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Abstract 

Cosolvent molecular dynamics (MD) simulations are molecular dynamics simulations used to identify preferable 
locations of small organic fragments on a protein target. Most cosolvent molecular dynamics workflows make use 
of only water-soluble fragments, as hydrophobic fragments would cause lipophilic aggregation. To date the two 
approaches that allow usage of hydrophobic cosolvent molecules are to use a low (0.2 M) concentration of hydro-
phobic probes, with the disadvantage of a lower sampling speed, or to use force field modifications, with the disad-
vantage of a difficult and inflexible setup procedure. Here we present a third alternative, that does not suffer from low 
sampling speed nor from cumbersome preparation procedures. We have built an easy-to-use open source command 
line tool PART (Plumed Automatic Restraining Tool) to generate a PLUMED file handling all intermolecular restraints 
to prevent lipophilic aggregation. We have compared restrained and unrestrained cosolvent MD simulations, showing 
that restraints are necessary to prevent lipophilic aggregation at hydrophobic probe concentrations of 0.5 M. Fur-
thermore, we benchmarked PART generated restraints on a test set of four proteins (Factor-Xa, HIV protease, P38 MAP 
kinase and RNase A), showing that cosolvent MD with PART generated restraints qualitatively reproduces binding 
features of cocrystallised ligands.

Keywords Molecular dynamics, Cosolvent simulations, Metadynamics, Conformational sampling, Drug design

Introduction
Cosolvent molecular dynamics have recently gained 
interest as a tool for structure-based drug design using a 
fragment-based approach. Cosolvent molecular dynam-
ics simulations are molecular dynamics (MD) simulations 
in which a user-specified amount of the water solvent 
molecules surrounding a protein target are replaced by 
so-called cosolvent molecules, where these cosolvent 

molecules are also termed probes. The positions of the 
cosolvent molecules throughout the trajectory are then 
analyzed a posteriori to create density maps of where the 
probes most often reside during the molecular dynam-
ics simulations. A variety of probe types and mixes of 
probe types have been used throughout literature, such 
as water-benzene-isopropane, water-isopropanol or 
water-isopropanol-acetamide-acetate-isopropylamine 
[1–5]. A more comprehensive review of the different type 
of probe mixtures used can be found in the miniperspec-
tive written by Ghanakota and Carlson [6]. Recently, a 
variety of enhanced sampling techniques have also been 
used in combination with cosolvent molecular dynamics 
to further enhance performance. In SWISH, Hamiltonian 
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replica exchange is combined with a benzene cosolvent, 
leading to a methodology that is promising for discover-
ing cryptic pockets [7]. In accelerated ligand-mapping 
MD, accelerating molecular dynamics is combined with 
benzene cosolvent, leading to a methodology in which 
occluded binding pockets can be discovered as well [8].

An interesting application to structure-based drug 
design consists of building pharmacophore models from 
the calculated probe densities. Pharmacophore models 
are three-dimensional maps of chemical features thar are 
considered important for ligand binding [9]. By screening 
a library of molecules for that three-dimensional arrange-
ment of chemical features, novel inhibitor scaffolds for 
protein targets can be discovered. These cosolvent-based 
pharmacophore models outperform more conventional 
docking approaches, as was shown by the SILCS-Pharm 
approach [10]. Another workflow that combines cosol-
vent molecular dynamics with pharmacophore modeling 
is the Pharmmaker tool [11].

