and are uncorrelated with each other. The objective is 
accomplished by eigendecomposition of the covariance 
matrix of the molecular descriptors calculated on S . 
This yields q eigenvectors u1, . . . ,uq , called principal 
components, corresponding to the largest eigenvalues 
�1, . . . , �q . The j-th eigenvalue �j represents the variance 
explained by the j-th principal component uj . To obtain 
a reduced q-dimensional vector ( q < p ), we project the 
original vector d onto the q principal components as:

(3)d = (d1, . . . , dp) = Mordred(G).

(4)z = (z1, . . . , zq) = (uT1 d, . . . ,u
T
q d),

Fig. 1 Three‑phase procedure for training the prediction model with MolDescPred: (a) Molecular descriptors embedded in a reduced 
dimensionality are assigned as pseudo‑labels to molecules in the pre‑training dataset; (b) A GNN is pre‑trained to predict the pseudo‑label of each 
molecule in the pre‑training dataset; (c) After initializing the GNN parameters with the pre‑trained ones, the prediction model is fine‑tuned using 
the training dataset for the target task

Fig. 2 Procedure of acquiring pseudo‑labels for defining a pre‑text 
task
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where zj is the principal component score of d obtained 
using the j-th principal component.

We establish a pre-text task by assigning each vector zi 
as a pseudo-label to the corresponding molecular graph 
Gi . Subsequently, the pre-training dataset is formed as 
S̃ = {(Gi, zi)}

M
i=1.

Pre‑training of graph neural network
GNNs have shown remarkable performance in various 
prediction tasks in chemistry [9, 10]. GNNs are designed 
to operate directly on molecular graphs, enabling them to 
learn informative representations by effectively capturing 
complex relationships within molecular graphs. Among the 
various GNN architectures, we employ the graph isomor-
phism network (GIN) owing to its high expressive power 
when applied to molecular graphs and its widespread usage 
in the literature for the pre-training of GNNs [11, 33]. Spe-
cifically, we adapt a variant of the GIN proposed by Hu 
et al. [21] which incorporates edge features into the input 
representation.

The GNN processes an input molecular graph G = (V , E) 
as follows. Each node vector vj ∈ V and edge vector 
e
j,k ∈ E is embedded into the initial node and edge embed-

dings hj,(0)v  and hj,ke  using the initial node and edge embed-
ding functions φn and φe , respectively, as:

where φn and φe are parameterized as neural networks. 
Then, we use L message passing layers to iteratively 
update the node embeddings by aggregating information 
from the neighboring nodes. At the l-th layer 
( l = 1, . . . , L ), each node embedding hj,(l)v  is updated as:

where ψ(l) is the l-th node embedding function 
parameterized as a neural network. The final node 
embeddings hj,(L)v  are combined via average pooling to 
extract a graph embedding hg as:

Finally, the graph embedding hg is processed using a 
projection function r to obtain a graph-level molecular 
representation vector h as:

(5)h
j,(0)
v = φn(v

j);

(6)h
j,k
e = φe(e

j,k).

(7)

h
j,(l)
v = ψ(l)



h
j,(l−1)
v +

�

k|ej,k∈E

ReLU(h
j,(l−1)
v + h

j,k
e )



.

(8)hg =
1

|V|

∑

j|vj∈V

h
j,(L)
v .

(9)h = r(hg )

In the pre-training of the GNN based on the pre-text 
task, we use an auxiliary prediction head to further pro-
cess the graph-level molecular representation vector h 
to obtain the prediction of the pseudo-label ẑ . It should 
be noted that the prediction head is used only during the 
pre-training phase. Fig. 3 illustrates the model architec-
ture for the pre-training of the GNN.

Given the pre-training dataset for the pre-text task 
S̃ = {(Gi, zi)}

M
i=1 , the GNN and prediction head are 

jointly trained using the loss function L̃ defined as:

where �j denotes the eigenvalue obtained using the PCA.

Fine‑tuning of prediction model
To build the prediction model f for chemical reaction 
yield prediction, we adapt the model architecture and 
learning objective presented in Kwon et  al.’s study [8], 
except that we use the GIN architecture for the GNN 
component in the model [34]. The model f takes a chemi-
cal reaction (R,P) and outputs the predictive mean µ̂ 
and variance σ̂ 2 for the yield y as:

The prediction model f consists of two main components, 
as illustrated in Fig.  4. First, a GNN processes each 
molecular graph within the input chemical reaction 
to obtain a molecular representation vector. Second, a 
prediction head integrates all molecular representation 
vectors to make a final prediction. To leverage prior 
knowledge acquired by learning the pre-text task, we 
initialize the GNN using the parameters obtained from 
the pre-training phase.

For training of the model f, the parameters of the 
GNN component are initialized using the pre-trained 
GNN from the previous subsection, while the remain-
ing parameters are randomly initialized. We are pro-
vided with a training dataset for the target task 
D = {(Ri,Pi, yi)}

N
i=1 , which comprises N chemical 

reactions and their yields. The prediction model f is 

(10)L̃(z, ẑ) =
1

q

q
∑

j=1

�j(zj − ẑj)
2,

(11)(µ̂, σ̂ 2) = f (R,P).

Fig. 3 Model architecture for pre‑training of GNN
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fine-tuned using the loss function L as described in the 
referenced study [8]:

where the first and second terms are associated with 
the losses under the homoscedastic and heteroscedastic 
assumptions, respectively, and α is the hyperparameter 
that controls the relative strength of the two terms.

Experiments
Datasets
For pre-training, we used a subset of 10 million mole-
cules extracted from the PubChem database, as provided 
by Chithrananda et  al.’s study [35]. In the experiments, 
we excluded molecules that did not pass the sanity check 
in RDKit [36]. The molecules consisted of 25.18 heavy 
atoms on average, with a range of 1–891.

For chemical reaction yield prediction, we used two 
benchmark datasets, Buchwald-Hartwig [2] and Suzuki-
Miyaura [37], which have been commonly used in pre-
vious studies to evaluate the performance of prediction 
models [6–8]. The Buchwald-Hartwig dataset was con-
structed through high-throughput experiments on the 
class of Pd-catalyzed Buchwald-Hartwig C-N cross-
coupling reactions. It consisted of 3,955 chemical reac-
tions and their experimentally measured yields. These 
reactions were generated by combining 15 aryl hal-
ides, 4 ligands, 3 bases, and 23 additives. Each chemi-
cal reaction involved 6 reactants (m = 6) . Similarly, the 
Suzuki-Miyaura dataset was constructed through high-
throughput experiments on the class of Suzuki-Miyaura 
cross-coupling reactions. The chemical reactions were 
generated by combinations of 15 couplings of elec-
trophiles and nucleophiles, 12 ligands, 8 bases, and 4 

(12)

L(y, µ̂, σ̂ 2) = (1− α)(y− µ̂)
2 + α

[

(y− µ̂)2

σ̂ 2
+ log σ̂ 2

]

,

solvents, resulting in a total of 5,760 chemical reactions 
along with their yields. The number of reactants in each 
chemical reaction m ranged from 6 to 14. The detailed 
operating conditions of the reactions, including tem-
perature and pressure, were not reported in either of the 
benchmark datasets.

We evaluated the performance of the prediction model 
f in two different scenarios of insufficiency in the training 
dataset. In the quantity aspect, we utilized various train-
ing/test split ratios (70/30, 50/50, 30/70, 20/80, 10/90, 
5/95, and 2.5/97.5) for both the Buchwald-Hartwig and 
Suzuki-Miyaura datasets. To obtain these splits, we used 
10 random shuffles provided by Ahneman et al.’s study [2] 
for the Buchwald-Hartwig dataset and Schwaller et  al.’s 
study [6] for the Suzuki-Miyaura dataset. In the diversity 
aspect, we used 4 out-of-sample training/test splits of the 
Buchwald-Hartwig dataset provided by Ahneman et al.’s 
study [2].

Implementation
In the phase of defining the pre-text task, we calculated 
1,613 2D molecular descriptors for each molecule using 
the Mordred calculator [31]. The list of these 2D descrip-
tors is provided in Additional file  1: Table  S1. By elimi-
nating descriptors with more than 10 missing values or 
all values being the same, 846 molecular descriptors 
remained (p = 846) . All molecules with missing descrip-
tors were excluded. Each molecular descriptor was stand-
ardized to have a mean of zero and a standard deviation 
of one. We then applied PCA to reduce the dimensional-
ity of the molecular descriptors. We set the dimensional-
ity q to 40, which corresponds to an explained variance 
of 70%. Additional file 1: Fig S1 shows the explained vari-
ance according to the reduced dimensionality determined 
by the number of principal components. Additional file 1: 
Fig S2 visualizes the principal components in relation to 
the original molecular descriptors, where each principal 
component involved a different mixture of all molecular 
descriptors. After dimensionality reduction, each dimen-
sion was clipped to -10 to 10 times its standard deviation 
and then re-standardized.