As hydrophobic and aromatic groups are often 
included in pharmacophore screenings, it is of interest to 
include these hydrophobic probes in cosolvent molecular 
dynamics [12]. However, a major concern in simulations 
with hydrophobic probe molecules, such as benzene, iso-
propane or isobutane, is that phase separation can occur 
by aggregation of these hydrophobic probes. Bakan et al. 
[3] mentioned that isobutane is one the most common 
fragment types in approved drugs, however isobutane 
was not included in the probe mix due to the insolubility 
of isobutane and risk for aggregation. The Site Identifica-
tion by Ligand Competitive Saturation (SILCS) approach 
by Guvench et al. [2, 10, 13–18] provides a working solu-
tion to this aggregation risk by including an artificial 
repulsion term between the hydrophobic probes. This 
artificial repulsion term is incorporated by adapting 
the corresponding non-bonded force field parameters. 
However, modifying force fields is a rather complex pro-
cedure, and additionally force field cut-offs need to be 
adapted from the standards for which the force field was 
parametrized [19]. Another possibility to avoid hydro-
phobic probe aggregation is to use simulations with 
lower probe concentrations (<0.2 M) [8, 20]. However, 
for applications where faster convergence in probe den-
sity maps is desired, the low sampling speed stemming 
from the low concentrations might be detrimental. Con-
sequently, there is a need for a flexible and easy to setup 
methodology that generates intermolecular repulsion 
interactions between hydrophobic probes in molecular 
dynamics simulations, and in this context we developed 
a workflow using PLUMED-based restraints [21–23]. In 
this paper we present the “Plumed Automatic Restraining 
Tool” (PART), a Python command line tool that prepares 
a PLUMED input file to integrate in cosolvent molecular 

dynamics workflows with hydrophobic probes with-
out aggregation issues. In this manuscript, we detail the 
PART methodology, show a benchmark of a restrained 
versus unrestrained simulation and we demonstrate that 
cosolvent MD simulations with restraints generated by 
PART may reproduce key ligand features. The PART pro-
gram, together with some usage examples is freely avail-
able on GitHub at the following link: https:// github. com/ 
UAMC- Olivi er/ PART.

Methods
The methodology of the tool development consists of 
four parts, namely an explanation of the tool code, a 
comparison between unrestrained and restrained simula-
tions to show that artificial repulsion is necessary at high 
hydrophobic probe concentration, a benchmark to show 
that known ligand features are reproduced by cosolvent 
simulations with intermolecular repulsion terms gener-
ated by PART, and lastly a benchmark on the slowdown 
of the simulation by including PART restraints.

Plumed Automatic Restraining Tool (PART)
The Plumed Automatic Restraining Tool is a Python 
command line tool that generates a PLUMED input file 
to prevent aggregation of user-defined probe molecules 
using the existing “many restraints” module of PLUMED 
[21–23]. The general methodology consists of calculating 
all distances between the defined molecules, and then cal-
culating the to-be-applied artificial repulsion using a bias 
function, which is user customizable if desired. The input 
consists of a Protein Data Bank (PDB) or GROMACS 
(GRO) structure file of the system with cosolvent mol-
ecules and a description of the molecule types to which 
the restraining potential needs to be applied. It is possible 
to add a restraining potential between molecules of the 
same type (such as benzene-benzene), or between mole-
cules of different types (such as benzene-propane), or any 
combination of these. The calculation of the intermolecu-
lar distances is point-based. The user can either specify 
a central atom of the probe to be used as the point on 
which the distance calculation is based, or specify a list 
of atoms from which the center of mass (COM) will be 
computed. PART can easily be integrated in a cosolvent 
molecular dynamics workflow as depicted in Fig. 1.

PART will first parse the user-specified PDB or GRO 
file using a custom structure file parser implemented 
in the PART code. PART will then build all necessary 
atom groups and write the requested center of mass 
calculation to the PLUMED file. As a final step, the tool 
will write out all distance calculation statements, all 
restraint statements, and print statements of the bias val-
ues. The restraints statements make use of lower walls, 
of which the limit and harmonic potential terms are 
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user-customizable if desired using optional command 
line flags. The default parameter values for the artificial 
repulsion potential V  are an energy constant k of approx-
imately 0.5 kcal  mol−1 Å−4, a wall location a of 8.0 Å, 
a scaling factor s of 1.0 and an exponent e of 4.0 with x 
being the intermolecular distance in Å (Eq. 1):

After running PART, the PLUMED file can be further 
modified by the user to include additional restraints, 
such as protein root-mean-square deviation restraints, if 
desired.