In the pre-training phase, we used a three-layer GIN 
architecture (L = 3) for the GNN. For the initial node and 
edge embedding functions φn and φe , we used one-layer 
fully-connected neural networks with 300 ReLU units 
and 300 linear units, respectively. For the node embed-
ding function ψ(l) , we used a two-layer fully-connected 
neural network, where each layer had 300 ReLU units. 
At the last message passing layer, we replaced the sec-
ond layer of ψ(L) with 300 linear units. For the projection 
function r, we used a one-layer fully-connected neural 
network with 1,024 PReLU units. For the auxiliary pre-
diction head, we used a one-layer fully-connected neural 

Fig. 4 Model architecture for chemical reaction yield prediction [8]. 
The GNN has the GIN architecture.
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network served as the output layer. The pre-training was 
performed for 10 epochs using the Adam optimizer 
with a batch size of 128, a learning rate of 5 · 10−4 , and a 
weight decay of 10−5.

In the fine-tuning phase of the prediction model f, 
we used the pre-trained GNN obtained in the previous 
phase as the initialization of the GNN component in 
the prediction model f. The fine-tuning was performed 
using the Adam optimizer with a batch size of 128 and a 
weight decay of 10−5 . The learning rate was initially set to 
5 · 10−4 and decayed to 5 · 10−5 and 5 · 10−6 at the 400-
th and 450-th epochs, respectively, over the entire 500 
epochs.

For the inference of the prediction model f, we used 
Monte-Carlo dropout [38], following the referenced 
study [8]. Given a query chemical reaction, we generated 
30 different predictions by conducting multiple stochas-
tic forward passes through the model f with dropout acti-
vated. The final prediction for the query was obtained by 
averaging them.

Baseline methods
We conducted an exhaustive evaluation of MolDescPred 
by comparing its effectiveness with the methods pre-
sented in previous studies on chemical reaction yield pre-
diction. For these methods, we used the configurations 
specified in their respective studies.

• Multiple Fingerprint Features (MFF) [4] represents 
a chemical reaction as a vector by concatenating 
24 different molecular fingerprints, each generated 
using RDKit [36]. As a prediction model, it builds a 
random forest that takes this vector representation as 
input to predict the corresponding reaction yield.

• YieldBERT [6] represents a chemical reaction as a 
reaction SMILES string and fine-tunes a pre-trained 
reaction BERT model released by Schwaller et  al.’s 
study [39] for chemical reaction yield prediction.

• YieldBERT‑DA [7] is an improved version of Yield‑
BERT, which applies data augmentation based on 
molecule permutations and SMILES randomization.

• YieldMPNN [8] represents a chemical reaction as a 
set of molecular graphs, similar to our study. It builds 
a prediction model based on a message passing neu-
ral network (MPNN) architecture [34]. Despite not 
utilizing any prior knowledge from pre-training, 
YieldMPNN performed better than YieldBERT and 
YieldBERT‑DA.

For comparison of MolDescPred to existing pre-
training methods, we evaluated different pre-training 
methods for initializing the GNN component in the 
prediction model. Compared with MolDescPred, the 

only difference was the manner in which the GNN 
was pre-trained. The following pre-training meth-
ods were compared. For all the existing methods, the 
GIN was used as the GNN architecture because they 
demonstrated superior performance with the GIN in 
the experimental results in the previous studies. The 
unspecified configurations for training and inference 
were set identical to the MolDescPred.

• From‑Scratch initializes all parameters of the model 
f randomly without any pre-training. This method 
is similar to YieldMPNN, but it replaces the MPNN 
with GIN as the GNN architecture. The training 
configuration for this method is identical to that of 
YieldMPNN.

• MolCLR [13] pre-trains a GNN based on the con-
trastive learning approach. For data augmentation, 
it applies three graph transformation operations to 
generate different views of a molecular graph: atom 
masking, bond deletion, and sub-graph removal. The 
GNN learns molecular representations such that dif-
ferent views of the same molecular graph (i.e., posi-
tive pairs) are close and views of the different molec-
ular graphs (i.e., negative pairs) are far apart. Because 
contrastive learning requires a large batch size to 
accommodate a large number of negative pairs, we 
set the batch size to 512.