Comparison between restrained and unrestrained 
cosolvent MD simulations
The Factor Xa protein (PDB: 1FJS) [24] structure was 
prepared by removing ligands and glycerol molecules, 
while retaining crystal waters and ions. Side chain flips 
were analyzed with Reduce [25] and protonation states 
of the ionizable groups with PROPKA [26, 27]. Occur-
rence of disulfide bridges was checked manually. Molec-
ular dynamics engine of choice was GROMACS 2021.3 
[28, 29] patched with PLUMED 2.7.2 [21–23], the chosen 
force field was CHARMM36m (July 2021 version) [19, 
30]. Consequently, the prepared PDB file of the protein 
was converted to GROMACS format, and the system 
was placed in a periodic dodecahedral box, where the 
box edges are at least 12 Å away from any protein ele-
ment. A workflow tool involving the PART tool was used 
for adding the cosolvent molecules, counterions and 
original TIP3P [31] water molecules at ten different ran-
domly generated starting locations. The chosen cosolvent 
molecules were the same as in the SILCS multiple frag-
ment types methodology [16], namely benzene, propane, 

(1)V = k

(

x − a

s

)e

if x < a,V = 0 if x ≥ a

methanol, formamide, acetaldehyde, acetate and meth-
ylammonium. A PART generated PLUMED file with 
the intermolecular repulsion terms between benzene-
benzene, propane-benzene, propane-propane and ace-
tate-methylammonium was also generated at this stage. 
Force field parameters for the cosolvent molecules were 
generated using CGenFF (CGenFF version 4.6, CGenFF 
program version 2.5) [32–35]. The concentration of each 
cosolvent molecule type was set to 0.25 M.

After system preparation, the system was mini-
mized in two stages: a first stage with flexible waters 
and without hydrogen bond constraints, followed by 
a second stage with rigid waters and with hydrogen 
bond constraints. Throughout the second minimiza-
tion stage and all subsequent simulations, hydrogen 
bonds were constrained using the LINCS algorithm 
[36]. Minimization was set to steepest descent with a 
maximum number of 50,000 steps and the default con-
vergence criterion. Minimization step size was 0.01 Å 
for the first stage and 0.1 Å for the second. The system 
was then initialized at a temperature of 300 K equili-
brated in three stages: one in the NVT ensemble with 
positional restraints on the protein heavy atoms, one in 
the NPT ensemble, again with positional restraints, and 
one in the NPT ensemble without positional restraints. 
The force constant for positional restraints was approx-
imately 2.4 kcal  mol−1 Å−2. The NVT equilibration was 
carried out over 0.5 ns, while both NPT stages of the 
equilibration were simulated for 1 ns.

The actual production runs in the NPT ensemble 
were simulated for 100 ns for each of the ten different 
randomly generated starting coordinates, leading to a 
total simulation length of 1 µs. Throughout all simula-
tions, force field cut offs of 12 Å were used, where the 
potential is smoothly switched to zero between 10 Å 
and 12 Å. Long range electrostatics were treated using 

Fig. 1 Schematic visualization of the inclusion of PART in a cosolvent molecular dynamics workflow

Table 1 Overview of the analyzed ligands in the ligand feature reproduction benchmark

*Not included in the original SILCS [16] benchmark set

Protein system PDB codes of analyzed ligands

Factor-Xa 1FJS [24], 1EZQ [46], 1MQ5 [47], 1Z6E [48]

HIV protease 1G2K [40], 1DMP [49], 1B6K [50], 1D4L [51]

P38 MAP kinase 1OUY [41], 1W84 [52], 1A9U [53], 1BL7 [53], 1DI9 [54], 1WBW [52]

RNase A 1O0H [55], 1O0O [55], 1O0M [54], 1QHC [56], 6PVV* [43], 6PVX* [43]
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Particle Mesh Ewald (PME) [37] method. Tempera-
ture coupling in all simulations was carried out using 
the V-rescale thermostat [38] with a time constant of 
0.1 ps, with the reference temperature set to 300 K. 
Protein and non-protein elements were coupled sepa-
rately. Pressure coupling was executed by the C-rescale 
barostat [39] with a time constant of 2.0 ps and with 
a reference pressure of 1 bar in all NPT ensemble 
simulations.

The above simulation protocol was applied twice to 
Factor Xa, once with the PART generated PLUMED 
restraints and once without. For the simulation with 
PART restraints, the PART default potential was applied 
for both NPT equilibrations and for the production sim-
ulations. For the NVT equilibration, a softer potential 
(parameters: k ≈ 0.02 kcal mol-1 Å−2, a = 8.0 Å, s = 1.0, 
e = 2.0) was applied as to not introduce large forces to 
cosolvent molecules close to each other.

During simulation analysis, radial distribution func-
tions (RDFs) were calculated by binning the individual 
intermolecular distances over the MD trajectories of 
the ten simulation replicas. Chosen distance calculation 
points were the COM of benzene, the central carbon 
atom of propane, the nitrogen atom of methylammo-
nium, the carboxylic carbon atom of acetate and the car-
bon atom of formamide.

We also analyzed the percentage of ionic organic frag-
ments participating in ion-ion interactions and the per-
centage of aggregated lipophilic molecules. To examine 
this, we computed the distances between the molecules 
of interest by calculating the intermolecular distance 
matrices. For each MD frame, the number of molecules 
participating in interactions was then calculated based 
on these intermolecular distance matrices. The criterium 
for ionic interactions was a distance below 4 Å. The crit-
erium for a hydrophobic molecule to participate in lipo-
philic aggregation was modelled as one intermolecular 
distance to another hydrophobic molecule below 7 Å. 
Finally, the average fraction of molecules participating 
in interactions was calculated as the average of interact-
ing molecules over all the MD frames from the ten rep-
licas. The distance calculations were performed using 
PLUMED.

Ligand feature reproduction benchmarks
We benchmarked the PLUMED restraints gener-
ated by PART on the results found in a SILCS bench-
mark by Raman et  al. on four protein systems, namely 
Factor-Xa (PDB:1FJS) [24], HIV protease (PDB:1G2K) 
[40], P38 MAP kinase (PDB:1OUY) [41] and RNase A 
(PDB:1JVT) [42]. An identical cosolvent mixture as in 
the previously detailed restrained versus unrestrained 
MD simulations was used. Raman et  al. [16] compared 

SILCS fragment affinity maps to important binding fea-
tures of cocrystallised ligands to the four benchmark 
proteins, of which we analyzed a selection of ligands as 
well. Additionally, we analyzed whether our simulations 
can reproduce key ligand features of a set of recently 
published crystal structures of RNase A [43]. An over-
view of the analyzed ligand–protein structures can be 
found in Table  1. Protein preparation and simulation 
protocols for the three extra proteins were the same as 
for the previously detailed restrained Factor Xa bench-
mark, with one exception: for the RNase A system, an 
additional restraint on the Cα carbons with a force con-
stant of approximately 0.01 kcal  mol−1 Å−2 was added 
during the second NPT equilibration and the MD pro-
duction to prevent protein unfolding. Visualization was 
performed using PyMol (Version 2.4.1, Schrödinger LLC) 
and density analyses were performed using MDAnalysis 
[44, 45]. To allow comparison with previous executions 
of this benchmark [16], we calculated the densities of five 
atom groups: hydrophobic (propane and benzene carbon 
atoms), hydrogen bond donor (formamide and metha-
nol donor hydrogen atoms), hydrogen bond acceptor 
(formamide, methanol and acetaldehyde oxygen atoms), 
negatively charged (acetate oxygen atoms) and positively 
charged (methylammonium polar hydrogens). The atom 
densities were calculated as an average over the ten rep-
licas per protein. These groupwise summed atom density 
grids were converted to grid free energies (GFEs) using 
the below described formula, where R being the ideal gas 
constant, T  is the temperature, n is the calculated density 
for the grid voxel under study and nexpected is the expected 
density, calculated by dividing the total number of atoms 
of the atom group in the box by the average box volume 
throughout the simulation (Eq. 2):