• DGI [14] pre-trains a GNN based on the contras-
tive learning approach. The GNN takes a molecular 
graph as an input to produce node embeddings and 
a molecular representation vector. A discrimina-
tor is introduced to classify whether a pair of a node 
embedding and a molecular representation vector 
are associated with the same molecular graph. The 
GNN and discriminator are jointly trained such that 
the GNN learns molecular representations by maxi-
mizing the mutual information between the local 
node embeddings and a global molecular representa-
tion vector. Similar to MolCLR, we set the batch size 
to 512.

• ContextPred [21] pre-trains a GNN based on the 
pre-text task approach. For each node in a molecu-
lar graph, it defines a context graph as a sub-graph 
surrounding the neighborhood of the node. The main 
GNN encodes a molecular graph to obtain node 
embeddings that aggregates information across the 
neighborhood of the corresponding nodes. An aux-
iliary GNN, called a context GNN, is introduced 
to encode each context graph to obtain the context 
embedding. The main GNN and context GNN are 
jointly trained. The learning objective is the binary 
classification of whether a node embedding from the 
main GNN and a context embedding from the con-
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text GNN are associated with the same node in the 
molecular graph.

• AttrMasking [21] pre-trains a GNN based on the 
pre-text task approach. It randomly masks the node 
features in a molecular graph and assigns the masked 
node features as the node-level pseudo-label to the 
molecular graph. The GNN learns to predict the 
ground-truth of the masked node features in the 
input molecular graph.

In computational aspects, the existing methods require 
an auxiliary model to be maintained or involve addi-
tional repetitive operations. MolCLR utilizes graph 
transformation operations to create different views 
of each molecular graph and forward passes for these 
views at each training epoch. DGI requires the mainte-
nance of the discriminator. ContextPred employs the 
auxiliary GNN. AttrMasking generates pseudo-labels at 
each training epoch. These requirements introduce extra 
computational costs during the pre-training phase. On 
the other hand, MolDescPred generates pseudo-labels 
before pre-training and trains only a single GNN with a 
prediction head to predict the fixed pseudo-labels during 
pre-training.

Results and discussion
In the random split experiments, we conducted experi-
ments for each training/test split ratio using 10 different 
random shuffles. In the out-of-sample split experiments, 
we repeated the experiment for each training/test split 
5 times with different random seeds. We evaluated the 
predictive performance of each method in terms of the 
root mean squared error (RMSE), mean absolute error 
(MAE), and coefficient of determination (R2 ) calculated 
on the test datasets. We report the average and standard 
deviation of the results over repetitions. The best and 
second best cases are highlighted in bold and underlined 
font, respectively.

Tables  1, 2, and 3 compare the predictive perfor-
mances of the baseline and proposed methods in terms 
of RMSE, MAE, and R 2 , respectively. Figure  5 summa-
rizes the RMSE comparison results using bar plots. In 
an overall comparison on various splits of benchmark 
datasets, the performance of MolDescPred was either 
superior or comparable to that of the baseline meth-
ods. For the random splits of the Buchwald-Hartwig and 
Suzuki-Miyaura datasets, MolDescPred performed the 
best and the second best on average, respectively. Espe-
cially, the improvement in  performance was more sig-
nificant when the size of the training dataset was smaller. 
When it comes to the out-of-sample splits of the Buch-
wald-Hartwig dataset, MolDescPred outperformed the 

baseline methods in 3 out of 4 splits. These results dem-
onstrate that MolDescPred performed well under the 
insufficiency of the training dataset in terms of quantity 
and diversity.

All the existing GNN pre-training methods out-
performed From-Scratch, indicating that the use of 
pre-training was helpful in improving the prediction 
performance. Among these methods, MolCLR achieved 
superior performance for the random splits of both the 
Buchwald-Hartwig and Suzuki-Miyaura datasets, but its 
performance slightly deteriorated on the out-of-sample 
splits of the Buchwald-Hartwig dataset. AttrMasking 
showed good performance in some of the out-of-sample 
splits. It should be noted that not all pre-training meth-
ods led to meaningful performance improvement and 
some of them significantly underperformed YieldMPNN, 
implying that it is important to select an appropriate pre-
training method for a specific target prediction task. 
Figure.  6 shows the distribution of reaction-wise error 
decreases achieved by MolDescPred compared to From-
Scratch and MolCLR, each of which is measured by the 
difference between the absolute error of MolDescPred 
and that of the compared method. The rightward skew 
of each distribution, characterized by a larger blue region 
compared to the red region, indicates that MolDescPred 
led to performance improvements in a greater number of 
chemical reactions within the test dataset.