Performance benchmarks
We have calculated a performance test of the PART 
restraints in which we measure the percentage of the 
total simulation time going to PART restraints as a func-
tion of different hardware architectures and different 
probe mixtures. We tested four hardware architectures, 
namely 16, 64 and 128 cores of an AMD EPYC 7H12 
CPU and 12 cores of an AMD Epyc 7402 CPU combined 
with one Nvidia A100 GPU. The system setup was similar 
to the Factor-Xa benchmark, with as only difference the 
probe concentrations. We tested seven probe mixtures 
in total. The first mixture was set up as an exact copy of 
the Factor-Xa benchmark. The second and third system 
used only propane as cosolvent, at concentrations of 0.25 

(2)GFE = −RT ln(
n

nexpected
)
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Fig. 2 Radial distribution functions for a selection of probe pairs for the Factor-Xa simulations with (blue curves) and without (orange curves) PART 
restraints. Radial distribution functions were calculated as an average over the ten MD replicas of the simulations with and without PART restraints. 
As a reference, the RDF for formamide is also shown, a molecule for which aggregation does not take place, hence the simulations with and without 
PART generated restraints have the same, overlapping RDF curve
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M and 0.5 M respectively. The fourth and fifth system 
used only benzene as cosolvent, also at concentrations of 
0.25 M and 0.5 M. Comparing the propane and benzene 
only mixtures allows to study the influence of single atom 
versus COM-based distance calculations, as for propane 
a single atom was used and for benzene the COM of all 
benzene atoms. To study the influence of the number of 
atoms in a COM simulation, we made a sixth and seventh 
experiment in which we use the previously described 
benzene only mixtures, but with the COM calculation 
based on the benzene carbon atoms only. We used short 
MD simulations of 100 ps for the scaling tests.

Results and discussion
Comparison between restrained and unrestrained 
simulations
Figure  2 shows the radial distribution functions (RDFs) 
between a selection of cosolvent molecule types. These 
RDFs were calculated for the Factor-Xa mixture without 
PART generated restraints and for the Factor-Xa mixture 
with PART generated restraints, as described earlier. If 
aggregation takes place, RDF curves show peaks at low 
intermolecular distances and have less occurrences of 
higher intermolecular distances. Following these crite-
ria, aggregation is clearly taking place between benzene-
benzene, propane-benzene, and propane-propane pairs. 
Visual inspection of the trajectory also confirms this 
lipophilic aggregation (Fig. 3). This analysis indicates that 
intermolecular distance restraints between hydrophobic 
molecule types are necessary at higher concentrations. 
From the intermolecular distance matrices and by count-
ing the number of interactions, the average fraction of 
intermolecular interactions between the fragments could 
be calculated (see Methods section). The average frac-
tion of hydrophobic molecules participating in lipophilic 
aggregation was 88%, composed of 90% of propane inter-
acting with other hydrophobic molecules, and 86% of 
benzenes interacting with other hydrophobic molecules. 
As a reference, Fig. 2 also shows the RDF for formamide, 
a molecule for which aggregation does not take place as it 
is water soluble and not formally charged.

When analyzing the ionic interactions between acetate 
(negative formal charge) and methylammonium (positive 
formal charge), a simple conclusion is less obvious. Due 
to the nature of these interactions, the ionic fragments 
form pairs rather than large aggregates. Pair formation 
will result in a peak at low intermolecular distances in 
an RDF curve, but the RDF values at longer intermo-
lecular distances are less impacted since the ionic pairs 
are still randomly distributed in the simulation box and 
do not aggregate. The average fraction of ionic fragments 

Fig. 3 Illustration of lipophilic aggregation between hydrophobic 
probes (green) during the Factor-Xa protein (purple) simulation 
without PART restraints. Water soluble probes are shown in orange

Fig. 4 Overlap between Factor-Xa ligands and the calculated densities from a Factor-Xa cosolvent MD simulation with PART generated restraints. 
All grid points with GFE values of less or equal to −1.5 kcal/mol are shown as a mesh (green: hydrophobic, dark blue: donor, red: acceptor, orange: 
negatively charged, cyan: positively charged). The black arrow highlights a hydrophobic density mesh that overlaps with a ring feature in all four 
ligands
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making ion-ion interactions is  26.4%. As this is not as 
detrimental as compared to lipophilic aggregation, it 
is up to the user to decide whether it is worthwhile to 
include restraints between oppositely charged fragment 
types.

Ligand feature reproduction benchmarks
Figure  4 shows the fragment densities in Factor-Xa, as 
calculated from the cosolvent MD trajectory, and over-
laid with several ligand structures. Positively charged 
fragment densities overlap nicely with ligand benzami-
dine groups, while negatively charged fragment density 
overlaps with the 1FJS ligand carbonic acid group. The 
trifluoromethyl group of the 1Z6E ligand is reproduced 
by the hydrophobic fragments, while hydrophobic rings 
in all four ligands (see black arrow) are also located in 
hydrophobic density sites.

HIV protease fragment densities (Fig. 5) also reproduce 
some key hydrophobic ligand features, including all four 
phenyl groups from the 1G2K and 1DMP ligands and the 
lipophilic macrocycle of the last two ligands. Hydrogen 
bond donor and hydrogen bond acceptor features are 
in general divided between spurious and non-spurious 
(such as the amide oxygen in the 1G2K ligand) sites. Of 

note is that none of the fragments producing the donor 
and acceptor maps are directly influenced by PART gen-
erated restraints.

In the P38 MAP kinase benchmark, shown in Fig. 6, the 
hydrophobic map type corresponds to the ring systems 
in the ligands, as indicated by the two black arrows. The 
secondary amine of the 1OUY and 1BL7 ligand is also 
positioned inside the positive fragment density. Interest-
ingly, the pyridine nitrogen atom of 1W84 and 1A9U also 
overlaps with an acceptor density, as indicated by the red 
arrow, although again acceptor densities are not influ-
enced by PART.

Negatively charged phosphate groups are in general 
close to, or inside of, negatively charged fragment den-
sities in the RNase A benchmark, as illustrated in Fig. 7. 
The aromatic system of the 6PVV ligand overlaps with 
calculated hydrophobic/aromatic fragment densities. 
Additionally, donor and acceptor densities overlap with 
donor and acceptor locations in the 6PVX ligand, as indi-
cated by the blue and red arrows.

In general, we conclude from the above results that 
important ligand features can be qualitatively reproduced 
by cosolvent MD simulations with PART generated 
restraints. If using a high concentration of hydrophobic 

Fig. 5 Overlap between HIV protease ligands and the calculated densities from a HIV protease cosolvent MD simulation with PART generated 
restraints. All grid points with GFE values ≤ −1.5 kcal/mol are shown as a mesh (green: hydrophobic, dark blue: donor, red: acceptor, orange: 
negatively charged, cyan: positively charged)
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Fig. 6 Overlap between P38 MAP kinase ligands and the calculated densities from a HIV protease cosolvent MD simulation with PART generated 
restraints. All grid points with GFE values ≤ −1.5 kcal/mol are shown as a mesh (green: hydrophobic, dark blue: donor, red: acceptor, orange: 
negatively charged, cyan: positively charged). The black arrow highlights a hydrophobic density mesh that overlaps with the ring systems 
in the ligands. The red arrow highlights an acceptor density that overlaps with the pyridine nitrogen atom of 1W84 and 1A9U