Among the methods presented in the previous studies, 
YieldMPNN performed the best. YieldMPNN outper-
formed From-Scratch, which differs only in the GNN 
architecture, by a large margin in most cases. However, 
YieldMPNN performed worse than MolDescPred, espe-
cially on the random splits with small training datasets 
and out-of-sample splits. MFF showed low overall per-
formance compared to the other methods, but the per-
formance gap narrowed when using a smaller  training 
dataset. Notably, MFF achieved the best performance on 
the 2.5/97.5 split of the Suzuki-Miyaura dataset.

To investigate the effect of the GNN architecture in the 
proposed method, we evaluated a variant of the proposed 
method, MolDescPred-MPNN, by using the MPNN as 
the GNN architecture. It can be considered as the appli-
cation of the proposed pre-training to YieldMPNN. 
MolDescPred-MPNN yielded better performance than 
YieldMPNN in the random split experiments. While it 
performed significantly worse than MolDescPred on the 
Buchwald-Hartwig dataset, it surpassed MolDescPred 
on the Suzuki-Miyaura dataset. However, MolDescPred-
MPNN performed worse than YieldMPNN in the out-
of-sample split experiments. This indicates that the 
proposed method was more effective when used with the 
GIN.
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Fig. 5 Graphical summary of RMSE comparison results: (a) Buchwald‑Hartwig (Random Split), (b) Suzuki‑Miyaura (Random Split), (c)
Buchwald‑Hartwig (Out‑Of‑Sample Split)
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To investigate the effect of the dimensionality of the 
pseudo-labels in the proposed method, we conducted a 
sensitivity analysis with respect to the explained variance 
determined by the number of principal components q. 
Figure 7 shows box plots comparing the RMSE reduction 
rate relative to the 70% explained variance case across 
various explained variances. The detailed comparison 
results across different levels of explained variance can be 
found in Additional file 1: Table S2. In the random splits 

of the Buchwald-Hartwig and Suzuki-Miyaura datasets, 
no significant differences in performance were observed. 
In the out-of-sample splits of the Buchwald-Hartwig 
dataset, while there was no clear tendency, MolDescPred 
demonstrated comparable performance at 70% explained 
variance. Therefore, it can be concluded that the cur-
rent experimental setting where the dimensionality cor-
responds to 70% explained variance can be a reasonable 
choice.

Fig. 6 Distribution of reaction‑wise error decreases by MolDescPred, compared to From‑Scratch and MolCLR: (a) Buchwald‑Hartwig (Random 
Split), (b) Suzuki‑Miyaura (Random Split), (c)Buchwald‑Hartwig (Out‑Of‑Sample Split)
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Fig. 7 Sensitivity analysis regarding the number of principal components used in MolDescPred: (a) Buchwald‑Hartwig (Random Split), (b) 
Suzuki‑Miyaura (Random Split), (c)Buchwald‑Hartwig (Out‑Of‑Sample Split)
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Conclusion
In this study, we presented a GNN pre-training method, 
MolDescPred, to improve the performance of chemical 
reaction yield prediction. The proposed method defined 
a pre-text task by leveraging molecular descriptors. For 
a molecular database, we pseudo-labeled each molecule 
with its molecular descriptors in a reduced dimensional-
ity obtained through PCA. Using the database, a GNN 
was pre-trained to predict the pseudo-label of a molecule. 
The pre-trained GNN served as the initialization for the 
GNN component of the chemical reaction yield predic-
tion model. By fine-tuning on the target training dataset, 
the prediction model achieved improved performance 
in predicting the yields of chemical reactions. Through 
experimental investigations on benchmark datasets for 
chemical reaction yield prediction, we demonstrated the 
superior  performance of the proposed method over the 
baseline methods. The proposed method was more effec-
tive when the training dataset was insufficient in terms of 
quantity and diversity.

In contrast to other pre-training methods that involve 
repetitions of complex and expensive computations, the 
proposed method pre-trains a GNN to perform a simple 
prediction task as the pre-text task. Because the molec-
ular descriptors can be efficiently computed on a large 
scale, the proposed method can be easily implemented 
in practical applications. One important consideration 
is that the molecular descriptors used to define the pre-
text task are not equally beneficial for the target predic-
tion tasks. While some descriptors may provide valuable 
information, others may be less useful. Guided by this 
intuition, a potential avenue for future work to further 
enhance the efficiency and effectiveness of the proposed 
method is to investigate ways for dynamically selecting 
the most advantageous molecular descriptors for specific 
target prediction tasks.
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