Fig. 7 Overlap between RNase A ligands and the calculated densities from a HIV protease cosolvent MD simulation with PART generated restraints. 
All grid points with GFE values ≤ −1.5 kcal/mol shown as a mesh (green: hydrophobic, dark blue: donor, red: acceptor, orange: negatively charged, 
cyan: positively charged). The red arrow highlights a hydrogen bond acceptor density that overlaps with an acceptor feature of the 6PVX ligand. The 
blue arrow highlights a donor density that overlaps with a donor feature of the 6PVX ligand
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probes, intermolecular restraints will ensure that frag-
ments densities accumulate in the appropriate pockets 
at an expected sampling speed. These results are in line 
with benchmarks done using other methodologies such 
as SILCS [16].

Performance benchmarks
The results from the performance benchmarks are 
shown in Table 2. Clearly the PLUMED part of the cal-
culation does not scale as well over increasing cores as 
the GROMACS part of the calculation. When making 
use of a GPU, the GROMACS part of the calculation 
can become faster than PLUMED part of the calcula-
tion, severely impacting total simulation speed. Conse-
quently, we advise users of PART to make use of CPU 
partitions, while using one full CPU per simulation 
and run multiple replicas in parallel. We note that if 
future PLUMED code is better optimized for the cal-
culations used in PART, then these scaling test results 
might change.

Conclusion
We have shown that PART is a new easy-to-use alterna-
tive for current methodologies for cosolvent MD simu-
lations involving hydrophobic cosolvent molecules. The 
main advantages of PART are short setup times (espe-
cially compared to force field modifications where these 
modifications need to be validated), a restraint potential 
that can be easily modified, and that the recommended 
force field cutoffs can be used. Regarding the last point, 
in competing technologies such as SILCS, force field cut-
offs are modified to make sure that the restraint potential 
introduced by force field modifications have the correct 
shape. Such force field cut-off changes are not required 
with PART-generated restraint potentials.

The main disadvantage of PART is that an extra 
PLUMED overhead time is introduced to the calculation. 

It is up to the user to decide which arguments are more 
important when choosing a methodology.

Additionally, we have demonstrated that restrained 
simulations increase the effective concentration of hydro-
phobic probes by preventing aggregation. Cosolvent MD 
simulations involving PART-generated restraints on four 
benchmarked proteins also reproduce known ligand fea-
tures qualitatively.
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Table 2 Overview of the PART performance benchmark showing the percentage of the total simulation time going to PART restraints 
as a function of different hardware architectures and different probe mixtures

Mix 1 is a copy of the Factor-Xa benchmark where all benzene atoms where used to calculate the COM. Mix 2 is the Factor-Xa system where the only cosolvent is 
propane at a concentration of 0.25 M and Mix 3 is a copy of Mix 2 but with a probe concentration of 0.5 M. Mix 4 is the Factor-Xa system where the only cosolvent is 
benzene at a concentration of 0.25 M. Mix 5 is a copy of Mix 4 but with a probe concentration of 0.5 M. In Mix 4 and Mix 5, the COM of benzenes was calculated using 
all benzene atoms. Mix 6 and Mix 7 are a copy of Mix 4 and Mix 5 respectively, but now calculating the COM using only the benzene carbon atoms

16 CPU cores 64 CPU cores 128 CPU cores 1 A100 GPU

Mix 1 PLUMED time (%) 13 22 36 71

Mix 2 PLUMED time (%) 3 6 22 43

Mix 3 PLUMED time (%) 5 12 28 50

Mix 4 PLUMED time (%) 8 12 28 62

Mix 5 PLUMED time (%) 12 21 36 66

Mix 6 PLUMED time (%) 4 10 26 50

Mix 7 PLUMED time (%) 10 18 34 68

https://github.com/UAMC-Olivier/PART
https://github.com/UAMC-Olivier/PART
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